I am seeking for some already done solution to simulate gravity interaction of n-body system, like our solar system for example, in any programming language (but preferably Javascript or C). I found this question, and it looks like exactly what I need, but, as I see, there's no interoperation between planets theyselves, only between sun and planets. I'm not so bad in JS, but really weak (more lazy) in geometry and gravity, so maybe somebody can give me an advice of how to enhance this code (or make the new one) to be able to simulate not the sun-to-planets, but full n-body gravity interaction? Or maybe you know such a software already written?
Cause as I understand, all I need is to change the code to calculate and display this:
//...
distanceTo: function(p2) {
var dx = p2.position.x - this.position.x,
dy = p2.position.y - this.position.y;
return Math.sqrt(dx ** 2 + dy ** 2);
},
attraction: function(p2) {
var dx = p2.position.x - this.position.x;
var dy = p2.position.y - this.position.y;
var d = Math.sqrt(dx ** 2 + dy ** 2);
this.f = G * (this.mass * p2.mass) / (d ** 2);
var theta = Math.atan2(dy, dx);
var fx = Math.cos(theta) * this.f;
var fy = Math.sin(theta) * this.f;
this.velocity.x += fx / this.mass;
this.velocity.y += fy / this.mass;
this.position.x += this.velocity.x;
this.position.y += this.velocity.y;
}
//...
for every single body in the system, but I'm not sure is it the right way to just iterate this code over bodies, due to such an iteration will dynamically change bodies' positions, which have been used for previous calculations within the iteration. Hope I spell it clear.
Is this possible at all? Is not this related to Three-body problem exponential computation complexity increasing? If not, can you please just direct me to right formulas and spell out simply for me, what to write and how?
Thanks!
Related
So I am creating a simulation of a bouncing ball, and the user can place lines the ball can collide with on the canvas by dragging from one point to another. There are essentially four lines that can be created:
So the object that stores a line is defined as such:
export interface pathSection {
xfrom: number;
yfrom: number;
xto: number;
yto: number;
length: number;
}
The first and third lines in the image for example dont give the same value from
Math.atan2(yto - yfrom, xto - from);
So given the (relative) complexity of the surfaces, I need to find the angle between a moving object and that surface at the point of collision:
The ball strikes the surface at an angle a, which is what I want!
However I am having trouble finding the angle between the two vectors. This is what I understood would work:
var dx = this.path[index_for_path_section].xfrom - this.path[index_for_path_section].xto;
var dy = this.path[index_for_path_section].yfrom - this.path[index_for_path_section].yto;
var posX = this.particle.pos.x;
var posY = this.particle.pos.y;
var posNextX = posX + this.particle.v.x;
var posNextY = posY + this.particle.v.y;
var angleOfRamp = Math.atan2(dy, dx);
var angleOfvelocity = Math.atan2(posNextY - posY, posNextX - posX);
var angleBetween = angleOfRamp - angleOfvelocity;
This is then used to calculate the speed of the object after the collision:
var spd = Math.sqrt(this.particle.v.x * this.particle.v.x + this.particle.v.y * this.particle.v.y);
var restitution = this.elasticity / 100;
this.particle.v.x = restitution * spd * Math.cos(angleBetween);
this.particle.v.y = restitution * spd * Math.sin(angleBetween);
However the angle calculated is around -4.5 Pi, about -90 degrees for the object directly down and the surface at what looks to be around 45-60 degrees…
The red arrow shows the path of the object moving through the surface - the white dots show where a collision has been detected between the surface and the object.
Any help on how to get the correct and usable angle between the two velocity and the line would be appreciated!
Note I have tried utilizing this solution, but have struggled to adapt it to my own work.
So it took me some time, and I am not 100% sure still of why it works because I think im finding the JavaScript angles system a bit tricky, but:
var dx = this.path[collided].xfrom - this.path[collided].xto;
var dy = this.path[collided].yfrom - this.path[collided].yto;
var spd = Math.sqrt(this.particle.v.x * this.particle.v.x + this.particle.v.y * this.particle.v.y);
var angleOfRamp = Math.atan2(dy, dx);
var angleOfvelocity = Math.atan2(this.particle.v.y, this.particle.v.x);
var angleBetween = angleOfRamp * 2 - angleOfvelocity; // not sure why :)
if (angleBetween < 0) { angleBetween += 2*Math.PI; } // not sure why :)
const restitution = this.elasticity / 100;
this.particle.v.x = restitution * spd * Math.cos(angleBetween);
this.particle.v.y = restitution * spd * Math.sin(angleBetween);
Thanks to all who looked :)
Yes theres a few threads on this, but not many using angles and I'm really trying to figure it out this way,
I'm now stuck on setting the new velocity angles for the circles. I have been looking at:
http://www.hoomanr.com/Demos/Elastic2/
as a reference to it, but I'm stuck now.
Can anybody shed some light?
cx/cy/cx2/cy2 = center x/y for balls 1 and 2.
vx/vy/vx2/vy2 = velocities for x/y for balls 1 and 2
function checkCollision() {
var dx = cx2 - cx; //distance between x
var dy = cy2 - cy; // distance between y
var distance = Math.sqrt(dx * dx + dy * dy);
var ang = Math.atan2(cy - cy2, cx - cx2);
// was displaying these in a div to check
var d1 = Math.atan2(vx, vy); //ball 1 direction
var d2 = Math.atan2(vx2, vy2); //ball 2 direction
// this is where I am stuck, and i've worked out this is completely wrong now
// how do i set up the new velocities for
var newvx = vx * Math.cos(d1 - ang);
var newvy = vy * Math.sin(d1 - ang);
var newvx2 = vx2 * Math.cos(d2 - ang);
var newvy2 = vy2 * Math.sin(d2 - ang);
if (distance <= (radius1 + radius2)) {
//Set new velocity angles here at collision..
}
Heres a codepen link:
http://codepen.io/anon/pen/MwbMxX
A few directions :
• As mentioned in the comments, use only radians (no more *180/PI).
• atan2 takes y as first param, x as second param.
var d1 = Math.atan2(vy, vx); //ball 1 direction in angles
var d2 = Math.atan2(vy2, vx2); //ball 2 direction in angles
• to rotate a vector, compute first its norm, then only project it with the new angle :
var v1 = Math.sqrt(vx*vx+vy*vy);
var v2 = Math.sqrt(vx2*vx2+vy2*vy2);
var newvx = v1 * Math.cos(d1 - ang);
var newvy = v1 * Math.sin(d1 - ang);
var newvx2 = v2 * Math.cos(d2 - ang);
var newvy2 = v2 * Math.sin(d2 - ang);
• You are detecting the collision when it already happened, so both circles overlap, but you do NOT solve the collision, meaning the circles might still overlap on next iteration, leading to a new collision and a new direction taken, ... not solved, etc..
-->> You need to ensure both circles are not colliding any more after you solved the collision.
• Last issue, but not a small one, is how you compute the angle. No more time for you sorry, but it would be helpful both for you and us to build one (several) scheme showing how you compute the angles.
Updated (but not working) codepen here :
http://codepen.io/anon/pen/eNgmaY
Good luck.
Edit :
Your code at codepen.io/anon/pen/oXZvoe simplify to this :
var angle = Math.atan2(dy, dx),
spread = minDistance - distance,
ax = spread * Math.cos(angle),
ay = spread * Math.sin(angle);
vx -= ax;
vy -= ay;
vx2 += ax;
vy2 += ay;
You are substracting the gap between both circles from the speed. Since later you add the speed to the position, that will do the spatial separation (=> no more collision).
I think to understand what vx-=ax means, we have to remember newton : v = a*t, where a is the acceleration, so basically doing vx=-ax means applying a force having the direction between both centers as direction, and the amount by which both circle collided (spread) as intensity. That amount is obviously quite random, hence the numerical instability that you see : sometimes a small effect, sometimes a big one.
look here for a constant punch version :
http://codepen.io/anon/pen/WvpjeK
var angle = Math.atan2(dy, dx),
spread = minDistance - distance,
ax = spread * Math.cos(angle),
ay = spread * Math.sin(angle);
// solve collision (separation)
cx -= ax;
cy -= ay;
// give a punch to the speed
var punch = 2;
vx -= punch*Math.cos(angle);
vy -= punch*Math.sin(angle);
vx2 += punch*Math.cos(angle);
vy2 += punch*Math.sin(angle);
I am struggling with connecting two circles with a line. I am using the famo.us library.
DEMO on Codepen
a.k.a. "Two balls, one line."
The Problem
Angle and length of the line are correct, but the position is wrong.
First attempt
The important part should be lines 114-116:
connection.origin = [.5, .5];
connection.align = [.5, .5];
connection.body.setPosition([
Math.min(sourcePos.x, targetPos.x),
Math.min(sourcePos.y, targetPos.y)
]);
Appearently i am doing something wrong with the math. Playing around with those values gives me all kinds of results, but nothing is close to correct.
Intended solution
(1) The minimal solution would be to connect the centres of the circles with the line.
(2) The better solution would be a line that is only touching the surface of both circles instead of going to the center.
(3) The ideal solution would have arrows on each end of the line to look like a directed graph.
This fixes it :
connection.body.setPosition([
sourcePos.x * Math.cos(angle) + sourcePos.y * Math.sin(angle),
sourcePos.x * Math.sin(-angle)+ sourcePos.y * Math.cos(angle)
]);
Your segment is defined by its extrimity in sourceand the angle and distance to target, thus you have to set its origin to be that of source
The rotation seems to not only rotate the object, but also rotate the coordinates around the origin, so I rotated them by -angle to compensate.
There might be a more famo.usesque way to do it (maybe you can get it to rotate before setting the position, or have the position be 0,0 and add the coordinates as a translation in the transformation).
To get your better solution, still with mostly math, you may keep the same code but
with r the radius of the source ball, remove [r * distX / distance, r * distY / distance] to the coordinates of the segment, to put it in contact with the outer part of the ball
remove both balls' radius from the distance
With that, we get :
var distX = sourcePos.x - targetPos.x;
var distY = sourcePos.y - targetPos.y;
var norm = Math.sqrt(distX * distX + distY * distY);
var distance = norm - (source.size[0]+target.size[0])/2;
var angle = -Math.atan2(-distY, distX);
connection.angle = angle;
connection.size = [distance, 2, 0];
connection.align = [.5, .5];
connection.origin = [.5, .5];
var posX = sourcePos.x - source.size[0]/2 * (distX / norm);
var posY = sourcePos.y - source.size[0]/2 * (distY / norm);
connection.body.setPosition([
posX * Math.cos(angle) + posY * Math.sin(angle),
posX * Math.sin(-angle)+ posY * Math.cos(angle)
]);
result on this fork : http://codepen.io/anon/pen/qEjPLg
I think the fact that the line length is off when the balls go fast is a timing issue. Most probably you compute the segment's length and position at a moment when the ball's centres are not yet updated for that frame.
I was creating something like a 2d gravity simulator, just for fun, and noticed that I'm a complete idiot in terms of math. I just can't get the gravity to work.
I've tried following the instructions found here but it looks weird and when the distance reaches zero, it goes completely buggy. If I add 1 to the distance as recommended in the question, all objects go upper left. I've even tried not modifying gravity when distances reach zero, but this doesn't change the behavior.
Here's the algorithm I'm using to apply gravity:
var distX = obj1.x - obj2.x,
distY = obj1.y - obj2.y;
if (obj1 != obj2) {
if (distY != 0) {
obj1.vy += -(1 / (distY));
}
if (distX != 0) {
obj1.vx += -(1 / (distX));
}
}
I've tried using other algorithms too, but most of them don't care for the distance between objects.
Note that I want the gravity to affect distant objects less than closer objects.
Instead of solving any equations we could use an approximation. dv/dt = G*M*m/r^2, but for small t we could use the approximation Δv = (G*M*m/r^2)*Δt.
When the objects collide I have implemented perfectly inelastic collision (see Wikipedia). This prevents the distance between two objects from being to small and therefore the maximum force is limited.
I also moved the part of the code where the object's position is changed to a separate loop, so the forces calculated for obj1 and obj2 are equal in size.
Demo
function tick() {
allObjs.forEach(function (obj1) {
allObjs.forEach(function (obj2) {
var diffX = obj2.x - obj1.x,
var diffY = obj2.y - obj1.y;
var distSquare = diffX*diffX + diffY*diffY
var dist = Math.sqrt(distSquare);
if (obj1 != obj2) {
if (dist > obj1.w/2 + obj2.w/2) {
//If you add mass to the objects change to obj2.mass
//instead of 50
var totalForce = 50/distSquare;
obj1.vx += totalForce * diffX / dist;
obj1.vy += totalForce * diffY / dist;
} else {
//Collision has occurred
//If you add mass to the objects change to
//tempX = (obj1.mass*obj1.vx + obj2.mass*obj2.vx)/(obj1.mass+
//obj2.mass);
//tempY = (obj1.mass*obj1.vy + obj2.mass*obj2.vy)/(obj1.mass+
//obj2.mass);
var tempX = (obj1.vx + obj2.vx)/2;
var tempY = (obj1.vy + obj2.vy)/2;
obj1.vx = tempX; obj2.vx = tempX;
obj1.vy = tempY; obj2.vy = tempY;
}
}
});
});
allObjs.forEach(function (obj1) {
obj1.x += obj1.vx / 25;
obj1.y += obj1.vy / 25;
});
stage.update();
}
Try
var distX = obj1.x - obj2.x,
distY = obj1.y - obj2.y;
var rsq = distX *distX + distY * distY;
var r = Math.sqrt(rsq);
var F = 50 / rsq; // constant chosen to be pleasing
var rhat_x = distX / r;
var rhat_y = distY / r;
var Fx = F * rhat_x;
var Fy = F * rhat_y;
obj1.vx += -Fx;
obj1.vy += -Fy;
obj2.vx += Fx;
obj2.vy += Fy;
This is very basic, its not taking mass into account its using the simplest possible way of solving the equations you should really use something like 5th order Runga-Kutta w/ error correction. But it does use the formula for gravitational
F = - G m1 m2 / r^2
where G is the universal gravitational constant, m1 m2 are the two masses (I've all of these to 1!) r^2 is the square of the distance between the objects. The force is in the direction to the other object, let this be a unit vector rhat so the vector version of the force, using 1 for the constants
F = - ( 1 / r^2 ) rhat
The above gives reasonable results it you start out with
createPlanet(50, 200, 2, 0, 1);
createPlanet(400, 200, 2, 0, -1);
you have to take care that the two planets don't get too close or the acceleration goes off to infinity and the velocities get too big.
While playing around I tried
var distX = obj1.x - obj2.x,
distY = obj1.y - obj2.y;
var rsq = distX *distX + distY * distY; // square of the distance
var r = Math.sqrt(rsq);
var Fx = distX / r;
var Fy = distY / r;
obj1.vx += -Fx;
obj1.vy += -Fy;
obj2.vx += Fx;
obj2.vy += Fy;
which gives pleasing but physically incorrect results.
Newton's equations of motion F = ma need to be solved here. You are not doing anything like that in your code. No wonder it isn't matching your intuition.
It would help to understand the physics.
This is a vector equation. The force is gravity, which follows an inverse distance squared law.
You also know how acceleration, velocity, and displacement are related. You have to know calculus.
For your 2D world, that means six equations for each body in the problem. Two bodies means 12 coupled equations.
Solving these equations means integrating all those coupled ordinary differential equations in time. You'll need to know something about numerical methods (e.g. Runga-Kutta 5th order integration w/ error correction).
You'd have a lot to learn to write such a thing yourself. I'd recommend looking into a JavaScript physics library like Box2D or something else that Google might find.
I'm trying to write a small 'perspective' javascript app that allows me to fly through a set of x,y,z points that inhabit a 3d space.
I have the concept of a camera which changes its rotation and xyz position, while each point maintains a constant xyz point.
I then have a set of equations that works out how the camera's x,y,z coordinates should be adjusted for flying directly forwards. The x,y,z adjustments obviously depend upon the rotation of the camera.
It almost works, but at certain 'attitudes' the camera position adjustment goes wrong and the flightpath doesn't go straight ahead but goes off at an angle, or even reverses. The equations for working out the projection are as follows:
var directionFactor = 1;
if (direction == 'backward') directionFactor = -1;
sx = Math.sin(cameraView.rotX);
cx = Math.cos(cameraView.rotX);
sy = Math.sin(cameraView.rotY);
cy = Math.cos(cameraView.rotY);
sz = Math.sin(cameraView.rotZ);
cz = Math.cos(cameraView.rotZ);
// Z-Axis
ztrig = Math.sqrt((cx * cx) + (cy * cy)) * (cx * cy);
cameraView.z = cameraView.z + directionFactor *
(Math.abs(airspeed / 15) * ztrig);
// Y-Axis
ytrig = Math.sqrt((sx * sx) + (cz * cz)) * (sx * cz);
cameraView.y = cameraView.y + directionFactor *
(Math.abs(airspeed / 15) *ytrig);
// X-Axis
xtrig = Math.sqrt((cz * cz) + (sy * sy)) * (cz * sy);
cameraView.x = cameraView.x - directionFactor *
(Math.abs(airspeed / 15) * xtrig);
Obviously my equations aren't quite right. Can anyone tell me where I'm going wrong? Much appreciated and thanks.
You have some errors in your equations. (They are valid in the 2d case but not in 3d)
when you calculate
sx = Math.sin(cameraView.rotX);
It does make sense in 2d since :
sx = Math.sin(cameraView.rotX) = x/SQRT(y*y + x*x)
where (x, y) is the position of the camera.
But in 3d it's more complicated :
In 3d :
Thus to obtain the cartesian coordinate :
You may also use 3d matrix to perform rotation.