Is it possible to access contents of anonymous functions - javascript

It's a very brief question. Is it possible for me to access variables, objects, functions that are inside an anonymous function?
I need to access an object that contains functions. I need only one function, call it again. But this code is inside an anonymous function. I can't run from there, because the reason is not to have conflicts with the various js that are on the page.
And there?

Before modules became common in JavaScript it was not uncommon to do what you're asking by assigning the output of an anonymous function to a global variable. One single global variable that has methods and properties made available through it is considered a good practice. There's still the chance for conflicts, but a lot less with a single global variable.
const myAnonFunction = (() => {
function a() {
// ...
}
function b() {
a();
// ...
}
function c() {
// ...
}
return {
b,
c,
}
})();
In the above code we create an anonymous function and immediately execute it, note the () on the last line. The output of the function is assigned to the global constant myAnonFunction. You can then access anything that is in the return statement externally such as myAnonFunction.b() and myAnonFunction.c(), but you will be unable to access .a() because it is not returned.

Related

Should I put my entire Javasscript script inside a self invoking function? [duplicate]

In javascript, when would you want to use this:
(function(){
//Bunch of code...
})();
over this:
//Bunch of code...
It's all about variable scoping. Variables declared in the self executing function are, by default, only available to code within the self executing function. This allows code to be written without concern of how variables are named in other blocks of JavaScript code.
For example, as mentioned in a comment by Alexander:
(function() {
var foo = 3;
console.log(foo);
})();
console.log(foo);
This will first log 3 and then throw an error on the next console.log because foo is not defined.
Simplistic. So very normal looking, its almost comforting:
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
However, what if I include a really handy javascript library to my page that translates advanced characters into their base level representations?
Wait... what?
I mean, if someone types in a character with some kind of accent on it, but I only want 'English' characters A-Z in my program? Well... the Spanish 'ñ' and French 'é' characters can be translated into base characters of 'n' and 'e'.
So someone nice person has written a comprehensive character converter out there that I can include in my site... I include it.
One problem: it has a function in it called 'name' same as my function.
This is what's called a collision. We've got two functions declared in the same scope with the same name. We want to avoid this.
So we need to scope our code somehow.
The only way to scope code in javascript is to wrap it in a function:
function main() {
// We are now in our own sound-proofed room and the
// character-converter library's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
That might solve our problem. Everything is now enclosed and can only be accessed from within our opening and closing braces.
We have a function in a function... which is weird to look at, but totally legal.
Only one problem. Our code doesn't work.
Our userName variable is never echoed into the console!
We can solve this issue by adding a call to our function after our existing code block...
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
main();
Or before!
main();
function main() {
// We are now in our own sound-proofed room and the
// character-converter libarary's name() function can exist at the
// same time as ours.
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
A secondary concern: What are the chances that the name 'main' hasn't been used yet? ...so very, very slim.
We need MORE scoping. And some way to automatically execute our main() function.
Now we come to auto-execution functions (or self-executing, self-running, whatever).
((){})();
The syntax is awkward as sin. However, it works.
When you wrap a function definition in parentheses, and include a parameter list (another set or parentheses!) it acts as a function call.
So lets look at our code again, with some self-executing syntax:
(function main() {
var userName = "Sean";
console.log(name());
function name() {
return userName;
}
}
)();
So, in most tutorials you read, you will now be bombarded with the term 'anonymous self-executing' or something similar.
After many years of professional development, I strongly urge you to name every function you write for debugging purposes.
When something goes wrong (and it will), you will be checking the backtrace in your browser. It is always easier to narrow your code issues when the entries in the stack trace have names!
Self-invocation (also known as
auto-invocation) is when a function
executes immediately upon its
definition. This is a core pattern and
serves as the foundation for many
other patterns of JavaScript
development.
I am a great fan :) of it because:
It keeps code to a minimum
It enforces separation of behavior from presentation
It provides a closure which prevents naming conflicts
Enormously – (Why you should say its good?)
It’s about defining and executing a function all at once.
You could have that self-executing function return a value and pass the function as a param to another function.
It’s good for encapsulation.
It’s also good for block scoping.
Yeah, you can enclose all your .js files in a self-executing function and can prevent global namespace pollution. ;)
More here.
Namespacing. JavaScript's scopes are function-level.
I can't believe none of the answers mention implied globals.
The (function(){})() construct does not protect against implied globals, which to me is the bigger concern, see http://yuiblog.com/blog/2006/06/01/global-domination/
Basically the function block makes sure all the dependent "global vars" you defined are confined to your program, it does not protect you against defining implicit globals. JSHint or the like can provide recommendations on how to defend against this behavior.
The more concise var App = {} syntax provides a similar level of protection, and may be wrapped in the function block when on 'public' pages. (see Ember.js or SproutCore for real world examples of libraries that use this construct)
As far as private properties go, they are kind of overrated unless you are creating a public framework or library, but if you need to implement them, Douglas Crockford has some good ideas.
I've read all answers, something very important is missing here, I'll KISS. There are 2 main reasons, why I need Self-Executing Anonymous Functions, or better said "Immediately-Invoked Function Expression (IIFE)":
Better namespace management (Avoiding Namespace Pollution -> JS Module)
Closures (Simulating Private Class Members, as known from OOP)
The first one has been explained very well. For the second one, please study following example:
var MyClosureObject = (function (){
var MyName = 'Michael Jackson RIP';
return {
getMyName: function () { return MyName;},
setMyName: function (name) { MyName = name}
}
}());
Attention 1: We are not assigning a function to MyClosureObject, further more the result of invoking that function. Be aware of () in the last line.
Attention 2: What do you additionally have to know about functions in Javascript is that the inner functions get access to the parameters and variables of the functions, they are defined within.
Let us try some experiments:
I can get MyName using getMyName and it works:
console.log(MyClosureObject.getMyName());
// Michael Jackson RIP
The following ingenuous approach would not work:
console.log(MyClosureObject.MyName);
// undefined
But I can set an another name and get the expected result:
MyClosureObject.setMyName('George Michael RIP');
console.log(MyClosureObject.getMyName());
// George Michael RIP
Edit: In the example above MyClosureObject is designed to be used without the newprefix, therefore by convention it should not be capitalized.
Scope isolation, maybe. So that the variables inside the function declaration don't pollute the outer namespace.
Of course, on half the JS implementations out there, they will anyway.
Is there a parameter and the "Bunch of code" returns a function?
var a = function(x) { return function() { document.write(x); } }(something);
Closure. The value of something gets used by the function assigned to a. something could have some varying value (for loop) and every time a has a new function.
Here's a solid example of how a self invoking anonymous function could be useful.
for( var i = 0; i < 10; i++ ) {
setTimeout(function(){
console.log(i)
})
}
Output: 10, 10, 10, 10, 10...
for( var i = 0; i < 10; i++ ) {
(function(num){
setTimeout(function(){
console.log(num)
})
})(i)
}
Output: 0, 1, 2, 3, 4...
Short answer is : to prevent pollution of the Global (or higher) scope.
IIFE (Immediately Invoked Function Expressions) is the best practice for writing scripts as plug-ins, add-ons, user scripts or whatever scripts are expected to work with other people's scripts. This ensures that any variable you define does not give undesired effects on other scripts.
This is the other way to write IIFE expression. I personally prefer this following method:
void function() {
console.log('boo!');
// expected output: "boo!"
}();
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
From the example above it is very clear that IIFE can also affect efficiency and performance, because the function that is expected to be run only once will be executed once and then dumped into the void for good. This means that function or method declaration does not remain in memory.
One difference is that the variables that you declare in the function are local, so they go away when you exit the function and they don't conflict with other variables in other or same code.
First you must visit MDN IIFE , Now some points about this
this is Immediately Invoked Function Expression. So when your javascript file invoked from HTML this function called immediately.
This prevents accessing variables within the IIFE idiom as well as polluting the global scope.
Self executing function are used to manage the scope of a Variable.
The scope of a variable is the region of your program in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code and can be accessed from anywhere within the script, even in your functions. On the other hand, variables declared within a function are defined only within the body of the function.
They are local variables, have local scope and can only be accessed within that function. Function parameters also count as local variables and are defined only within the body of the function.
As shown below, you can access the global variables variable inside your function and also note that within the body of a function, a local variable takes precedence over a global variable with the same name.
var globalvar = "globalvar"; // this var can be accessed anywhere within the script
function scope() {
alert(globalvar);
var localvar = "localvar"; //can only be accessed within the function scope
}
scope();
So basically a self executing function allows code to be written without concern of how variables are named in other blocks of javascript code.
Since functions in Javascript are first-class object, by defining it that way, it effectively defines a "class" much like C++ or C#.
That function can define local variables, and have functions within it. The internal functions (effectively instance methods) will have access to the local variables (effectively instance variables), but they will be isolated from the rest of the script.
Self invoked function in javascript:
A self-invoking expression is invoked (started) automatically, without being called. A self-invoking expression is invoked right after its created. This is basically used for avoiding naming conflict as well as for achieving encapsulation. The variables or declared objects are not accessible outside this function. For avoiding the problems of minimization(filename.min) always use self executed function.
(function(){
var foo = {
name: 'bob'
};
console.log(foo.name); // bob
})();
console.log(foo.name); // Reference error
Actually, the above function will be treated as function expression without a name.
The main purpose of wrapping a function with close and open parenthesis is to avoid polluting the global space.
The variables and functions inside the function expression became private (i.e) they will not be available outside of the function.
Given your simple question: "In javascript, when would you want to use this:..."
I like #ken_browning and #sean_holding's answers, but here's another use-case that I don't see mentioned:
let red_tree = new Node(10);
(async function () {
for (let i = 0; i < 1000; i++) {
await red_tree.insert(i);
}
})();
console.log('----->red_tree.printInOrder():', red_tree.printInOrder());
where Node.insert is some asynchronous action.
I can't just call await without the async keyword at the declaration of my function, and i don't need a named function for later use, but need to await that insert call or i need some other richer features (who knows?).
It looks like this question has been answered all ready, but I'll post my input anyway.
I know when I like to use self-executing functions.
var myObject = {
childObject: new function(){
// bunch of code
},
objVar1: <value>,
objVar2: <value>
}
The function allows me to use some extra code to define the childObjects attributes and properties for cleaner code, such as setting commonly used variables or executing mathematic equations; Oh! or error checking. as opposed to being limited to nested object instantiation syntax of...
object: {
childObject: {
childObject: {<value>, <value>, <value>}
},
objVar1: <value>,
objVar2: <value>
}
Coding in general has a lot of obscure ways of doing a lot of the same things, making you wonder, "Why bother?" But new situations keep popping up where you can no longer rely on basic/core principals alone.
You can use this function to return values :
var Test = (function (){
const alternative = function(){ return 'Error Get Function '},
methods = {
GetName: alternative,
GetAge:alternative
}
// If the condition is not met, the default text will be returned
// replace to 55 < 44
if( 55 > 44){
// Function one
methods.GetName = function (name) {
return name;
};
// Function Two
methods.GetAge = function (age) {
return age;
};
}
return methods;
}());
// Call
console.log( Test.GetName("Yehia") );
console.log( Test.GetAge(66) );
Use of this methodology is for closures. Read this link for more about closures.
IIRC it allows you to create private properties and methods.

Why is this function wrapped in parentheses, followed by parentheses? [duplicate]

This question already has answers here:
What is the (function() { } )() construct in JavaScript?
(28 answers)
Closed 9 years ago.
I see this all the time in javascript sources but i've never really found out the real reason this construct is used. Why is this needed?
(function() {
//stuff
})();
Why is this written like this? Why not just use stuff by itself and not in a function?
EDIT: i know this is defining an anonymous function and then calling it, but why?
This defines a function closure
This is used to create a function closure with private functionality and variables that aren't globally visible.
Consider the following code:
(function(){
var test = true;
})();
variable test is not visible anywhere else but within the function closure where it's defined.
What is a closure anyway?
Function closures make it possible for various scripts not to interfere with each other even though they define similarly named variables or private functions. Those privates are visible and accessible only within closure itself and not outside of it.
Check this code and read comments along with it:
// public part
var publicVar = 111;
var publicFunc = function(value) { alert(value); };
var publicObject = {
// no functions whatsoever
};
// closure part
(function(pubObj){
// private variables and functions
var closureVar = 222;
var closureFunc = function(value){
// call public func
publicFunc(value);
// alert private variable
alert(closureVar);
};
// add function to public object that accesses private functionality
pubObj.alertValues = closureFunc;
// mind the missing "var" which makes it a public variable
anotherPublic = 333;
})(publicObject);
// alert 111 & alert 222
publicObject.alertValues(publicVar);
// try to access varaibles
alert(publicVar); // alert 111
alert(anotherPublic); // alert 333
alert(typeof(closureVar)); // alert "undefined"
Here's a JSFiddle running code that displays data as indicated by comments in the upper code.
What it actually does?
As you already know this
creates a function:
function() { ... }
and immediately executes it:
(func)();
this function may or may not accept additional parameters.
jQuery plugins are usually defined this way, by defining a function with one parameter that plugin manipulates within:
(function(paramName){ ... })(jQuery);
But the main idea is still the same: define a function closure with private definitions that can't directly be used outside of it.
That construct is known as a self-executing anonymous function, which is actually not a very good name for it, here is what happens (and why the name is not a good one). This:
function abc() {
//stuff
}
Defines a function called abc, if we wanted an anonymous function (which is a very common pattern in javascript), it would be something along the lines of:
function() {
//stuff
}
But, if you have this you either need to associate it with a variable so you can call it (which would make it not-so-anonymous) or you need to execute it straight away. We can try to execute it straight away by doing this:
function() {
//stuff
}();
But this won't work as it will give you a syntax error. The reason you get a syntax error is as follows. When you create a function with a name (such as abc above), that name becomes a reference to a function expression, you can then execute the expression by putting () after the name e.g.: abc(). The act of declaring a function does not create an expression, the function declaration is infact a statement rather than an expression. Essentially, expression are executable and statements are not (as you may have guessed). So in order to execute an anonymous function you need to tell the parser that it is an expression rather than a statement. One way of doing this (not the only way, but it has become convention), is to wrap your anonymous function in a set of () and so you get your construct:
(function() {
//stuff
})();
An anonymous function which is immediately executed (you can see how the name of the construct is a little off since it's not really an anonymous function that executes itself but is rather an anonymous function that is executed straight away).
Ok, so why is all this useful, one reason is the fact that it lets you stop your code from polluting the global namespace. Because functions in javascript have their own scope any variable inside a function is not visible globally, so if we could somehow write all our code inside a function the global scope would be safe, well our self-executing anonymous function allows us to do just that. Let me borrow an example from John Resig's old book:
// Create a new anonymous function, to use as a wrapper
(function(){
// The variable that would, normally, be global
var msg = "Thanks for visiting!";
// Binding a new function to a global object
window.onunload = function(){
// Which uses the 'hidden' variable
alert( msg );
};
// Close off the anonymous function and execute it
})();
All our variables and functions are written within our self-executing anonymous function, our code is executed in the first place because it is inside a self-executing anonymous function. And due to the fact that javascript allows closures, i.e. essentially allows functions to access variables that are defined in an outer function, we can pretty much write whatever code we like inside the self-executing anonymous function and everything will still work as expected.
But wait there is still more :). This construct allows us to solve a problem that sometimes occurs when using closures in javascript. I will once again let John Resig explain, I quote:
Remember that closures allow you to reference variables that exist
within the parent function. However, it does not provide the value of
the variable at the time it is created; it provides the last value of
the variable within the parent function. The most common issue under
which you’ll see this occur is during a for loop. There is one
variable being used as the iterator (e.g., i). Inside of the for loop,
new functions are being created that utilize the closure to reference
the iterator again. The problem is that by the time the new closured
functions are called, they will reference the last value of the
iterator (i.e., the last position in an array), not the value that you
would expect. Listing 2-16 shows an example of using anonymous
functions to induce scope, to create an instance where expected
closure is possible.
// An element with an ID of main
var obj = document.getElementById("main");
// An array of items to bind to
var items = [ "click", "keypress" ];
// Iterate through each of the items
for ( var i = 0; i < items.length; i++ ) {
// Use a self-executed anonymous function to induce scope
(function(){
// Remember the value within this scope
var item = items[i];
// Bind a function to the element
obj[ "on" + item ] = function() {
// item refers to a parent variable that has been successfully
// scoped within the context of this for loop
alert( "Thanks for your " + item );
};
})();
}
Essentially what all of that means is this, people often write naive javascript code like this (this is the naive version of the loop from above):
for ( var i = 0; i < items.length; i++ ) {
var item = items[i];
// Bind a function to the elment
obj[ "on" + item ] = function() {
alert( "Thanks for your " + items[i] );
};
}
The functions we create within the loop are closures, but unfortunately they will lock in the last value of i from the enclosing scope (in this case it will probably be 2 which is gonna cause trouble). What we likely want is for each function we create within the loop to lock in the value of i at the time we create it. This is where our self-executing anonymous function comes in, here is a similar but perhaps easier to understand way of rewriting that loop:
for ( var i = 0; i < items.length; i++ ) {
(function(index){
obj[ "on" + item ] = function() {
alert( "Thanks for your " + items[index] );
};
})(i);
}
Because we invoke our anonymous function on every iteration, the parameter we pass in is locked in to the value it was at the time it was passed in, so all the functions we create within the loop will work as expected.
There you go, two good reasons to use the self-executing anonymous function construct and why it actually works in the first place.
It's used to define an anonymous function and then call it. I haven't tried but my best guess for why there are parens around the block is because JavaScript needs them to understand the function call.
It's useful if you want to define a one-off function in place and then immediately call it. The difference between using the anonymous function and just writing the code out is scope. All the variables in the anonymous function will go out of scope when the function's over with (unless the vars are told otherwise, of course). This can be used to keep the global or enclosing namespace clean, to use less memory long-term, or to get some "privacy".
It is an "anonymous self executing function" or "immediately-invoked-function-expression". Nice explanation from Ben Alman here.
I use the pattern when creating namespaces
var APP = {};
(function(context){
})(APP);
Such a construct is useful when you want to make a closure - a construct helps create a private "room" for variables inaccessible from outside. See more in this chapter of "JavaScript: the good parts" book:
http://books.google.com/books?id=PXa2bby0oQ0C&pg=PA37&lpg=PA37&dq=crockford+closure+called+immediately&source=bl&ots=HIlku8x4jL&sig=-T-T0jTmf7_p_6twzaCq5_5aj3A&hl=lv&ei=lSa5TaXeDMyRswa874nrAw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBUQ6AEwAA#v=onepage&q&f=false
In the example shown on top of page 38, you see that the variable "status" is hidden within a closure and cannot be accessed anyway else than calling the get_status() method.
I'm not sure if this question is answered already, so apologies if I'm just repeating stuff.
In JavaScript, only functions introduce new scope. By wrapping your code in an immediate function, all variables you define exist only in this or lower scope, but not in global scope.
So this is a good way to not pollute the global scope.
There should be only a few global variables. Remember that every global is a property of the window object, which already has a lot of properties by default. Introducing a new scope also avoids collisions with default properties of the window object.

What is the purpose of an anonymous JavaScript function wrapped in parentheses? [duplicate]

(function() {})() and its jQuery-specific cousin (function($) {})(jQuery) pop up all the time in Javascript code.
How do these constructs work, and what problems do they solve?
Examples appreciated
With the increasing popularity of JavaScript frameworks, the $ sign was used in many different occasions. So, to alleviate possible clashes, you can use those constructs:
(function ($){
// Your code using $ here.
})(jQuery);
Specifically, that's an anonymous function declaration which gets executed immediately passing the main jQuery object as parameter. Inside that function, you can use $ to refer to that object, without worrying about other frameworks being in scope as well.
This is a technique used to limit variable scope; it's the only way to prevent variables from polluting the global namespace.
var bar = 1; // bar is now part of the global namespace
alert(bar);
(function () {
var foo = 1; // foo has function scope
alert(foo);
// code to be executed goes here
})();
1) It defines an anonymous function and executes it straight away.
2) It's usually done so as not to pollute the global namespace with unwanted code.
3) You need to expose some methods from it, anything declared inside will be "private", for example:
MyLib = (function(){
// other private stuff here
return {
init: function(){
}
};
})();
Or, alternatively:
MyLib = {};
(function({
MyLib.foo = function(){
}
}));
The point is, there are many ways you can use it, but the result stays the same.
It's just an anonymous function that is called immediately. You could first create the function and then call it, and you get the same effect:
(function(){ ... })();
works as:
temp = function(){ ... };
temp();
You can also do the same with a named function:
function temp() { ... }
temp();
The code that you call jQuery-specific is only that in the sense that you use the jQuery object in it. It's just an anonymous function with a parameter, that is called immediately.
You can do the same thing in two steps, and you can do it with any parameters you like:
temp = function(answer){ ... };
temp(42);
The problem that this solves is that it creates a closuse for the code in the function. You can declare variables in it without polluting the global namespace, thus reducing the risk of conflicts when using one script along with another.
In the specific case for jQuery you use it in compatibility mode where it doesn't declare the name $ as an alias for jQuery. By sending in the jQuery object into the closure and naming the parameter $ you can still use the same syntax as without compatibility mode.
It explains here that your first construct provides scope for variables.
Variables are scoped at the function level in javascript. This is different to what you might be used to in a language like C# or Java where the variables are scoped to the block. What this means is if you declare a variable inside a loop or an if statement, it will be available to the entire function.
If you ever find yourself needing to explicitly scope a variable inside a function you can use an anonymous function to do this. You can actually create an anonymous function and then execute it straight away and all the variables inside will be scoped to the anonymous function:
(function() {
var myProperty = "hello world";
alert(myProperty);
})();
alert(typeof(myProperty)); // undefined
Another reason to do this is to remove any confusion over which framework's $ operator you are using. To force jQuery, for instance, you can do:
;(function($){
... your jQuery code here...
})(jQuery);
By passing in the $ operator as a parameter and invoking it on jQuery, the $ operator within the function is locked to jQuery even if you have other frameworks loaded.
Another use for this construct is to "capture" the values of local variables that will be used in a closure. For example:
for (var i = 0; i < 3; i++) {
$("#button"+i).click(function() {
alert(i);
});
}
The above code will make all three buttons pop up "3". On the other hand:
for (var i = 0; i < 3; i++) {
(function(i) {
$("#button"+i).click(function() {
alert(i);
});
})(i);
}
This will make the three buttons pop up "0", "1", and "2" as expected.
The reason for this is that a closure keeps a reference to its enclosing stack frame, which holds the current values of its variables. If those variables change before the closure executes, then the closure will see only the latest values, not the values as they were at the time the closure was created. By wrapping the closure creation inside another function as in the second example above, the current value of the variable i is saved in the stack frame of the anonymous function.
This is considered a closure. It means the code contained will run within its own lexical scope. This means you can define new variables and functions and they won't collide with the namespace used in code outside of the closure.
var i = 0;
alert("The magic number is " + i);
(function() {
var i = 99;
alert("The magic number inside the closure is " + i);
})();
alert("The magic number is still " + i);
This will generate three popups, demonstrating that the i in the closure does not alter the pre-existing variable of the same name:
The magic number is 0
The magic number inside the closure is 99
The magic number is still 0
They are often used in jQuery plugins. As explained in the jQuery Plugins Authoring Guide all variables declared inside { } are private and are not visible to the outside which allows for better encapsulation.
As others have said, they both define anonymous functions that are invoked immediately. I generally wrap my JavaScript class declarations in this structure in order to create a static private scope for the class. I can then place constant data, static methods, event handlers, or anything else in that scope and it will only be visible to instances of the class:
// Declare a namespace object.
window.MyLibrary = {};
// Wrap class declaration to create a private static scope.
(function() {
var incrementingID = 0;
function somePrivateStaticMethod() {
// ...
}
// Declare the MyObject class under the MyLibrary namespace.
MyLibrary.MyObject = function() {
this.id = incrementingID++;
};
// ...MyObject's prototype declaration goes here, etc...
MyLibrary.MyObject.prototype = {
memberMethod: function() {
// Do some stuff
// Maybe call a static private method!
somePrivateStaticMethod();
}
};
})();
In this example, the MyObject class is assigned to the MyLibrary namespace, so it is accessible. incrementingID and somePrivateStaticMethod() are not directly accessible outside of the anonymous function scope.
That is basically to namespace your JavaScript code.
For example, you can place any variables or functions within there, and from the outside, they don't exist in that scope. So when you encapsulate everything in there, you don't have to worry about clashes.
The () at the end means to self invoke. You can also add an argument there that will become the argument of your anonymous function. I do this with jQuery often, and you can see why...
(function($) {
// Now I can use $, but it won't affect any other library like Prototype
})(jQuery);
Evan Trimboli covers the rest in his answer.
It's a self-invoking function. Kind of like shorthand for writing
function DoSomeStuff($)
{
}
DoSomeStuff(jQuery);
What the above code is doing is creating an anonymous function on line 1, and then calling it on line 3 with 0 arguments. This effectively encapsulates all functions and variables defined within that library, because all of the functions will be accessible only inside that anonymous function.
This is good practice, and the reasoning behind it is to avoid polluting the global namespace with variables and functions, which could be clobbered by other pieces of Javascript throughout the site.
To clarify how the function is called, consider the simple example:
If you have this single line of Javascript included, it will invoke automatically without explicitly calling it:
alert('hello');
So, take that idea, and apply it to this example:
(function() {
alert('hello')
//anything I define in here is scoped to this function only
}) (); //here, the anonymous function is invoked
The end result is similar, because the anonymous function is invoked just like the previous example.
Because the good code answers are already taken :) I'll throw in a suggestion to watch some John Resig videos video 1 , video 2 (inventor of jQuery & master at JavaScript).
Some really good insights and answers provided in the videos.
That is what I happened to be doing at the moment when I saw your question.
function(){ // some code here }
is the way to define an anonymous function in javascript. They can give you the ability to execute a function in the context of another function (where you might not have that ability otherwise).

How does the (function() {})() construct work and why do people use it?

(function() {})() and its jQuery-specific cousin (function($) {})(jQuery) pop up all the time in Javascript code.
How do these constructs work, and what problems do they solve?
Examples appreciated
With the increasing popularity of JavaScript frameworks, the $ sign was used in many different occasions. So, to alleviate possible clashes, you can use those constructs:
(function ($){
// Your code using $ here.
})(jQuery);
Specifically, that's an anonymous function declaration which gets executed immediately passing the main jQuery object as parameter. Inside that function, you can use $ to refer to that object, without worrying about other frameworks being in scope as well.
This is a technique used to limit variable scope; it's the only way to prevent variables from polluting the global namespace.
var bar = 1; // bar is now part of the global namespace
alert(bar);
(function () {
var foo = 1; // foo has function scope
alert(foo);
// code to be executed goes here
})();
1) It defines an anonymous function and executes it straight away.
2) It's usually done so as not to pollute the global namespace with unwanted code.
3) You need to expose some methods from it, anything declared inside will be "private", for example:
MyLib = (function(){
// other private stuff here
return {
init: function(){
}
};
})();
Or, alternatively:
MyLib = {};
(function({
MyLib.foo = function(){
}
}));
The point is, there are many ways you can use it, but the result stays the same.
It's just an anonymous function that is called immediately. You could first create the function and then call it, and you get the same effect:
(function(){ ... })();
works as:
temp = function(){ ... };
temp();
You can also do the same with a named function:
function temp() { ... }
temp();
The code that you call jQuery-specific is only that in the sense that you use the jQuery object in it. It's just an anonymous function with a parameter, that is called immediately.
You can do the same thing in two steps, and you can do it with any parameters you like:
temp = function(answer){ ... };
temp(42);
The problem that this solves is that it creates a closuse for the code in the function. You can declare variables in it without polluting the global namespace, thus reducing the risk of conflicts when using one script along with another.
In the specific case for jQuery you use it in compatibility mode where it doesn't declare the name $ as an alias for jQuery. By sending in the jQuery object into the closure and naming the parameter $ you can still use the same syntax as without compatibility mode.
It explains here that your first construct provides scope for variables.
Variables are scoped at the function level in javascript. This is different to what you might be used to in a language like C# or Java where the variables are scoped to the block. What this means is if you declare a variable inside a loop or an if statement, it will be available to the entire function.
If you ever find yourself needing to explicitly scope a variable inside a function you can use an anonymous function to do this. You can actually create an anonymous function and then execute it straight away and all the variables inside will be scoped to the anonymous function:
(function() {
var myProperty = "hello world";
alert(myProperty);
})();
alert(typeof(myProperty)); // undefined
Another reason to do this is to remove any confusion over which framework's $ operator you are using. To force jQuery, for instance, you can do:
;(function($){
... your jQuery code here...
})(jQuery);
By passing in the $ operator as a parameter and invoking it on jQuery, the $ operator within the function is locked to jQuery even if you have other frameworks loaded.
Another use for this construct is to "capture" the values of local variables that will be used in a closure. For example:
for (var i = 0; i < 3; i++) {
$("#button"+i).click(function() {
alert(i);
});
}
The above code will make all three buttons pop up "3". On the other hand:
for (var i = 0; i < 3; i++) {
(function(i) {
$("#button"+i).click(function() {
alert(i);
});
})(i);
}
This will make the three buttons pop up "0", "1", and "2" as expected.
The reason for this is that a closure keeps a reference to its enclosing stack frame, which holds the current values of its variables. If those variables change before the closure executes, then the closure will see only the latest values, not the values as they were at the time the closure was created. By wrapping the closure creation inside another function as in the second example above, the current value of the variable i is saved in the stack frame of the anonymous function.
This is considered a closure. It means the code contained will run within its own lexical scope. This means you can define new variables and functions and they won't collide with the namespace used in code outside of the closure.
var i = 0;
alert("The magic number is " + i);
(function() {
var i = 99;
alert("The magic number inside the closure is " + i);
})();
alert("The magic number is still " + i);
This will generate three popups, demonstrating that the i in the closure does not alter the pre-existing variable of the same name:
The magic number is 0
The magic number inside the closure is 99
The magic number is still 0
They are often used in jQuery plugins. As explained in the jQuery Plugins Authoring Guide all variables declared inside { } are private and are not visible to the outside which allows for better encapsulation.
As others have said, they both define anonymous functions that are invoked immediately. I generally wrap my JavaScript class declarations in this structure in order to create a static private scope for the class. I can then place constant data, static methods, event handlers, or anything else in that scope and it will only be visible to instances of the class:
// Declare a namespace object.
window.MyLibrary = {};
// Wrap class declaration to create a private static scope.
(function() {
var incrementingID = 0;
function somePrivateStaticMethod() {
// ...
}
// Declare the MyObject class under the MyLibrary namespace.
MyLibrary.MyObject = function() {
this.id = incrementingID++;
};
// ...MyObject's prototype declaration goes here, etc...
MyLibrary.MyObject.prototype = {
memberMethod: function() {
// Do some stuff
// Maybe call a static private method!
somePrivateStaticMethod();
}
};
})();
In this example, the MyObject class is assigned to the MyLibrary namespace, so it is accessible. incrementingID and somePrivateStaticMethod() are not directly accessible outside of the anonymous function scope.
That is basically to namespace your JavaScript code.
For example, you can place any variables or functions within there, and from the outside, they don't exist in that scope. So when you encapsulate everything in there, you don't have to worry about clashes.
The () at the end means to self invoke. You can also add an argument there that will become the argument of your anonymous function. I do this with jQuery often, and you can see why...
(function($) {
// Now I can use $, but it won't affect any other library like Prototype
})(jQuery);
Evan Trimboli covers the rest in his answer.
It's a self-invoking function. Kind of like shorthand for writing
function DoSomeStuff($)
{
}
DoSomeStuff(jQuery);
What the above code is doing is creating an anonymous function on line 1, and then calling it on line 3 with 0 arguments. This effectively encapsulates all functions and variables defined within that library, because all of the functions will be accessible only inside that anonymous function.
This is good practice, and the reasoning behind it is to avoid polluting the global namespace with variables and functions, which could be clobbered by other pieces of Javascript throughout the site.
To clarify how the function is called, consider the simple example:
If you have this single line of Javascript included, it will invoke automatically without explicitly calling it:
alert('hello');
So, take that idea, and apply it to this example:
(function() {
alert('hello')
//anything I define in here is scoped to this function only
}) (); //here, the anonymous function is invoked
The end result is similar, because the anonymous function is invoked just like the previous example.
Because the good code answers are already taken :) I'll throw in a suggestion to watch some John Resig videos video 1 , video 2 (inventor of jQuery & master at JavaScript).
Some really good insights and answers provided in the videos.
That is what I happened to be doing at the moment when I saw your question.
function(){ // some code here }
is the way to define an anonymous function in javascript. They can give you the ability to execute a function in the context of another function (where you might not have that ability otherwise).

JavaScript scope and closure

I'm trying to wrap my head around closures (there's a joke in there somewhere) and I ran across this:
(function () { /* do cool stuff */ })();
How does this work? What's the purpose of putting the function in parens? Why the empty parens afterwards?
The point of this is that any variables declared in the cool stuff will not be created in global namespace. Any function in javascript will create such a scope. Suppose you have some javascript you want to run. If you do this:
var b = 1;
// stuff using b
And some other code uses b, it will get your left over value. (Or, even worse, if some other code sets b before your code runs, then tries to get its old value later, you'd have changed it in the meantime.)
On the other hand, if you have this code, which declares and then calls the a function:
function a() {
var b = 1;
}
a();
And some other code later on uses b, it will not see your values, since b is local to the function. The problem with this, of course, is that you're still making a global name - "a", in this case. So, we want a function with no name - this is why you get the code you described. It declares a function with no name, and then calls it.
Unfortunately, you can't just say:
function() { ... }()
because this will be parsed as a function declaration statement, and then a syntax error. By wrapping the function declaration in parenthesis, you get a function expression, which can then be called. You call it like any other function expression (like a, above), using the second set of parens. For example, if the function took arguments, you'd pass them there:
(function(a) { ... })(1)
That creates a function, calls it, and discards it.
It might be clearer if you look at it like this:
var throwaway = function(){
// do cool stuff
};
throwaway();
This is done to create a private namespace. Code in the function can have functions and variables without worrying about conflicting with other code loaded in the page.
i just came across this post recently. This type of function definition & call is called self-invoking functions.
(function(){ //code })();
The code inside the function will be executed immediately upon its definition.
That construct means declare an anonymous function and run it immediately. The reason you put your code inside a function body is because the variables you define inside it remain local to the function and not as global variables. However, they will still be visible to the closures defined inside this function.
The parens around the function make it clear that the function is an expression. The parens after are the call to the function.
Notice that the function does not have a name.
One closures approach is to pass variables to the function:
(function($, var_1, var_2) {
// use JQuery, var_1 and var_2 as local variables
})($, var_1, var_2);
Putting the function declaration inside parens creates an expression which evaluates to the anonymous function within. Therefore, the first parenthetical evaluates to a function.
The "empty parens" at the end invoke the defined function, so "//do cool stuff" executes immediately.
This is a way to execute code on-the-fly while also keeping variables out of the global scope.
What is illustrated here, however, has nothing to do with closures - at least not directly. Closures are about maintaining a lexical scope after a parent function has already exited.

Categories

Resources