How to get rotated rectangle’s corner coordinates? - javascript

I am trying to get a corner coordinates of rotated rectangle. Then, create a polygon with these coordinates.
So far, I tried to use Rectangle.nortwest, southeast etc. functions but it gives me coordinates before rotation.
Here’s my code: Cesium Sandcastle
var viewer = new Cesium.Viewer("cesiumContainer");
var tl = Cesium.Cartographic.fromDegrees(43.92666513491127,37.413199590790164,0);
var tr = Cesium.Cartographic.fromDegrees(44.142734829047264,37.413199590790164,0);
var bl = Cesium.Cartographic.fromDegrees(43.92666513491127,37.29166038783867,0);
var br = Cesium.Cartographic.fromDegrees(44.142734829047264,37.29166038783867,0);
tl = Cesium.Cartographic.toCartesian(tl);
tr = Cesium.Cartographic.toCartesian(tr);
bl = Cesium.Cartographic.toCartesian(bl);
br = Cesium.Cartographic.toCartesian(br);
var cartoArr = [bl, br, tr, tl];
var convRect = viewer.entities.add({
rectangle : {
coordinates: Cesium.Rectangle.fromCartesianArray(cartoArr),
material: Cesium.Color.PURPLE.withAlpha(0.7),
rotation: -46.22552065940672
}
});
var rect = convRect.rectangle.coordinates._value;
var northeast = Cesium.Cartographic.toCartesian(Cesium.Rectangle.northeast(rect));
var northwest = Cesium.Cartographic.toCartesian(Cesium.Rectangle.northwest(rect));
var southwest = Cesium.Cartographic.toCartesian(Cesium.Rectangle.southwest(rect));
var southeast = Cesium.Cartographic.toCartesian(Cesium.Rectangle.southeast(rect));
var cartes = [northwest, southwest, southeast, northeast];
var polygonFirst = viewer.entities.add({
polygon : {
hierarchy : cartes,
material: Cesium.Color.GREEN.withAlpha(0.8),
}
});
polygonFirst.polygon.stRotation = -46.22552065940672;
viewer.zoomTo(convRect);
Any idea about converting rectangle to polygon?

You have to calculate rotated positions using Matrix operations.
Here's Sandcastle link

Related

JavaScript Polymaps library: Get mouse coordinates

I use the polymaps library to display a custom tiled map. Whenever the user clicks on it, I need to know the coordinates of that point. Not the lat/lon values that map.mouse(e) gives, but pixel coordinates.
var po = org.polymaps;
var div = document.getElementById("map");
var map = po.map()
.container(div.appendChild(po.svg("svg")))
.zoomRange([0,8])
.zoom(1)
.add(po.image()
.url(getTile));
map.add(po.interact())
.add(po.hash());
$(div).mousemove(function(e) {
???
})
Does this library provide a function to do this?
To obtain the mouse position on the original image from which the tilemap was created, use the following code:
$(div).mousemove(function(e) {
// Get column, row and zoom level of mouse position
var crz = map.locationCoordinate(map.pointLocation(map.mouse(e)));
// Normalize the column and row values to the 0..1 range
var zoomMultiplier = Math.pow(2, crz.zoom-1);
var x01 = crz.column/zoomMultiplier;
var y01 = crz.row/zoomMultiplier;
// Multiply with the original image width and height
var originalWidth = 32768;
var originalHeight = 32768;
var mx = x01*originalWidth;
var my = y01*originalHeight;
// Now we have the mouse coordinates on the original image!
console.log(mx, my);
})

Get Radius of the displayed OpenLayers Map

How do I compute the distance in mile/meters of the displayed Map? Assuming I have the coordinates of the center of the map. I would like to know the distance/radius from the center to the left/right most displayed part of the map? I already got this using Google Map but I'm new in Openlayers. Is there a way to achieve this? Right now my computation in GoogleMap is like this
var bounds = this.instance.getBounds();
var center = bounds.getCenter();
var ne = bounds.getNorthEast();
// r = radius of the earth in statute miles
var r = 3963.0;
var to_radians_divide = 57.2958;
// Convert lat or lng from decimal degrees into radians (divide by 57.2958)
var lat1 = center.lat() / to_radians_divide;
var lon1 = center.lng() / to_radians_divide;
var lat2 = ne.lat() / to_radians_divide;
var lon2 = ne.lng() / to_radians_divide;
// distance = circle radius from center to Northeast corner of bounds
var dis = r * Math.acos(Math.sin(lat1) * Math.sin(lat2) +
Math.cos(lat1) * Math.cos(lat2) * Math.cos(lon2 - lon1));
return dis;
Is there a way to achieve this in OpenLayers? I just want to find out the distance of the left most part of the displayed map from the center
You can achieve this in openlayers also. Here is the code for that and I am using openlayers 3.20.0 version for this example.
var size = map.getSize();
var center = map.getView().getCenter();
var sourceProj = map.getView().getProjection();
var extent = map.getView().calculateExtent(size);
extent = ol.proj.transformExtent(extent, sourceProj, 'EPSG:4326');
var posSW = [extent[0], extent[1]];
var posNE = [extent[2], extent[3]];
center = ol.proj.transform(center, sourceProj, 'EPSG:4326');
var wgs84Sphere = new ol.Sphere(6378137);
var centerToSW = wgs84Sphere.haversineDistance(center, posSW);
var centerToNE = wgs84Sphere.haversineDistance(center, posNE);
console.log("centerToSW - ",centerToSW);
console.log("centerToNE - ",centerToNE);

mapbox-gl-js: Adjust visible area & bearing to a given line, for a given pitch

I'm trying to optimize a Mapbox view for long-distance hiking trails, like the Appalachian Trail or the Pacific Crest Trail. Here's an example, which I've oriented by hand, showing the Senda Pirenáica in Spain:
The area of interest, the viewport, and the pitch are given. I need to find the correct center, bearing, and zoom.
The map.fitBounds method doesn't help me here because it assumes pitch=0 and bearing=0.
I've done some poking around and this seems to be a variation of the smallest surrounding rectangle problem, but I'm stuck on a couple of additional complications:
How do I account for the distorting effect of pitch?
How do I optimize for the aspect ratio of the viewport? Note that taking the viewport narrower or wider would change the bearing of the best solution:
FWIW I'm also using turf-js, which helps me get the convex hull for the line.
This solution results in the path displayed at the correct bearing with a magenta trapezoid outline showing the target "tightest trapezoid" to show the results of the calculations. The extra line coming from the top corner shows where the map.center() value is located.
The approach is as follows:
render the path to the map using the "fitbounds" technique to get an approximate zoom level for the "north up and pitch=0" situation
rotate the pitch to the desired angle
grab the trapezoid from the canvas
This result would look like this:
After this, we want to rotate that trapezoid around the path and find the tightest fit of the trapezoid to the points. In order to test for the tightest fit it is easier to rotate the path rather than the trapezoid so I have taken that approach here. I haven't implemented a "convex hull" on the path to minimize the number of points to rotate but that is something that can be added as an optimization step.
To get the tightest fit, the first step is to move the map.center() so that the path is at the "back" of the view. This is where the most space is in the frustum so it will be easy to manipulate it there:
Next, we measure the distance between the angled trapezoid walls and each point in the path, saving the closest points on both the left and right sides. We then center the path in the view by translating the view horizontally based on these distances, and then scale the view to eliminate that space on both sides as shown by the green trapezoid below:
The scale used to get this "tightest fit" gives us our ranking for whether this is the best view of the path. However, this view may not be the best visually since we pushed the path to the back of the view to determine the ranking. Instead, we now adjust the view to place the path in the vertical center of the view, and scale the view triangle larger accordingly. This gives us the magenta colored "final" view desired:
Finally, this process is done for every degree and the minimum scale value determines the winning bearing, and we take the associated scale and center position from there.
mapboxgl.accessToken = 'pk.eyJ1IjoiZm1hY2RlZSIsImEiOiJjajJlNWMxenowNXU2MzNudmkzMndwaGI3In0.ALOYWlvpYXnlcH6sCR9MJg';
var map;
var myPath = [
[-122.48369693756104, 37.83381888486939],
[-122.48348236083984, 37.83317489144141],
[-122.48339653015138, 37.83270036637107],
[-122.48356819152832, 37.832056363179625],
[-122.48404026031496, 37.83114119107971],
[-122.48404026031496, 37.83049717427869],
[-122.48348236083984, 37.829920943955045],
[-122.48356819152832, 37.82954808664175],
[-122.48507022857666, 37.82944639795659],
[-122.48610019683838, 37.82880236636284],
[-122.48695850372314, 37.82931081282506],
[-122.48700141906738, 37.83080223556934],
[-122.48751640319824, 37.83168351665737],
[-122.48803138732912, 37.832158048267786],
[-122.48888969421387, 37.83297152392784],
[-122.48987674713133, 37.83263257682617],
[-122.49043464660643, 37.832937629287755],
[-122.49125003814696, 37.832429207817725],
[-122.49163627624512, 37.832564787218985],
[-122.49223709106445, 37.83337825839438],
[-122.49378204345702, 37.83368330777276]
];
var myPath2 = [
[-122.48369693756104, 37.83381888486939],
[-122.49378204345702, 37.83368330777276]
];
function addLayerToMap(name, points, color, width) {
map.addLayer({
"id": name,
"type": "line",
"source": {
"type": "geojson",
"data": {
"type": "Feature",
"properties": {},
"geometry": {
"type": "LineString",
"coordinates": points
}
}
},
"layout": {
"line-join": "round",
"line-cap": "round"
},
"paint": {
"line-color": color,
"line-width": width
}
});
}
function Mercator2ll(mercX, mercY) {
var rMajor = 6378137; //Equatorial Radius, WGS84
var shift = Math.PI * rMajor;
var lon = mercX / shift * 180.0;
var lat = mercY / shift * 180.0;
lat = 180 / Math.PI * (2 * Math.atan(Math.exp(lat * Math.PI / 180.0)) - Math.PI / 2.0);
return [ lon, lat ];
}
function ll2Mercator(lon, lat) {
var rMajor = 6378137; //Equatorial Radius, WGS84
var shift = Math.PI * rMajor;
var x = lon * shift / 180;
var y = Math.log(Math.tan((90 + lat) * Math.PI / 360)) / (Math.PI / 180);
y = y * shift / 180;
return [ x, y ];
}
function convertLL2Mercator(points) {
var m_points = [];
for(var i=0;i<points.length;i++) {
m_points[i] = ll2Mercator( points[i][0], points[i][1] );
}
return m_points;
}
function convertMercator2LL(m_points) {
var points = [];
for(var i=0;i<m_points.length;i++) {
points[i] = Mercator2ll( m_points[i][0], m_points[i][1] );;
}
return points;
}
function pointsTranslate(points,xoff,yoff) {
var newpoints = [];
for(var i=0;i<points.length;i++) {
newpoints[i] = [ points[i][0] + xoff, points[i][1] + yoff ];
}
return(newpoints);
}
// note [0] elements are lng [1] are lat
function getBoundingBox(arr) {
var ne = [ arr[0][0] , arr[0][1] ];
var sw = [ arr[0][0] , arr[0][1] ];
for(var i=1;i<arr.length;i++) {
if(ne[0] < arr[i][0]) ne[0] = arr[i][0];
if(ne[1] < arr[i][1]) ne[1] = arr[i][1];
if(sw[0] > arr[i][0]) sw[0] = arr[i][0];
if(sw[1] > arr[i][1]) sw[1] = arr[i][1];
}
return( [ sw, ne ] );
}
function pointsRotate(points, cx, cy, angle){
var radians = angle * Math.PI / 180.0;
var cos = Math.cos(radians);
var sin = Math.sin(radians);
var newpoints = [];
function rotate(x, y) {
var nx = cx + (cos * (x - cx)) + (-sin * (y - cy));
var ny = cy + (cos * (y - cy)) + (sin * (x - cx));
return [nx, ny];
}
for(var i=0;i<points.length;i++) {
newpoints[i] = rotate(points[i][0],points[i][1]);
}
return(newpoints);
}
function convertTrapezoidToPath(trap) {
return([
[trap.Tl.lng, trap.Tl.lat], [trap.Tr.lng, trap.Tr.lat],
[trap.Br.lng, trap.Br.lat], [trap.Bl.lng, trap.Bl.lat],
[trap.Tl.lng, trap.Tl.lat] ]);
}
function getViewTrapezoid() {
var canvas = map.getCanvas();
var trap = {};
trap.Tl = map.unproject([0,0]);
trap.Tr = map.unproject([canvas.offsetWidth,0]);
trap.Br = map.unproject([canvas.offsetWidth,canvas.offsetHeight]);
trap.Bl = map.unproject([0,canvas.offsetHeight]);
return(trap);
}
function pointsScale(points,cx,cy, scale) {
var newpoints = []
for(var i=0;i<points.length;i++) {
newpoints[i] = [ cx + (points[i][0]-cx)*scale, cy + (points[i][1]-cy)*scale ];
}
return(newpoints);
}
var id = 1000;
function convertMercator2LLAndDraw(m_points, color, thickness) {
var newpoints = convertMercator2LL(m_points);
addLayerToMap("id"+id++, newpoints, color, thickness);
}
function pointsInTrapezoid(points,yt,yb,xtl,xtr,xbl,xbr) {
var str = "";
var xleft = xtr;
var xright = xtl;
var yh = yt-yb;
var sloperight = (xtr-xbr)/yh;
var slopeleft = (xbl-xtl)/yh;
var flag = true;
var leftdiff = xtr - xtl;
var rightdiff = xtl - xtr;
var tmp = [ [xtl, yt], [xtr, yt], [xbr,yb], [xbl,yb], [xtl,yt] ];
// convertMercator2LLAndDraw(tmp, '#ff0', 2);
function pointInTrapezoid(x,y) {
var xsloperight = xbr + sloperight * (y-yb);
var xslopeleft = xbl - slopeleft * (y-yb);
if((x - xsloperight) > rightdiff) {
rightdiff = x - xsloperight;
xright = x;
}
if((x - xslopeleft) < leftdiff) {
leftdiff = x - xslopeleft;
xleft = x;
}
if( (y<yb) || (y > yt) ) {
console.log("y issue");
}
else if(xsloperight < x) {
console.log("sloperight");
}
else if(xslopeleft > x) {
console.log("slopeleft");
}
else return(true);
return(false);
}
for(var i=0;i<points.length;i++) {
if(pointInTrapezoid(points[i][0],points[i][1])) {
str += "1";
}
else {
str += "0";
flag = false;
}
}
if(flag == false) console.log(str);
return({ leftdiff: leftdiff, rightdiff: rightdiff });
}
var viewcnt = 0;
function calculateView(trap, points, center) {
var bbox = getBoundingBox(points);
var bbox_height = Math.abs(bbox[0][1] - bbox[1][1]);
var view = {};
// move the view trapezoid so the path is at the far edge of the view
var viewTop = trap[0][1];
var pointsTop = bbox[1][1];
var yoff = -(viewTop - pointsTop);
var extents = pointsInTrapezoid(points,trap[0][1]+yoff,trap[3][1]+yoff,trap[0][0],trap[1][0],trap[3][0],trap[2][0]);
// center the view trapezoid horizontally around the path
var mid = (extents.leftdiff - extents.rightdiff) / 2;
var trap2 = pointsTranslate(trap,extents.leftdiff-mid,yoff);
view.cx = trap2[5][0];
view.cy = trap2[5][1];
var w = trap[1][0] - trap[0][0];
var h = trap[1][1] - trap[3][1];
// calculate the scale to fit the trapezoid to the path
view.scale = (w-mid*2)/w;
if(bbox_height > h*view.scale) {
// if the path is taller than the trapezoid then we need to make it larger
view.scale = bbox_height / h;
}
view.ranking = view.scale;
var trap3 = pointsScale(trap2,(trap2[0][0]+trap2[1][0])/2,trap2[0][1],view.scale);
w = trap3[1][0] - trap3[0][0];
h = trap3[1][1] - trap3[3][1];
view.cx = trap3[5][0];
view.cy = trap3[5][1];
// if the path is not as tall as the view then we should center it vertically for the best looking result
// this involves both a scale and a translate
if(h > bbox_height) {
var space = h - bbox_height;
var scale_mul = (h+space)/h;
view.scale = scale_mul * view.scale;
cy_offset = space/2;
trap3 = pointsScale(trap3,view.cx,view.cy,scale_mul);
trap3 = pointsTranslate(trap3,0,cy_offset);
view.cy = trap3[5][1];
}
return(view);
}
function thenCalculateOptimalView(path) {
var center = map.getCenter();
var trapezoid = getViewTrapezoid();
var trapezoid_path = convertTrapezoidToPath(trapezoid);
trapezoid_path[5] = [center.lng, center.lat];
var view = {};
//addLayerToMap("start", trapezoid_path, '#00F', 2);
// get the mercator versions of the points so that we can use them for rotations
var m_center = ll2Mercator(center.lng,center.lat);
var m_path = convertLL2Mercator(path);
var m_trapezoid_path = convertLL2Mercator(trapezoid_path);
// try all angles to see which fits best
for(var angle=0;angle<360;angle+=1) {
var m_newpoints = pointsRotate(m_path, m_center[0], m_center[1], angle);
var thisview = calculateView(m_trapezoid_path, m_newpoints, m_center);
if(!view.hasOwnProperty('ranking') || (view.ranking > thisview.ranking)) {
view.scale = thisview.scale;
view.cx = thisview.cx;
view.cy = thisview.cy;
view.angle = angle;
view.ranking = thisview.ranking;
}
}
// need the distance for the (cx, cy) from the current north up position
var cx_offset = view.cx - m_center[0];
var cy_offset = view.cy - m_center[1];
var rotated_offset = pointsRotate([[cx_offset,cy_offset]],0,0,-view.angle);
map.flyTo({ bearing: view.angle, speed:0.00001 });
// once bearing is set, adjust to tightest fit
waitForMapMoveCompletion(function () {
var center2 = map.getCenter();
var m_center2 = ll2Mercator(center2.lng,center2.lat);
m_center2[0] += rotated_offset[0][0];
m_center2[1] += rotated_offset[0][1];
var ll_center2 = Mercator2ll(m_center2[0],m_center2[1]);
map.easeTo({
center:[ll_center2[0],ll_center2[1]],
zoom : map.getZoom() });
console.log("bearing:"+view.angle+ " scale:"+view.scale+" center: ("+ll_center2[0]+","+ll_center2[1]+")");
// draw the tight fitting trapezoid for reference purposes
var m_trapR = pointsRotate(m_trapezoid_path,m_center[0],m_center[1],-view.angle);
var m_trapRS = pointsScale(m_trapR,m_center[0],m_center[1],view.scale);
var m_trapRST = pointsTranslate(m_trapRS,m_center2[0]-m_center[0],m_center2[1]-m_center[1]);
convertMercator2LLAndDraw(m_trapRST,'#f0f',4);
});
}
function waitForMapMoveCompletion(func) {
if(map.isMoving())
setTimeout(function() { waitForMapMoveCompletion(func); },250);
else
func();
}
function thenSetPitch(path,pitch) {
map.flyTo({ pitch:pitch } );
waitForMapMoveCompletion(function() { thenCalculateOptimalView(path); })
}
function displayFittedView(path,pitch) {
var bbox = getBoundingBox(path);
var path_cx = (bbox[0][0]+bbox[1][0])/2;
var path_cy = (bbox[0][1]+bbox[1][1])/2;
// start with a 'north up' view
map = new mapboxgl.Map({
container: 'map',
style: 'mapbox://styles/mapbox/streets-v9',
center: [path_cx, path_cy],
zoom: 12
});
// use the bounding box to get into the right zoom range
map.on('load', function () {
addLayerToMap("path",path,'#888',8);
map.fitBounds(bbox);
waitForMapMoveCompletion(function() { thenSetPitch(path,pitch); });
});
}
window.onload = function(e) {
displayFittedView(myPath,60);
}
body { margin:0; padding:0; }
#map { position:absolute; top:0; bottom:0; width:100%; }
<script src='https://api.tiles.mapbox.com/mapbox-gl-js/v0.37.0/mapbox-gl.js'></script>
<link href='https://api.tiles.mapbox.com/mapbox-gl-js/v0.37.0/mapbox-gl.css' rel='stylesheet' />
<div id='map'></div>
Smallest surrounding rectangle would be specific to pitch=0 (looking directly down).
One option is to continue with smallest surrounding rectangle approach and calculate the transformation of the target area - just like a 3d engine does. If this is what you do maybe skim through unity docs to better understand the mechanics of viewing frustum
I feel this wouldn't be appropriate for your problem though as you'd have to re-calculate a 2d rendering of the target area from different angles, a relatively expensive brute force.
Another way to normalize the calculation would be to render a viewport projection into target area plane. See for yourself:
Then all you have to do is "just" figure out the largest size your original convex hull can fit into a trapezoid of that shape (specifically a convex isosceles trapezoid since we don't manipulate camera roll).
This is where I get a little out of depth and don't know where to point you for a calculation. I figure it's at least cheaper to iterate over possible solutions in this 2D space though.
P.S: One more thing to keep in mind is the viewport projection shape will be different depending on FOV (field of view).
This changes when you resize the browser viewport, but the property doesn't seem to be exposed in mapbox-gl-js.
Edit:
After some thought I feel the best mathematical solution can feel a little "dry" in reality. Not being across the use case and, possibly, making some wrong assumptions, I'd ask these questions:
For a route that's roughly a straight line, would it always be panned in so the ends are at bottom left and top right corners? That would be close to "optimal" but could get... boring.
Would you want to keep more of the path closer to the viewport? You can lose route detail if a large portion of it is far away from the viewport.
Would you pick points of interest to focus on? Those could be closer to the viewport.
Perhaps it would be handy to classify different types of routes by shape of hull and create panning presets?
Hopefully this can point you in the right direction with some tweaking.
First I set up the two points we want to show
let pointA = [-70, 43]
let pointB = [-83, 32]
Then I found the middle of those two points. I made my own function for this, but it looks like turf can do this.
function middleCoord(a, b){
let x = (a - b)/2
return _.min([a, b]) + x
}
let center = [middleCoord(pointA[0], pointB[0]), middleCoord(pointA[1], pointB[1])]
I used turfs bearing function to have the view from the 2nd point look at the first point
let p1 = turf.point(pointA)
let p2 = turf.point(pointB)
let points = turf.featureCollection([p1, p2])
let bearing = turf.bearing(p2, p1)
Then I call the map and run the fitBounds function:
var map = new mapboxgl.Map({
container: 'map', // container id
style: 'mapbox://styles/mapbox/outdoors-v10', //hosted style id
center: center, // starting position
zoom: 4, // starting zoom
pitch: 60,
bearing: bearing
})
map.fitBounds([pointA, pointB], {padding: 0, offset: 0})
Here's a codepen: https://codepen.io/thejoshderocher/pen/BRYGXq
To adjust the bearing to best use the screen size is to get the size of the window and adjust the bearing to take the most advantage of the available screen space. If it's a mobile screen in portrait, this bearing work perfect. If you are on a desktop with a wide view you will need to rotate so point A is in one of the top corners.

Substract 3D text to a Geometry in Three.js

I want to transform my 3D text to Geometry so I can use it with CSG (I used a Three.js CSG wrapper also) to substract it from another object like in this question.
My 3D text :
loader.load('optimer_regular.typeface.json', function (font){
var text = new THREE.TextGeometry('Tayst', {
font: font,
size: 4,
height: 3
});
var textMat = new THREE.MeshBasicMaterial({color: 0xffffff});
var textGeo = new THREE.Mesh(text, textMat);
textGeo.position.x = -7;
textGeo.position.z = 6;
scene.add(textGeo);
});
My substract thing I want to do for the 3D text (but here it's from circles):
var dots = new THREE.Geometry();
for(var i = 0; i < coordinates.length; i++){
var coords = coordinates[i];
sphereMesh.position.x = coords[0];
sphereMesh.position.y = coords[1];
sphereMesh.position.z = coords[2];
sphereMesh.updateMatrix();
dots.merge(sphereMesh.geometry, sphereMesh.matrix);
}
var sphereCsg = THREE.CSG.toCSG(dots);
var resultGeo = THREE.CSG.fromCSG(resultCsg.subtract(sphereCsg));
cube = new THREE.Mesh(resultGeo, material);
But the thing is, I think, I need to convert my text to a real Geometry so I can substract it?
Well i found out using the library I already got, but instead I didn't had to do the "merge" for example.
Here is the working code (in case someone needs it) :
var loader = new THREE.FontLoader();
loader.load('helvetiker_regular.typeface.json', function (font){
var text = new THREE.TextGeometry('Test', {
font: font,
size: 4,
height: 0.5
});
var textGeo = new THREE.Mesh(text);
textGeo.position.x = -5;
textGeo.position.z = 7.5;
var txtCsg = THREE.CSG.toCSG(textGeo);
var resultGeo = THREE.CSG.fromCSG(resultCsg.subtract(txtCsg));
cube = new THREE.Mesh(resultGeo, material);
scene.add(cube);
});

Google map radius

I need to find google map radius (visible area) in km. Can You give me some example?
i tried
`
var bounds = new google.maps.LatLngBounds();
var sw = bounds.getSouthWest();
var ne = bounds.getNorthEast();
var proximitymeter = google.maps.geometry.spherical.computeDistanceBetween (sw, ne);
`
but it returns same value every time
You're finding the cross-sectional distance. This will determine the vertical and horizontal distance of the shown map.
var bounds = new google.maps.LatLngBounds();
var sw = bounds.getSouthWest();
var ne = bounds.getNorthEast();
var east = new google.maps.LatLng(0, ne.lng());
var west = new google.maps.LatLng(0, sw.lng());
var north = new google.maps.LatLng(ne.lat(), 0);
var south = new google.maps.LatLng(sw.lat(), 0);
var width = google.maps.geometry.spherical.computeDistanceBetween(east, west);
var height = google.maps.geometry.spherical.computeDistanceBetween(north, south);
From this you can find the "radius".

Categories

Resources