Function that sums up all integers from a deeply nested array - javascript

I have an issue here, I'm trying to create a function that sums up all integers from a deeply nested array, but it's failing an unit test, which means something is not right.
Here is my function:
export const arraySum = (arr) => {
let sum = 0;
for (let i = 0; i < arr.length; i++) {
if (typeof arr[i] === "number") sum = sum + arr[i];
else if (Array.isArray(arr[i])) sum = sum + arraySum(arr[i]);
}
return sum;
};
And here is my unit test which is failing:
test("it should sum up from deeply nested arrays", () => {
type ValueOrArray = number | Array<ValueOrArray>;
const createDeeplyNestedArray = (depth: number): ValueOrArray => {
let retval: ValueOrArray = [1];
for (let i = 0; i < depth - 1; i++) {
retval = [1, retval];
}
return retval;
};
const NUMBER_OF_ELEMENTS = 100000;
const arr = createDeeplyNestedArray(NUMBER_OF_ELEMENTS);
expect(arraySum(arr)).toEqual(NUMBER_OF_ELEMENTS);
});

Function memory is stored on something called a "call stack". Whenever you call a function, all of its variables are allocated and pushed onto the 'stack' and when the function returns, they are popped off the stack. Given the following code:
const a = () => {
}
const b = () => {
a()
// some code
}
const c = () => {
b()
}
c()
When c is called, your call stack will contain all the memory for variables used in c. When c calls b, all the memory for variables used in b are added to the stack. When b calls a all the memory for variables used in a are added to the stack. When a finishes executing (so when you get to 'some code'), variables related to a are deallocated and removed from the stack.
The problem you have here is that every time your function recursively calls itself, more memory is being allocated onto the stack. to stop this kind of code using up all the system memory, the runtime limits how big the stack can get - which is why you are hitting this error.
To pass this test, you need a solution which doesn't call itself every time it hits an array within an array. Here's my solution, effectively using an array as a buffer; each time I hit a nested array I add it to the buffer. Once I finish processing the outer array, I then check if there is any arrays left in the buffer.
export const arraySum = (arr) => {
let sum = 0;
const buffer = [arr];
while (buffer.length > 0) {
const next = buffer.shift();
for (let i = 0; i < next.length; i++) {
if (typeof next[i] === "number") sum = sum + next[i];
else if (Array.isArray(next[i])) buffer.push(next[i]);
}
}
return sum;
};

That doesn't work bc like Keith said you are reaching the maximum call stack size.
RangeError: Maximum call stack size exceeded is a type of error thrown in JavaScript when a function call is made that exceeds the program's stack size. The call stack is a data structure that keeps track of which functions have been called, and in what order.
Maybe you can try to solve it in a iterative way like this:
const arraySum = (arr) => {
if (!Array.isArray(arr)) return 0;
let sum = 0;
while (Array.isArray(arr)) {
let arrCopy = [];
for (let i = 0; i < arr.length; i++) {
if (typeof arr[i] === "number") sum = sum + arr[i];
else if (Array.isArray(arr[i])) arrCopy = arrCopy.concat(arr[i]);
}
arr = arrCopy.length > 0 ? arrCopy : null;
}
return sum;
};

We can use a stack or queue in place of recursion. Also, order doesn't matter.
function f(A) {
let sum = 0;
let stack = [A];
while (stack.length > 0) {
stack.pop().forEach(e => {
if (Array.isArray(e))
stack.push(e);
else if (typeof e === "number")
sum += e;
});
}
return sum;
}
console.log(f([1,2,[3,[4]]]));

The approach of combining a flat based flattening function which circumvents call stack errors of very deeply nested arrays of a nesting depth close to 10_000 and higher and a reduce based function which does sum-up number types only, does solve the OP's problem. And the following implementation does prove it ...
// Implementation
function flatAlmostInfiniteNestedArray(arr) {
while (arr.length < (arr = arr.flat(1000)).length) {
}
return arr;
}
function totalNestedNumberValues(arr) {
return flatAlmostInfiniteNestedArray(arr)
.reduce((total, value) => (
'number' === typeof value
? total + value
: total
), 0);
}
// Test
const createDeeplyNestedArray = depth => {
let retval = [1];
for (let i = 0; i < depth - 1; i++) {
retval = [1, retval];
}
return retval;
};
const NUMBER_OF_ELEMENTS = 100000;
const arr = createDeeplyNestedArray(NUMBER_OF_ELEMENTS);
console.log(
'(totalNestedNumberValues(arr) === NUMBER_OF_ELEMENTS) ?..',
(totalNestedNumberValues(arr) === NUMBER_OF_ELEMENTS),
);
.as-console-wrapper { min-height: 100%!important; top: 0; }
Edit ... due to following comments
"Very interesting. I hadn't realized that Array.flat was implemented in a way that would lead to a call stack overflow. It makes sense that it would be, but I didn't know, and have never had a real-world structure where it would matter. Thanks!" – Scott Sauyet
"#ScottSauyet ...the poor man's approach of (mis)using flat as kind of a callstack-safe solution looses if it comes to performance ... jsbench.me :: sum up deeply nested array's number values" – Peter Seliger
One of the above linked performance tests features a better, much more performant, stack based, solution for flattening deeply nested arrays which are critical of being natively flattened due to possible overflowing call stacks.
Thus the formerly provided code example would change to ...
// Implementation
function flatCallstackCriticalNestedArray(nested) {
const stack = [nested];
const flat = [];
let value;
while (stack.length) {
if (Array.isArray(value = stack.pop())) {
stack.push(...value);
} else {
flat.push(value);
}
}
return flat;
}
function totalNestedNumberValues(arr) {
return flatCallstackCriticalNestedArray(arr)
.reduce((total, value) => (
'number' === typeof value
? total + value
: total
), 0);
}
// Test
const createDeeplyNestedArray = depth => {
let retval = [1];
for (let i = 0; i < depth - 1; i++) {
retval = [1, retval];
}
return retval;
};
const NUMBER_OF_ELEMENTS = 100000;
const arr = createDeeplyNestedArray(NUMBER_OF_ELEMENTS);
console.log(
'(totalNestedNumberValues(arr) === NUMBER_OF_ELEMENTS) ?..',
(totalNestedNumberValues(arr) === NUMBER_OF_ELEMENTS),
);
.as-console-wrapper { min-height: 100%!important; top: 0; }

Have you considered a using library? This might not be as fast as a vanilla solution, but it should still be plenty fast and much more readable.
.as-console-wrapper {max-height: 100% !important; top: 0}
<script type="module">
import objectScan from 'https://cdn.jsdelivr.net/npm/object-scan#18.3.0/lib/index.min.js';
const createDeeplyNestedArray = (depth) => {
let retval = [1];
for (let i = 0; i < depth - 1; i += 1) {
retval = [1, retval];
}
return retval;
};
const NUMBER_OF_ELEMENTS = 100000;
const arr = createDeeplyNestedArray(NUMBER_OF_ELEMENTS);
const arraySum = objectScan(['**'], {
rtn: 'sum',
filterFn: ({ value }) => typeof value === 'number'
});
console.log(arraySum(arr));
// => 100000
</script>
Disclaimer: I'm the author of object-scan
Note that this will traverse arrays and objects. If you only want to traverse arrays you could use ['**{[*]}'] as search needles.

Related

Quickest way to check if 2 arrays contain same values in javascript

Is there a quicker or more efficient way to check that two arrays contain the same values in javascript?
Here is what I'm currently doing to check this. It works, but is lengthy.
var arraysAreDifferent = false;
for (var i = 0; i < array1.length; i++) {
if (!array2.includes(array1[i])) {
arraysAreDifferent = true;
}
}
for (var i = 0; i < array2.length; i++) {
if (!array1.includes(array2[i])) {
arraysAreDifferent = true;
}
}
To reduce computational complexity from O(n ^ 2) to O(n), use Sets instead - Set.has is O(1), but Array.includes is O(n).
Rather than a regular for loop's verbose manual iteration, use .every to check if every item in an array passes a test. Also check that both Set's sizes are the same - if that's done, then if one of the arrays is iterated over, there's no need to iterate over the other (other than for the construction of its Set):
const arr1Set = new Set(array1);
const arr2Set = new Set(array2);
const arraysAreDifferent = (
arr1Set.size === arr2Set.size &&
array1.every(item => arr2Set.has(item))
);
function same(arr1, arr2){
//----if you want to check by length as well
// if(arr1.length != arr2.length){
// return false;
// }
// creating an object with key => arr1 value and value => number of time that value repeat;
let frequencyCounter1 = {};
let frequencyCounter2 = {};
for(let val of arr1){
frequencyCounter1[val] = (frequencyCounter1[val] || 0) + 1;
}
for(let val of arr2){
frequencyCounter2[val] = (frequencyCounter2[val] || 0) + 1;
}
for(let key in frequencyCounter1){
//check if the key is present in arr2 or not
if(!(key in frequencyCounter2)) return false;
//check the number of times the value repetiton is same or not;
if(frequencyCounter2[key]!==frequencyCounter1[key]) return false;
}
return true;
}

Write a function that will return the two number array combination with value summed at 5. I can't get all the opportunities

A job posting wants me to write a an answer to a question which if I solve I am eligible for the next rownd.
Write a function that will return the array combination with value
summed at 5. Important: Use only one "for" loop. Example: var
rand_array = [1,3,5,2,4,6]; var target_sum = 5; Output = [1,4], [5],
[3,2], [2,3], [4,1];
I attempted to find a solution online and stumbled upon this:
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/ as StackOverflow wants you to do your own research first.
However, when trying to convert it to JS, all that happened was that it returned just one case where it worked. I need it to return every case where it worked. I then make some other changes and it just stopped working now.
var ra = [1,3,5,2,4,6];
var target = 5
ra.sort();
lower = 0;
higher = ra.length -1;
var solutions = [];
var result;
while (lower < higher) {
if (ra[lower] + ra[higher] === target){
result = [ra[lower], ra[higher]];
solutions.push(result);
}
else if (ra[lower] + ra[higher] > target){
higher--;
}
else {
lower++;
}
}
return solutions;
}
console.log(solutions);
Can someone write an example for me?
Your code does not work at all at the moment because it doesn't always increment lower or higher (resulting in an infinite loop). It also has greater complexity than necessary (.sort has complexity O(n log n)), but the instructions indicate that low complexity is important. The array also isn't being sorted numerically. (To sort numerically, use .sort((a, b) => a - b))
If you want a solution with the least complexity possible, O(n), while iterating, create an object. On every iteration, check to see if the object has a key for which the current number would sum with to 5 (eg, when iterating on 1, look to see if a 4 property exists on the object). If one is found, add it to the solutions. Otherwise, set a new key on the object:
const ra = [1, 3, 5, 2, 4, 6];
const target = 5;
const solutions = [];
const obj = {};
for (const item of ra) {
const match = target - item;
if (obj[match]) {
solutions.push([item, match]);
delete obj[match];
} else {
obj[item] = true;
}
}
console.log(solutions);
If there may be repeated numbers, then store a count in the object instead of just true:
const ra = [1, 1, 1, 3, 5, 2, 4, 6, 4, 4];
const target = 5;
const solutions = [];
const obj = {};
for (const item of ra) {
const match = target - item;
if (obj[match]) {
solutions.push([item, match]);
obj[match]--;
} else {
obj[item] = (obj[item] || 0) + 1;
}
}
console.log(solutions);
I don't want to write the actual answer because its a job assignment, but I will say that a simple 2 loop function is the obvies solution, than try to think not checking the array from the top and the bottum, rether like the formation of a loop in a loop.
hint :
let i = 0;
let j = 0;
while (i < arr.langth) {
...
if (j < arr.langth) {
j++;
} else {
j = 0;
i++;
}
}
Your code as it stands just does not work at all. CertainPerformance has a solid answer, except that it doesn't do the task as required, i.e. treat the same numbers in a different order as different or get the values which are equal to target as solutions. Here is my solution to your problem:
const ra = [1,3,5,2,4,6];
const target = 5
function getSumsOfTarget(ra, target){
ra.sort();
lower = 0;
higher = ra.length -1;
const solutions = [];
let result;
while (lower < ra.length && higher >= 0) {
const sum = ra[lower] + ra[higher];
if (ra[lower] === target) {
result = [ra[lower]];
solutions.push(result);
break;
}
if (sum === target){
result = [ra[lower], ra[higher]];
solutions.push(result);
lower++;
}
else if (sum > target){
higher--;
}
else {
lower++;
}
}
return solutions;
}
console.log(getSumsOfTarget(ra, target));

in the easiest and most concise way as possible

I want to sort an array values in an ascending or descending order without using sort().
I have created a function, however I am not satisfied with it.
I believe the code below could be much shorter and more concise.
Please let me know where to modify or you may entirely change the code too. Thank you in advance.
const func = arg => {
let flip = false;
let copy = [];
for(let val of arg) copy[copy.length] = val;
for(let i=0; i<arg.length; i++) {
const previous = arg[i-1];
const current = arg[i];
if(previous > current) {
flip = true;
copy[i] = previous;
copy[i-1] = current;
}
}
if(flip) return func(copy);
return copy;
};
l(func([5,2,8,1,9,4,7,3,6]));
If your input is composed of whole numbers, as in the example, pne option is to reduce the array into an object, whose keys are the numbers, and whose values are the number of times those values have occured so far. Then, iterate over the object (whose Object.entries will iterate in ascending numeric key order, for whole number keys), and create the array to return:
const func = arr => {
const valuesObj = {};
arr.forEach((num) => {
valuesObj[num] = (valuesObj[num] || 0) + 1;
});
return Object.entries(valuesObj)
.flatMap(
([num, count]) => Array(count).fill(num)
);
};
console.log(
func([5,2,8,1,9,10,10,11,4,7,3,6])
);
This runs in O(N) time.
To account for negative integers as well while keeping O(N) runtime, create another object for negatives:
const func = arr => {
const valuesObj = {};
const negativeValuesObj = {};
arr.forEach((num) => {
if (num >= 0) valuesObj[num] = (valuesObj[num] || 0) + 1;
else negativeValuesObj[-num] = (negativeValuesObj[-num] || 0) + 1;
});
return [
...Object.entries(negativeValuesObj).reverse()
.flatMap(
([num, count]) => Array(count).fill(-num)
),
...Object.entries(valuesObj)
.flatMap(
([num, count]) => Array(count).fill(num)
)
];
};
console.log(
func([5,2,8,1,-5, -1, 9,10,10,11,4,7,3,6, -10])
);
For non-integer items, you'll have to use a different algorithm with higher computational complexity.

How to remove certain elements from an array into a new array and leave the others only the original array?

How to write a function to remove certain elements into a new array and leave the original array with only the remaining elements?
the first part is easy using a for loop pushing the even numbers into a new array but mutating the original array to leave only the odd numbers is hard
function remove(arr, cb){
var removed = [];
var newArr = [];
for(var i = 0; i < arr.length; i++) {
if(cb(arr[i], i, arr)) {
removed.push(arr[i]);
}
}
return removed;
}
Use an else statement to fill newArr with values that should stay in the original arr, then empty it using splice() before copying the items from newArr back into it.
function remove (arr, cb) {
var removed = [];
var newArr = [];
for (var i = 0; i < arr.length; i++) {
if (cb(arr[i], i, arr)) {
removed.push(arr[i]);
} else {
newArr.push(arr[i]);
}
}
arr.splice(0);
for (var i = 0; i < newArr.length; i++) {
arr.push(newArr[i]);
}
return removed;
}
Welcome to Stackoverflow!
Personally, I'd avoid anything that mutates an input parameter, as this increases code complexity and makes it hard to reason about what's happening from the calling side.
Instead, I'd write a method that returns an array of two arrays. This can be easily split into two variables at the calling end using by using array destructuring.
See the example below:
const splitArr = (arr, pred) =>
arr.reduce(
(prev, curr, idx) => {
prev[+pred(curr, idx, arr)].push(curr);
return prev;
}, [[], []]
);
// usage //
const myArr = [1, 2, 3, 4];
const [arr1, arr2] = splitArr(myArr, x => x > 2);
console.log(arr1);
console.log(arr2);
Because pred is a function that returns a boolean value, we can co-erce this value to 0 or 1 using +someBoolean. We can then use this value as an index to decide into which of the two output arrays the value should be pushed.
You were definitely on the right track with your solution, a couple tweaks and we can make it very readable and also very easy to work with. I tried to keep the format of what it looked like you were doing.
I do take advantage of destructuring here, this could be returned as just an object, and then reference the properties.
const myArr = [0,1,2,3,4,5,6,7,8,9,10];
const splitItems = (arr, logicFunc) => {
let secondSet = []
const firstSet = arr.filter(v => {
if (logicFunc(v)) return true
else secondSet.push(v)
})
return { firstSet, secondSet }
}
const myLogicFunc = v => (v < 3 || v == 9)
const { firstSet, secondSet } = splitItems(myArr, myLogicFunc)
console.log(`My first set: ${firstSet}`) // My first set: 0,1,2,9
console.log(`My second set: ${secondSet}`) // My second set: 3,4,5,6,7,8,10
/* OR without destructuring:
const myArrays = splitItems(myArr, myLogicFunc)
console.log(`My first set: ${myArrays.firstSet}`)
console.log(`My second set: ${myArrays.secondSet}`)
*/
Please let me know if you have any questions
In modern JavaScript apps we do not mutate arrays we create new array, this avoids side effects, so what we do is create two new arrays
const split = (source, conditionFunc) = [ source.filter(i => conditionFunc(i)), source.filter(i => !conditionFunc(i))];
Then you have an array of two arrays of the values that meed condition and those that don't and you have not caused any side effects.
const odssAndEvens = split(source, i => i % 2 === 1);
Or with reduce so you don't iterate the array twice
const split = (source, conditionFunc) = source.reduce((results, item) => {
if (conditionFunc(item)) {
results[0].push(item);
} else {
results[1].push(item);
}
return results;
}, [[],[]]);

Compare multiple arrays for common values [duplicate]

What's the simplest, library-free code for implementing array intersections in javascript? I want to write
intersection([1,2,3], [2,3,4,5])
and get
[2, 3]
Use a combination of Array.prototype.filter and Array.prototype.includes:
const filteredArray = array1.filter(value => array2.includes(value));
For older browsers, with Array.prototype.indexOf and without an arrow function:
var filteredArray = array1.filter(function(n) {
return array2.indexOf(n) !== -1;
});
NB! Both .includes and .indexOf internally compares elements in the array by using ===, so if the array contains objects it will only compare object references (not their content). If you want to specify your own comparison logic, use Array.prototype.some instead.
Destructive seems simplest, especially if we can assume the input is sorted:
/* destructively finds the intersection of
* two arrays in a simple fashion.
*
* PARAMS
* a - first array, must already be sorted
* b - second array, must already be sorted
*
* NOTES
* State of input arrays is undefined when
* the function returns. They should be
* (prolly) be dumped.
*
* Should have O(n) operations, where n is
* n = MIN(a.length, b.length)
*/
function intersection_destructive(a, b)
{
var result = [];
while( a.length > 0 && b.length > 0 )
{
if (a[0] < b[0] ){ a.shift(); }
else if (a[0] > b[0] ){ b.shift(); }
else /* they're equal */
{
result.push(a.shift());
b.shift();
}
}
return result;
}
Non-destructive has to be a hair more complicated, since we’ve got to track indices:
/* finds the intersection of
* two arrays in a simple fashion.
*
* PARAMS
* a - first array, must already be sorted
* b - second array, must already be sorted
*
* NOTES
*
* Should have O(n) operations, where n is
* n = MIN(a.length(), b.length())
*/
function intersect_safe(a, b)
{
var ai=0, bi=0;
var result = [];
while( ai < a.length && bi < b.length )
{
if (a[ai] < b[bi] ){ ai++; }
else if (a[ai] > b[bi] ){ bi++; }
else /* they're equal */
{
result.push(a[ai]);
ai++;
bi++;
}
}
return result;
}
If your environment supports ECMAScript 6 Set, one simple and supposedly efficient (see specification link) way:
function intersect(a, b) {
var setA = new Set(a);
var setB = new Set(b);
var intersection = new Set([...setA].filter(x => setB.has(x)));
return Array.from(intersection);
}
Shorter, but less readable (also without creating the additional intersection Set):
function intersect(a, b) {
var setB = new Set(b);
return [...new Set(a)].filter(x => setB.has(x));
}
Note that when using sets you will only get distinct values, thus new Set([1, 2, 3, 3]).size evaluates to 3.
Using Underscore.js or lodash.js
_.intersection( [0,345,324] , [1,0,324] ) // gives [0,324]
// Return elements of array a that are also in b in linear time:
function intersect(a, b) {
return a.filter(Set.prototype.has, new Set(b));
}
// Example:
console.log(intersect([1,2,3], [2,3,4,5]));
I recommend above succinct solution which outperforms other implementations on large inputs. If performance on small inputs matters, check the alternatives below.
Alternatives and performance comparison:
See the following snippet for alternative implementations and check https://jsperf.com/array-intersection-comparison for performance comparisons.
function intersect_for(a, b) {
const result = [];
const alen = a.length;
const blen = b.length;
for (let i = 0; i < alen; ++i) {
const ai = a[i];
for (let j = 0; j < blen; ++j) {
if (ai === b[j]) {
result.push(ai);
break;
}
}
}
return result;
}
function intersect_filter_indexOf(a, b) {
return a.filter(el => b.indexOf(el) !== -1);
}
function intersect_filter_in(a, b) {
const map = b.reduce((map, el) => {map[el] = true; return map}, {});
return a.filter(el => el in map);
}
function intersect_for_in(a, b) {
const result = [];
const map = {};
for (let i = 0, length = b.length; i < length; ++i) {
map[b[i]] = true;
}
for (let i = 0, length = a.length; i < length; ++i) {
if (a[i] in map) result.push(a[i]);
}
return result;
}
function intersect_filter_includes(a, b) {
return a.filter(el => b.includes(el));
}
function intersect_filter_has_this(a, b) {
return a.filter(Set.prototype.has, new Set(b));
}
function intersect_filter_has_arrow(a, b) {
const set = new Set(b);
return a.filter(el => set.has(el));
}
function intersect_for_has(a, b) {
const result = [];
const set = new Set(b);
for (let i = 0, length = a.length; i < length; ++i) {
if (set.has(a[i])) result.push(a[i]);
}
return result;
}
Results in Firefox 53:
Ops/sec on large arrays (10,000 elements):
filter + has (this) 523 (this answer)
for + has 482
for-loop + in 279
filter + in 242
for-loops 24
filter + includes 14
filter + indexOf 10
Ops/sec on small arrays (100 elements):
for-loop + in 384,426
filter + in 192,066
for-loops 159,137
filter + includes 104,068
filter + indexOf 71,598
filter + has (this) 43,531 (this answer)
filter + has (arrow function) 35,588
My contribution in ES6 terms. In general it finds the intersection of an array with indefinite number of arrays provided as arguments.
Array.prototype.intersect = function(...a) {
return [this,...a].reduce((p,c) => p.filter(e => c.includes(e)));
}
var arrs = [[0,2,4,6,8],[4,5,6,7],[4,6]],
arr = [0,1,2,3,4,5,6,7,8,9];
document.write("<pre>" + JSON.stringify(arr.intersect(...arrs)) + "</pre>");
How about just using associative arrays?
function intersect(a, b) {
var d1 = {};
var d2 = {};
var results = [];
for (var i = 0; i < a.length; i++) {
d1[a[i]] = true;
}
for (var j = 0; j < b.length; j++) {
d2[b[j]] = true;
}
for (var k in d1) {
if (d2[k])
results.push(k);
}
return results;
}
edit:
// new version
function intersect(a, b) {
var d = {};
var results = [];
for (var i = 0; i < b.length; i++) {
d[b[i]] = true;
}
for (var j = 0; j < a.length; j++) {
if (d[a[j]])
results.push(a[j]);
}
return results;
}
The performance of #atk's implementation for sorted arrays of primitives can be improved by using .pop rather than .shift.
function intersect(array1, array2) {
var result = [];
// Don't destroy the original arrays
var a = array1.slice(0);
var b = array2.slice(0);
var aLast = a.length - 1;
var bLast = b.length - 1;
while (aLast >= 0 && bLast >= 0) {
if (a[aLast] > b[bLast] ) {
a.pop();
aLast--;
} else if (a[aLast] < b[bLast] ){
b.pop();
bLast--;
} else /* they're equal */ {
result.push(a.pop());
b.pop();
aLast--;
bLast--;
}
}
return result;
}
I created a benchmark using jsPerf. It's about three times faster to use .pop.
If you need to have it handle intersecting multiple arrays:
const intersect = (a1, a2, ...rest) => {
const a12 = a1.filter(value => a2.includes(value))
if (rest.length === 0) { return a12; }
return intersect(a12, ...rest);
};
console.log(intersect([1,2,3,4,5], [1,2], [1, 2, 3,4,5], [2, 10, 1]))
Sort it
check one by one from the index 0, create new array from that.
Something like this, Not tested well though.
function intersection(x,y){
x.sort();y.sort();
var i=j=0;ret=[];
while(i<x.length && j<y.length){
if(x[i]<y[j])i++;
else if(y[j]<x[i])j++;
else {
ret.push(x[i]);
i++,j++;
}
}
return ret;
}
alert(intersection([1,2,3], [2,3,4,5]));
PS:The algorithm only intended for Numbers and Normal Strings, intersection of arbitary object arrays may not work.
Using jQuery:
var a = [1,2,3];
var b = [2,3,4,5];
var c = $(b).not($(b).not(a));
alert(c);
A tiny tweak to the smallest one here (the filter/indexOf solution), namely creating an index of the values in one of the arrays using a JavaScript object, will reduce it from O(N*M) to "probably" linear time. source1 source2
function intersect(a, b) {
var aa = {};
a.forEach(function(v) { aa[v]=1; });
return b.filter(function(v) { return v in aa; });
}
This isn't the very simplest solution (it's more code than filter+indexOf), nor is it the very fastest (probably slower by a constant factor than intersect_safe()), but seems like a pretty good balance. It is on the very simple side, while providing good performance, and it doesn't require pre-sorted inputs.
For arrays containing only strings or numbers you can do something with sorting, as per some of the other answers. For the general case of arrays of arbitrary objects I don't think you can avoid doing it the long way. The following will give you the intersection of any number of arrays provided as parameters to arrayIntersection:
var arrayContains = Array.prototype.indexOf ?
function(arr, val) {
return arr.indexOf(val) > -1;
} :
function(arr, val) {
var i = arr.length;
while (i--) {
if (arr[i] === val) {
return true;
}
}
return false;
};
function arrayIntersection() {
var val, arrayCount, firstArray, i, j, intersection = [], missing;
var arrays = Array.prototype.slice.call(arguments); // Convert arguments into a real array
// Search for common values
firstArray = arrays.pop();
if (firstArray) {
j = firstArray.length;
arrayCount = arrays.length;
while (j--) {
val = firstArray[j];
missing = false;
// Check val is present in each remaining array
i = arrayCount;
while (!missing && i--) {
if ( !arrayContains(arrays[i], val) ) {
missing = true;
}
}
if (!missing) {
intersection.push(val);
}
}
}
return intersection;
}
arrayIntersection( [1, 2, 3, "a"], [1, "a", 2], ["a", 1] ); // Gives [1, "a"];
Simplest, fastest O(n) and shortest way:
function intersection (a, b) {
const setA = new Set(a);
return b.filter(value => setA.has(value));
}
console.log(intersection([1,2,3], [2,3,4,5]))
#nbarbosa has almost the same answer but he cast both arrays to Set and then back to array. There is no need for any extra casting.
Another indexed approach able to process any number of arrays at once:
// Calculate intersection of multiple array or object values.
function intersect (arrList) {
var arrLength = Object.keys(arrList).length;
// (Also accepts regular objects as input)
var index = {};
for (var i in arrList) {
for (var j in arrList[i]) {
var v = arrList[i][j];
if (index[v] === undefined) index[v] = 0;
index[v]++;
};
};
var retv = [];
for (var i in index) {
if (index[i] == arrLength) retv.push(i);
};
return retv;
};
It works only for values that can be evaluated as strings and you should pass them as an array like:
intersect ([arr1, arr2, arr3...]);
...but it transparently accepts objects as parameter or as any of the elements to be intersected (always returning array of common values). Examples:
intersect ({foo: [1, 2, 3, 4], bar: {a: 2, j:4}}); // [2, 4]
intersect ([{x: "hello", y: "world"}, ["hello", "user"]]); // ["hello"]
EDIT: I just noticed that this is, in a way, slightly buggy.
That is: I coded it thinking that input arrays cannot itself contain repetitions (as provided example doesn't).
But if input arrays happen to contain repetitions, that would produce wrong results. Example (using below implementation):
intersect ([[1, 3, 4, 6, 3], [1, 8, 99]]);
// Expected: [ '1' ]
// Actual: [ '1', '3' ]
Fortunately this is easy to fix by simply adding second level indexing. That is:
Change:
if (index[v] === undefined) index[v] = 0;
index[v]++;
by:
if (index[v] === undefined) index[v] = {};
index[v][i] = true; // Mark as present in i input.
...and:
if (index[i] == arrLength) retv.push(i);
by:
if (Object.keys(index[i]).length == arrLength) retv.push(i);
Complete example:
// Calculate intersection of multiple array or object values.
function intersect (arrList) {
var arrLength = Object.keys(arrList).length;
// (Also accepts regular objects as input)
var index = {};
for (var i in arrList) {
for (var j in arrList[i]) {
var v = arrList[i][j];
if (index[v] === undefined) index[v] = {};
index[v][i] = true; // Mark as present in i input.
};
};
var retv = [];
for (var i in index) {
if (Object.keys(index[i]).length == arrLength) retv.push(i);
};
return retv;
};
intersect ([[1, 3, 4, 6, 3], [1, 8, 99]]); // [ '1' ]
With some restrictions on your data, you can do it in linear time!
For positive integers: use an array mapping the values to a "seen/not seen" boolean.
function intersectIntegers(array1,array2) {
var seen=[],
result=[];
for (var i = 0; i < array1.length; i++) {
seen[array1[i]] = true;
}
for (var i = 0; i < array2.length; i++) {
if ( seen[array2[i]])
result.push(array2[i]);
}
return result;
}
There is a similar technique for objects: take a dummy key, set it to "true" for each element in array1, then look for this key in elements of array2. Clean up when you're done.
function intersectObjects(array1,array2) {
var result=[];
var key="tmpKey_intersect"
for (var i = 0; i < array1.length; i++) {
array1[i][key] = true;
}
for (var i = 0; i < array2.length; i++) {
if (array2[i][key])
result.push(array2[i]);
}
for (var i = 0; i < array1.length; i++) {
delete array1[i][key];
}
return result;
}
Of course you need to be sure the key didn't appear before, otherwise you'll be destroying your data...
function intersection(A,B){
var result = new Array();
for (i=0; i<A.length; i++) {
for (j=0; j<B.length; j++) {
if (A[i] == B[j] && $.inArray(A[i],result) == -1) {
result.push(A[i]);
}
}
}
return result;
}
For simplicity:
// Usage
const intersection = allLists
.reduce(intersect, allValues)
.reduce(removeDuplicates, []);
// Implementation
const intersect = (intersection, list) =>
intersection.filter(item =>
list.some(x => x === item));
const removeDuplicates = (uniques, item) =>
uniques.includes(item) ? uniques : uniques.concat(item);
// Example Data
const somePeople = [bob, doug, jill];
const otherPeople = [sarah, bob, jill];
const morePeople = [jack, jill];
const allPeople = [...somePeople, ...otherPeople, ...morePeople];
const allGroups = [somePeople, otherPeople, morePeople];
// Example Usage
const intersection = allGroups
.reduce(intersect, allPeople)
.reduce(removeDuplicates, []);
intersection; // [jill]
Benefits:
dirt simple
data-centric
works for arbitrary number of lists
works for arbitrary lengths of lists
works for arbitrary types of values
works for arbitrary sort order
retains shape (order of first appearance in any array)
exits early where possible
memory safe, short of tampering with Function / Array prototypes
Drawbacks:
higher memory usage
higher CPU usage
requires an understanding of reduce
requires understanding of data flow
You wouldn't want to use this for 3D engine or kernel work, but if you have problems getting this to run in an event-based app, your design has bigger problems.
I'll contribute with what has been working out best for me:
if (!Array.prototype.intersect){
Array.prototype.intersect = function (arr1) {
var r = [], o = {}, l = this.length, i, v;
for (i = 0; i < l; i++) {
o[this[i]] = true;
}
l = arr1.length;
for (i = 0; i < l; i++) {
v = arr1[i];
if (v in o) {
r.push(v);
}
}
return r;
};
}
A functional approach with ES2015
A functional approach must consider using only pure functions without side effects, each of which is only concerned with a single job.
These restrictions enhance the composability and reusability of the functions involved.
// small, reusable auxiliary functions
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
const apply = f => x => f(x);
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
// run it
console.log( intersect(xs) (ys) );
Please note that the native Set type is used, which has an advantageous
lookup performance.
Avoid duplicates
Obviously repeatedly occurring items from the first Array are preserved, while the second Array is de-duplicated. This may be or may be not the desired behavior. If you need a unique result just apply dedupe to the first argument:
// auxiliary functions
const apply = f => x => f(x);
const comp = f => g => x => f(g(x));
const afrom = apply(Array.from);
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// de-duplication
const dedupe = comp(afrom) (createSet);
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
// unique result
console.log( intersect(dedupe(xs)) (ys) );
Compute the intersection of any number of Arrays
If you want to compute the intersection of an arbitrarily number of Arrays just compose intersect with foldl. Here is a convenience function:
// auxiliary functions
const apply = f => x => f(x);
const uncurry = f => (x, y) => f(x) (y);
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
const foldl = f => acc => xs => xs.reduce(uncurry(f), acc);
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// intersection of an arbitrarily number of Arrays
const intersectn = (head, ...tail) => foldl(intersect) (head) (tail);
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
const zs = [0,1,2,3,4,5,6];
// run
console.log( intersectn(xs, ys, zs) );
.reduce to build a map, and .filter to find the intersection. delete within the .filter allows us to treat the second array as though it's a unique set.
function intersection (a, b) {
var seen = a.reduce(function (h, k) {
h[k] = true;
return h;
}, {});
return b.filter(function (k) {
var exists = seen[k];
delete seen[k];
return exists;
});
}
I find this approach pretty easy to reason about. It performs in constant time.
I have written an intesection function which can even detect intersection of array of objects based on particular property of those objects.
For instance,
if arr1 = [{id: 10}, {id: 20}]
and arr2 = [{id: 20}, {id: 25}]
and we want intersection based on the id property, then the output should be :
[{id: 20}]
As such, the function for the same (note: ES6 code) is :
const intersect = (arr1, arr2, accessors = [v => v, v => v]) => {
const [fn1, fn2] = accessors;
const set = new Set(arr2.map(v => fn2(v)));
return arr1.filter(value => set.has(fn1(value)));
};
and you can call the function as:
intersect(arr1, arr2, [elem => elem.id, elem => elem.id])
Also note: this function finds intersection considering the first array is the primary array and thus the intersection result will be that of the primary array.
This function avoids the N^2 problem, taking advantage of the power of dictionaries. Loops through each array only once, and a third and shorter loop to return the final result.
It also supports numbers, strings, and objects.
function array_intersect(array1, array2)
{
var mergedElems = {},
result = [];
// Returns a unique reference string for the type and value of the element
function generateStrKey(elem) {
var typeOfElem = typeof elem;
if (typeOfElem === 'object') {
typeOfElem += Object.prototype.toString.call(elem);
}
return [typeOfElem, elem.toString(), JSON.stringify(elem)].join('__');
}
array1.forEach(function(elem) {
var key = generateStrKey(elem);
if (!(key in mergedElems)) {
mergedElems[key] = {elem: elem, inArray2: false};
}
});
array2.forEach(function(elem) {
var key = generateStrKey(elem);
if (key in mergedElems) {
mergedElems[key].inArray2 = true;
}
});
Object.values(mergedElems).forEach(function(elem) {
if (elem.inArray2) {
result.push(elem.elem);
}
});
return result;
}
If there is a special case that cannot be solved, just by modifying the generateStrKey function, it could surely be solved. The trick of this function is that it uniquely represents each different data according to type and value.
This variant has some performance improvements. Avoid loops in case any array is empty. It also starts by walking through the shorter array first, so if it finds all the values of the first array in the second array, exits the loop.
function array_intersect(array1, array2)
{
var mergedElems = {},
result = [],
firstArray, secondArray,
firstN = 0,
secondN = 0;
function generateStrKey(elem) {
var typeOfElem = typeof elem;
if (typeOfElem === 'object') {
typeOfElem += Object.prototype.toString.call(elem);
}
return [typeOfElem, elem.toString(), JSON.stringify(elem)].join('__');
}
// Executes the loops only if both arrays have values
if (array1.length && array2.length)
{
// Begins with the shortest array to optimize the algorithm
if (array1.length < array2.length) {
firstArray = array1;
secondArray = array2;
} else {
firstArray = array2;
secondArray = array1;
}
firstArray.forEach(function(elem) {
var key = generateStrKey(elem);
if (!(key in mergedElems)) {
mergedElems[key] = {elem: elem, inArray2: false};
// Increases the counter of unique values in the first array
firstN++;
}
});
secondArray.some(function(elem) {
var key = generateStrKey(elem);
if (key in mergedElems) {
if (!mergedElems[key].inArray2) {
mergedElems[key].inArray2 = true;
// Increases the counter of matches
secondN++;
// If all elements of first array have coincidence, then exits the loop
return (secondN === firstN);
}
}
});
Object.values(mergedElems).forEach(function(elem) {
if (elem.inArray2) {
result.push(elem.elem);
}
});
}
return result;
}
Here is underscore.js implementation:
_.intersection = function(array) {
if (array == null) return [];
var result = [];
var argsLength = arguments.length;
for (var i = 0, length = array.length; i < length; i++) {
var item = array[i];
if (_.contains(result, item)) continue;
for (var j = 1; j < argsLength; j++) {
if (!_.contains(arguments[j], item)) break;
}
if (j === argsLength) result.push(item);
}
return result;
};
Source: http://underscorejs.org/docs/underscore.html#section-62
Create an Object using one array and loop through the second array to check if the value exists as key.
function intersection(arr1, arr2) {
var myObj = {};
var myArr = [];
for (var i = 0, len = arr1.length; i < len; i += 1) {
if(myObj[arr1[i]]) {
myObj[arr1[i]] += 1;
} else {
myObj[arr1[i]] = 1;
}
}
for (var j = 0, len = arr2.length; j < len; j += 1) {
if(myObj[arr2[j]] && myArr.indexOf(arr2[j]) === -1) {
myArr.push(arr2[j]);
}
}
return myArr;
}
I think using an object internally can help with computations and could be performant too.
// Approach maintains a count of each element and works for negative elements too
function intersect(a,b){
const A = {};
a.forEach((v)=>{A[v] ? ++A[v] : A[v] = 1});
const B = {};
b.forEach((v)=>{B[v] ? ++B[v] : B[v] = 1});
const C = {};
Object.entries(A).map((x)=>C[x[0]] = Math.min(x[1],B[x[0]]))
return Object.entries(C).map((x)=>Array(x[1]).fill(Number(x[0]))).flat();
}
const x = [1,1,-1,-1,0,0,2,2];
const y = [2,0,1,1,1,1,0,-1,-1,-1];
const result = intersect(x,y);
console.log(result); // (7) [0, 0, 1, 1, 2, -1, -1]
I am using map even object could be used.
//find intersection of 2 arrs
const intersections = (arr1,arr2) => {
let arrf = arr1.concat(arr2)
let map = new Map();
let union = [];
for(let i=0; i<arrf.length; i++){
if(map.get(arrf[i])){
map.set(arrf[i],false);
}else{
map.set(arrf[i],true);
}
}
map.forEach((v,k)=>{if(!v){union.push(k);}})
return union;
}
This is a proposed standard: With the currently stage 2 proposal https://github.com/tc39/proposal-set-methods, you could use
mySet.intersection(mySet2);
Until then, you could use Immutable.js's Set, which inspired that proposal
Immutable.Set(mySet).intersect(mySet2)
I extended tarulen's answer to work with any number of arrays. It also should work with non-integer values.
function intersect() {
const last = arguments.length - 1;
var seen={};
var result=[];
for (var i = 0; i < last; i++) {
for (var j = 0; j < arguments[i].length; j++) {
if (seen[arguments[i][j]]) {
seen[arguments[i][j]] += 1;
}
else if (!i) {
seen[arguments[i][j]] = 1;
}
}
}
for (var i = 0; i < arguments[last].length; i++) {
if ( seen[arguments[last][i]] === last)
result.push(arguments[last][i]);
}
return result;
}
If your arrays are sorted, this should run in O(n), where n is min( a.length, b.length )
function intersect_1d( a, b ){
var out=[], ai=0, bi=0, acurr, bcurr, last=Number.MIN_SAFE_INTEGER;
while( ( acurr=a[ai] )!==undefined && ( bcurr=b[bi] )!==undefined ){
if( acurr < bcurr){
if( last===acurr ){
out.push( acurr );
}
last=acurr;
ai++;
}
else if( acurr > bcurr){
if( last===bcurr ){
out.push( bcurr );
}
last=bcurr;
bi++;
}
else {
out.push( acurr );
last=acurr;
ai++;
bi++;
}
}
return out;
}

Categories

Resources