So I'm still new using MongoDB, so what I'm trying to do here is count all category under productId who have same category. So the expected output should be 7. I used populate first but got stuck on how can I use the $count. Instead I use aggregate and then use $lookup, but i only empty array of product
CartSchema.js
const CartSchema = new mongoose.Schema({
productId: {type: mongoose.Schema.Types.ObjectId, ref: 'Product'}
})
export default mongoose.model('Cart', CartSchema)
ProductSchema.js
const ProductSchema = new mongoose.Schema({
category: {type: String, required: true},
})
export default mongoose.model('Product', ProductSchema)
I used this code to show the information under productId.
router.get('/categories', async (req, res) => {
try {
const cart = await Cart.find()
.populate([
{path: 'productId', select: 'category' },
]).exec()
res.status(200).json(cart);
} catch (error) {
res.status(500).json({error: error.message})
}
})
The result of populate method.
[
{
"_id": "63b410fdde61a124ffd95a51",
"productId": {
"_id": "63b410d6de61a124ffd9585b",
"category": "CASE"
},
},
{
"_id": "63b41a679950cb7c5293bf12",
"productId": {
"_id": "63b41637e3957a541eb59e81",
"category": "CASE"
},
},
{
"_id": "63b433ef226742ae6b30b991",
"productId": {
"_id": "63b41637e3957a541eb59e81",
"category": "CASE"
},
},
{
"_id": "63b670dc62b0f91ee4f8fbd9",
"productId": {
"_id": "63b410d6de61a124ffd9585b",
"category": "CASE"
},
},
{
"_id": "63b6710b62b0f91ee4f8fc13",
"productId": {
"_id": "63b410d6de61a124ffd9585b",
"category": "CASE"
},
},
{
"_id": "63b671bc62b0f91ee4f8fc49",
"productId": {
"_id": "63b410d6de61a124ffd9585b",
"category": "CASE"
},
},
{
"_id": "63b6721c62b0f91ee4f8fcc5",
"productId": {
"_id": "63b410d6de61a124ffd9585b",
"category": "CASE"
},
]
So I used this method, but instead, I just get an empty array
router.get('/categories', async (req, res) => {
try {
const cart = await Cart.aggregate([
{
$lookup: {
from: 'product',
localField: 'productId',
foreignField: '_id',
as: 'product'
}
},
{
$unwind: "$product"
},
{
$group: {
_id: "$product.category",
total: {
$sum: 1
}
}
},
{
$sort: {total: -1}
},
{
$project: {
_id: 0,
category: "$_id",
total: 1
}
},
])
res.status(200).json(cart);
} catch (error) {
res.status(500).json({error: error.message})
}
})
In the aggregation, the collection to perform the $lookup on should be products (with an s) rather than product.
The name of the collection that Mongoose creates in your database is the same as the name of your model, except lowercase and pluralized, as documented in the documentation.
Mongoose automatically looks for the plural, lowercased version of your model name. Thus, for the example above, the model Tank is for the tanks collection in the database.
(emphasis theirs)
When using the aggregation framework, your aggregation pipeline is sent to the database as-is. Mongoose doesn't do any sort of coercion or casting on it. So when writing aggregation pipelines you should more or less forget you're using Mongoose. What's important is the name of the underlying collection in Mongo, which is generated from your model name based on the mentioned rule.
You can also override the collection name yourself if desired, for example:
export default mongoose.model('Product', ProductSchema, 'xyz');
This will override Mongoose's default naming behavior and will name the collection xyz.
I have a multilevel nested document (its dynamic and some levels can be missing but maximum 3 levels). I want to update all the children and subchildren routes if any. The scenario is same as in any Windows explorer, where all subfolders' route need to change when a parent folder route is changed. For eg. In the below example, If I am at route=="l1/l2a" and it's name needs to be edited to "l2c", then I will update it's route as route="l1/l2c and I will update all childrens' route to say "l1/l2c/l3a".
{
"name":"l1",
"route": "l1",
"children":
[
{
"name": "l2a",
"route": "l1/l2a",
"children":
[
{
"name": "l3a",
"route": "l1/l2a/l3a"
}]
},
{
"name": "l2b",
"route": "l1/l2b",
"children":
[
{
"name": "l3b",
"route": "l1/l2b/l3b"
}]
}
]
}
Currently I am able to go to a point and I am able to change its name and ONLY its route in the following manner:
router.put('/navlist',(req,res,next)=>{
newname=req.body.newName //suppose l2c
oldname=req.body.name //suppose l2a
route=req.body.route // existing route is l1/l2a
id=req.body._id
newroute=route.replace(oldname,newname); // l1/l2a has to be changed to l1/l2c
let segments = route.split('/');
let query = { route: segments[0]};
let update, options = {};
let updatePath = "";
options.arrayFilters = [];
for(let i = 0; i < segments.length -1; i++){
updatePath += `children.$[child${i}].`;
options.arrayFilters.push({ [`child${i}.route`]: segments.slice(0, i + 2).join('/') });
} //this is basically for the nested children
updateName=updatePath+'name'
updateRoute=updatePath+'route';
update = { $setOnInsert: { [updateName]:newDisplayName,[updateRoute]:newroute } };
NavItems.updateOne(query,update, options)
})
The problem is I am not able to edit the routes of it's children if any i.e it's subfolder route as l1/l2c/l3a. Although I tried using the $[] operator as follows.
updateChild = updatePath+'.children.$[].route'
updateChild2 = updatePath+'.children.$[].children.$[].route'
//update = { $set: { [updateChild]:'abc',[updateChild2]:'abc' } };
Its important that levels are customizable and thus I don't know whether there is "l3A" or not. Like there can be "l3A" but there may not be "l3B". But my code simply requires every correct path else it gives an error
code 500 MongoError: The path 'children.1.children' must exist in the document in order to apply array updates.
So the question is how can I apply changes using $set to a path that actually exists and how can I edit the existing route part. If the path exists, it's well and good and if the path does not exist, I am getting the ERROR.
Update
You could simplify updates when you use references.Updates/Inserts are straightforward as you can only the update target level or insert new level without worrying about updating all levels. Let the aggregation takes care of populating all levels and generating route field.
Working example - https://mongoplayground.net/p/TKMsvpkbBMn
Structure
[
{
"_id": 1,
"name": "l1",
"children": [
2,
3
]
},
{
"_id": 2,
"name": "l2a",
"children": [
4
]
},
{
"_id": 3,
"name": "l2b",
"children": [
5
]
},
{
"_id": 4,
"name": "l3a",
"children": []
},
{
"_id": 5,
"name": "l3b",
"children": []
}
]
Insert query
db.collection.insert({"_id": 4, "name": "l3a", "children": []}); // Inserting empty array simplifies aggregation query
Update query
db.collection.update({"_id": 4}, {"$set": "name": "l3c"});
Aggregation
db.collection.aggregate([
{"$match":{"_id":1}},
{"$lookup":{
"from":"collection",
"let":{"name":"$name","children":"$children"},
"pipeline":[
{"$match":{"$expr":{"$in":["$_id","$$children"]}}},
{"$addFields":{"route":{"$concat":["$$name","/","$name"]}}},
{"$lookup":{
"from":"collection",
"let":{"route":"$route","children":"$children"},
"pipeline":[
{"$match":{"$expr":{"$in":["$_id","$$children"]}}},
{"$addFields":{"route":{"$concat":["$$route","/","$name"]}}}
],
"as":"children"
}}
],
"as":"children"
}}
])
Original
You could make route as array type and format before presenting it to user. It will greatly simplify updates for you. You have to break queries into multiple updates when nested levels don’t exist ( ex level 2 update ). May be use transactions to perform multiple updates in atomic way.
Something like
[
{
"_id": 1,
"name": "l1",
"route": "l1",
"children": [
{
"name": "l2a",
"route": [
"l1",
"l2a"
],
"children": [
{
"name": "l3a",
"route": [
"l1",
"l2a",
"l3a"
]
}
]
}
]
}
]
level 1 update
db.collection.update({
"_id": 1
},
{
"$set": {
"name": "m1",
"route": "m1"
},
"$set": {
"children.$[].route.0": "m1",
"children.$[].children.$[].route.0": "m1"
}
})
level 2 update
db.collection.update({
"_id": 1
},
{
"$set": {
"children.$[child].route.1": "m2a",
"children.$[child].name": "m2a"
}
},
{
"arrayFilters":[{"child.name": "l2a" }]
})
db.collection.update({
"_id": 1
},
{
"$set": {
"children.$[child].children.$[].route.1": "m2a"
}
},
{
"arrayFilters":[{"child.name": "l2a"}]
})
level 3 update
db.collection.update({
"_id": 1
},
{
"$set": {
"children.$[].children.$[child].name": "m3a"
"children.$[].children.$[child].route.2": "m3a"
}
},
{
"arrayFilters":[{"child.name": "l3a"}]
})
I don't think its possible with arrayFilted for first level and second level update, but yes its possible only for third level update,
The possible way is you can use update with aggregation pipeline starting from MongoDB 4.2,
I am just suggesting a method, you can simplify more on this and reduce query as per your understanding!
Use $map to iterate the loop of children array and check condition using $cond, and merge objects using $mergeObjects,
let id = req.body._id;
let oldname = req.body.name;
let route = req.body.route;
let newname = req.body.newName;
let segments = route.split('/');
LEVEL 1 UPDATE: Playground
// LEVEL 1: Example Values in variables
// let oldname = "l1";
// let route = "l1";
// let newname = "l4";
if(segments.length === 1) {
let result = await NavItems.updateOne(
{ _id: id },
[{
$set: {
name: newname,
route: newname,
children: {
$map: {
input: "$children",
as: "a2",
in: {
$mergeObjects: [
"$$a2",
{
route: { $concat: [newname, "/", "$$a2.name"] },
children: {
$map: {
input: "$$a2.children",
as: "a3",
in: {
$mergeObjects: [
"$$a3",
{ route: { $concat: [newname, "/", "$$a2.name", "/", "$$a3.name"] } }
]
}
}
}
}
]
}
}
}
}
}]
);
}
LEVEL 2 UPDATE: Playground
// LEVEL 2: Example Values in variables
// let oldname = "l2a";
// let route = "l1/l2a";
// let newname = "l2g";
else if (segments.length === 2) {
let result = await NavItems.updateOne(
{ _id: id },
[{
$set: {
children: {
$map: {
input: "$children",
as: "a2",
in: {
$mergeObjects: [
"$$a2",
{
$cond: [
{ $eq: ["$$a2.name", oldname] },
{
name: newname,
route: { $concat: ["$name", "/", newname] },
children: {
$map: {
input: "$$a2.children",
as: "a3",
in: {
$mergeObjects: [
"$$a3",
{ route: { $concat: ["$name", "/", newname, "/", "$$a3.name"] } }
]
}
}
}
},
{}
]
}
]
}
}
}
}
}]
);
}
LEVEL 3 UPDATE: Playground
// LEVEL 3 Example Values in variables
// let oldname = "l3a";
// let route = "l1/l2a/l3a";
// let newname = "l3g";
else if (segments.length === 3) {
let result = await NavItems.updateOne(
{ _id: id },
[{
$set: {
children: {
$map: {
input: "$children",
as: "a2",
in: {
$mergeObjects: [
"$$a2",
{
$cond: [
{ $eq: ["$$a2.name", segments[1]] },
{
children: {
$map: {
input: "$$a2.children",
as: "a3",
in: {
$mergeObjects: [
"$$a3",
{
$cond: [
{ $eq: ["$$a3.name", oldname] },
{
name: newname,
route: { $concat: ["$name", "/", "$$a2.name", "/", newname] }
},
{}
]
}
]
}
}
}
},
{}
]
}
]
}
}
}
}
}]
);
}
Why separate query for each level?
You could do single query but it will update all level's data whenever you just need to update single level data or particular level's data, I know this is lengthy code and queries but i can say this is optimized version for query operation.
you can't do as you want. Because mongo does not support it. I can offer you to fetch needed item from mongo. Update him with your custom recursive function help. And do db.collection.updateOne(_id, { $set: data })
function updateRouteRecursive(item) {
// case when need to stop our recursive function
if (!item.children) {
// do update item route and return modified item
return item;
}
// case what happen when we have children on each children array
}
I have the two models:
Item.js
const mongoose = require('mongoose');
const itemSchema = new mongoose.Schema({
name: String,
stores: [{ type: mongoose.Schema.Types.ObjectId, ref: 'Store' }]
});
const Item = mongoose.model('Item', itemSchema);
module.exports = Item;
Store.js
const mongoose = require('mongoose');
const storeSchema = new mongoose.Schema({
name: String,
items: [{ type: mongoose.Schema.Types.ObjectId, ref: 'Item' }]
});
const Store = mongoose.model('Store', storeSchema);
module.exports = Store;
And a seed.js file:
const faker = require('faker');
const Store = require('./models/Store');
const Item = require('./models/Item');
console.log('Seeding..');
let item = new Item({
name: faker.name.findName() + " Item"
});
item.save((err) => {
if (err) return;
let store = new Store({
name: faker.name.findName() + " Store"
});
store.items.push(item);
store.save((err) => {
if (err) return;
})
});
The store is saved with the items array containing 1 item. The item though, doesn't have stores. What am I missing? How to automatically update the many-to-many relationships in MongoDB/Mongoose? I was used to Rails and everything was done automatically.
The problem you presently have is that you saved the reference in one model but you did not save it in the other. There is no "automatic referential integrity" in MongoDB, and such concept of "relations" are really a "manual" affair, and in fact the case with .populate() is actually a whole bunch of additional queries in order to retrieve the referenced information. No "magic" here.
Correct handling of "many to many" comes down to three options:
Listing 1 - Keep arrays on Both documents
Following your current design, the parts you are missing is storing the referenced on "both" the related items. For a listing to demonstrate:
const { Schema } = mongoose = require('mongoose');
mongoose.Promise = global.Promise;
mongoose.set('debug',true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);
const uri = 'mongodb://localhost:27017/manydemo',
options = { useNewUrlParser: true };
const itemSchema = new Schema({
name: String,
stores: [{ type: Schema.Types.ObjectId, ref: 'Store' }]
});
const storeSchema = new Schema({
name: String,
items: [{ type: Schema.Types.ObjectId, ref: 'Item' }]
});
const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);
const log = data => console.log(JSON.stringify(data,undefined,2))
(async function() {
try {
const conn = await mongoose.connect(uri,options);
// Clean data
await Promise.all(
Object.entries(conn.models).map(([k,m]) => m.deleteMany() )
);
// Create some instances
let [toothpaste,brush] = ['toothpaste','brush'].map(
name => new Item({ name })
);
let [billsStore,tedsStore] = ['Bills','Teds'].map(
name => new Store({ name })
);
// Add items to stores
[billsStore,tedsStore].forEach( store => {
store.items.push(toothpaste); // add toothpaste to store
toothpaste.stores.push(store); // add store to toothpaste
});
// Brush is only in billsStore
billsStore.items.push(brush);
brush.stores.push(billsStore);
// Save everything
await Promise.all(
[toothpaste,brush,billsStore,tedsStore].map( m => m.save() )
);
// Show stores
let stores = await Store.find().populate('items','-stores');
log(stores);
// Show items
let items = await Item.find().populate('stores','-items');
log(items);
} catch(e) {
console.error(e);
} finally {
mongoose.disconnect();
}
})();
This creates the "items" collection:
{
"_id" : ObjectId("59ab96d9c079220dd8eec428"),
"name" : "toothpaste",
"stores" : [
ObjectId("59ab96d9c079220dd8eec42a"),
ObjectId("59ab96d9c079220dd8eec42b")
],
"__v" : 0
}
{
"_id" : ObjectId("59ab96d9c079220dd8eec429"),
"name" : "brush",
"stores" : [
ObjectId("59ab96d9c079220dd8eec42a")
],
"__v" : 0
}
And the "stores" collection:
{
"_id" : ObjectId("59ab96d9c079220dd8eec42a"),
"name" : "Bills",
"items" : [
ObjectId("59ab96d9c079220dd8eec428"),
ObjectId("59ab96d9c079220dd8eec429")
],
"__v" : 0
}
{
"_id" : ObjectId("59ab96d9c079220dd8eec42b"),
"name" : "Teds",
"items" : [
ObjectId("59ab96d9c079220dd8eec428")
],
"__v" : 0
}
And produces overall output such as:
Mongoose: items.deleteMany({}, {})
Mongoose: stores.deleteMany({}, {})
Mongoose: items.insertOne({ name: 'toothpaste', _id: ObjectId("59ab96d9c079220dd8eec428"), stores: [ ObjectId("59ab96d9c079220dd8eec42a"), ObjectId("59ab96d9c079220dd8eec42b") ], __v: 0 })
Mongoose: items.insertOne({ name: 'brush', _id: ObjectId("59ab96d9c079220dd8eec429"), stores: [ ObjectId("59ab96d9c079220dd8eec42a") ], __v: 0 })
Mongoose: stores.insertOne({ name: 'Bills', _id: ObjectId("59ab96d9c079220dd8eec42a"), items: [ ObjectId("59ab96d9c079220dd8eec428"), ObjectId("59ab96d9c079220dd8eec429") ], __v: 0 })
Mongoose: stores.insertOne({ name: 'Teds', _id: ObjectId("59ab96d9c079220dd8eec42b"), items: [ ObjectId("59ab96d9c079220dd8eec428") ], __v: 0 })
Mongoose: stores.find({}, { fields: {} })
Mongoose: items.find({ _id: { '$in': [ ObjectId("59ab96d9c079220dd8eec428"), ObjectId("59ab96d9c079220dd8eec429") ] } }, { fields: { stores: 0 } })
[
{
"_id": "59ab96d9c079220dd8eec42a",
"name": "Bills",
"__v": 0,
"items": [
{
"_id": "59ab96d9c079220dd8eec428",
"name": "toothpaste",
"__v": 0
},
{
"_id": "59ab96d9c079220dd8eec429",
"name": "brush",
"__v": 0
}
]
},
{
"_id": "59ab96d9c079220dd8eec42b",
"name": "Teds",
"__v": 0,
"items": [
{
"_id": "59ab96d9c079220dd8eec428",
"name": "toothpaste",
"__v": 0
}
]
}
]
Mongoose: items.find({}, { fields: {} })
Mongoose: stores.find({ _id: { '$in': [ ObjectId("59ab96d9c079220dd8eec42a"), ObjectId("59ab96d9c079220dd8eec42b") ] } }, { fields: { items: 0 } })
[
{
"_id": "59ab96d9c079220dd8eec428",
"name": "toothpaste",
"__v": 0,
"stores": [
{
"_id": "59ab96d9c079220dd8eec42a",
"name": "Bills",
"__v": 0
},
{
"_id": "59ab96d9c079220dd8eec42b",
"name": "Teds",
"__v": 0
}
]
},
{
"_id": "59ab96d9c079220dd8eec429",
"name": "brush",
"__v": 0,
"stores": [
{
"_id": "59ab96d9c079220dd8eec42a",
"name": "Bills",
"__v": 0
}
]
}
]
The key points being that you actually add the reference data to each document in each collection where a relationship exists. The "arrays" present are used here to store those references and "lookup" the results from the related collection and replace them with the object data that was stored there.
Pay attention to parts like:
// Add items to stores
[billsStore,tedsStore].forEach( store => {
store.items.push(toothpaste); // add toothpaste to store
toothpaste.stores.push(store); // add store to toothpaste
});
Because that means not only are we adding the toothpaste to the "items" array in each store, but we are also adding each "store" to the "stores" array of the toothpaste item. This is done so the relationships can work being queried from either direction. If you only wanted "items from stores" and never "stores from items", then you would not need to store the relation data on the "item" entries at all.
Listing 2 - Use Virtuals and an Intermediary Collection
This is essentially the classic "many to many" relation. Where instead of directly defining relationships between the two collections, there is another collection ( table ) that stores the details about which item is related to which store.
As a full listing:
const { Schema } = mongoose = require('mongoose');
mongoose.Promise = global.Promise;
mongoose.set('debug',true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);
const uri = 'mongodb://localhost:27017/manydemo',
options = { useNewUrlParser: true };
const itemSchema = new Schema({
name: String,
},{
toJSON: { virtuals: true }
});
itemSchema.virtual('stores', {
ref: 'StoreItem',
localField: '_id',
foreignField: 'itemId'
});
const storeSchema = new Schema({
name: String,
},{
toJSON: { virtuals: true }
});
storeSchema.virtual('items', {
ref: 'StoreItem',
localField: '_id',
foreignField: 'storeId'
});
const storeItemSchema = new Schema({
storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});
const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);
const StoreItem = mongoose.model('StoreItem', storeItemSchema);
const log = data => console.log(JSON.stringify(data,undefined,2));
(async function() {
try {
const conn = await mongoose.connect(uri,options);
// Clean data
await Promise.all(
Object.entries(conn.models).map(([k,m]) => m.deleteMany() )
);
// Create some instances
let [toothpaste,brush] = await Item.insertMany(
['toothpaste','brush'].map( name => ({ name }) )
);
let [billsStore,tedsStore] = await Store.insertMany(
['Bills','Teds'].map( name => ({ name }) )
);
// Add toothpaste to both stores
for( let store of [billsStore,tedsStore] ) {
await StoreItem.update(
{ storeId: store._id, itemId: toothpaste._id },
{ },
{ 'upsert': true }
);
}
// Add brush to billsStore
await StoreItem.update(
{ storeId: billsStore._id, itemId: brush._id },
{},
{ 'upsert': true }
);
// Show stores
let stores = await Store.find().populate({
path: 'items',
populate: { path: 'itemId' }
});
log(stores);
// Show Items
let items = await Item.find().populate({
path: 'stores',
populate: { path: 'storeId' }
});
log(items);
} catch(e) {
console.error(e);
} finally {
mongoose.disconnect();
}
})();
The relations are now in their own collection, so the data now appears differently, for "items":
{
"_id" : ObjectId("59ab996166d5cc0e0d164d74"),
"__v" : 0,
"name" : "toothpaste"
}
{
"_id" : ObjectId("59ab996166d5cc0e0d164d75"),
"__v" : 0,
"name" : "brush"
}
And "stores":
{
"_id" : ObjectId("59ab996166d5cc0e0d164d76"),
"__v" : 0,
"name" : "Bills"
}
{
"_id" : ObjectId("59ab996166d5cc0e0d164d77"),
"__v" : 0,
"name" : "Teds"
}
And now for "storeitems" which maps the relations:
{
"_id" : ObjectId("59ab996179e41cc54405b72b"),
"itemId" : ObjectId("59ab996166d5cc0e0d164d74"),
"storeId" : ObjectId("59ab996166d5cc0e0d164d76"),
"__v" : 0
}
{
"_id" : ObjectId("59ab996179e41cc54405b72d"),
"itemId" : ObjectId("59ab996166d5cc0e0d164d74"),
"storeId" : ObjectId("59ab996166d5cc0e0d164d77"),
"__v" : 0
}
{
"_id" : ObjectId("59ab996179e41cc54405b72f"),
"itemId" : ObjectId("59ab996166d5cc0e0d164d75"),
"storeId" : ObjectId("59ab996166d5cc0e0d164d76"),
"__v" : 0
}
With full output like:
Mongoose: items.deleteMany({}, {})
Mongoose: stores.deleteMany({}, {})
Mongoose: storeitems.deleteMany({}, {})
Mongoose: items.insertMany([ { __v: 0, name: 'toothpaste', _id: 59ab996166d5cc0e0d164d74 }, { __v: 0, name: 'brush', _id: 59ab996166d5cc0e0d164d75 } ])
Mongoose: stores.insertMany([ { __v: 0, name: 'Bills', _id: 59ab996166d5cc0e0d164d76 }, { __v: 0, name: 'Teds', _id: 59ab996166d5cc0e0d164d77 } ])
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d74"), storeId: ObjectId("59ab996166d5cc0e0d164d76") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d74"), storeId: ObjectId("59ab996166d5cc0e0d164d77") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d75"), storeId: ObjectId("59ab996166d5cc0e0d164d76") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: stores.find({}, { fields: {} })
Mongoose: storeitems.find({ storeId: { '$in': [ ObjectId("59ab996166d5cc0e0d164d76"), ObjectId("59ab996166d5cc0e0d164d77") ] } }, { fields: {} })
Mongoose: items.find({ _id: { '$in': [ ObjectId("59ab996166d5cc0e0d164d74"), ObjectId("59ab996166d5cc0e0d164d75") ] } }, { fields: {} })
[
{
"_id": "59ab996166d5cc0e0d164d76",
"__v": 0,
"name": "Bills",
"items": [
{
"_id": "59ab996179e41cc54405b72b",
"itemId": {
"_id": "59ab996166d5cc0e0d164d74",
"__v": 0,
"name": "toothpaste",
"stores": null,
"id": "59ab996166d5cc0e0d164d74"
},
"storeId": "59ab996166d5cc0e0d164d76",
"__v": 0
},
{
"_id": "59ab996179e41cc54405b72f",
"itemId": {
"_id": "59ab996166d5cc0e0d164d75",
"__v": 0,
"name": "brush",
"stores": null,
"id": "59ab996166d5cc0e0d164d75"
},
"storeId": "59ab996166d5cc0e0d164d76",
"__v": 0
}
],
"id": "59ab996166d5cc0e0d164d76"
},
{
"_id": "59ab996166d5cc0e0d164d77",
"__v": 0,
"name": "Teds",
"items": [
{
"_id": "59ab996179e41cc54405b72d",
"itemId": {
"_id": "59ab996166d5cc0e0d164d74",
"__v": 0,
"name": "toothpaste",
"stores": null,
"id": "59ab996166d5cc0e0d164d74"
},
"storeId": "59ab996166d5cc0e0d164d77",
"__v": 0
}
],
"id": "59ab996166d5cc0e0d164d77"
}
]
Mongoose: items.find({}, { fields: {} })
Mongoose: storeitems.find({ itemId: { '$in': [ ObjectId("59ab996166d5cc0e0d164d74"), ObjectId("59ab996166d5cc0e0d164d75") ] } }, { fields: {} })
Mongoose: stores.find({ _id: { '$in': [ ObjectId("59ab996166d5cc0e0d164d76"), ObjectId("59ab996166d5cc0e0d164d77") ] } }, { fields: {} })
[
{
"_id": "59ab996166d5cc0e0d164d74",
"__v": 0,
"name": "toothpaste",
"stores": [
{
"_id": "59ab996179e41cc54405b72b",
"itemId": "59ab996166d5cc0e0d164d74",
"storeId": {
"_id": "59ab996166d5cc0e0d164d76",
"__v": 0,
"name": "Bills",
"items": null,
"id": "59ab996166d5cc0e0d164d76"
},
"__v": 0
},
{
"_id": "59ab996179e41cc54405b72d",
"itemId": "59ab996166d5cc0e0d164d74",
"storeId": {
"_id": "59ab996166d5cc0e0d164d77",
"__v": 0,
"name": "Teds",
"items": null,
"id": "59ab996166d5cc0e0d164d77"
},
"__v": 0
}
],
"id": "59ab996166d5cc0e0d164d74"
},
{
"_id": "59ab996166d5cc0e0d164d75",
"__v": 0,
"name": "brush",
"stores": [
{
"_id": "59ab996179e41cc54405b72f",
"itemId": "59ab996166d5cc0e0d164d75",
"storeId": {
"_id": "59ab996166d5cc0e0d164d76",
"__v": 0,
"name": "Bills",
"items": null,
"id": "59ab996166d5cc0e0d164d76"
},
"__v": 0
}
],
"id": "59ab996166d5cc0e0d164d75"
}
]
Since the relations are now mapped in a separate collection there are a couple of changes here. Notably we want to define a "virtual" field on the collection that no longer has a fixed array of items. So you add one as is shown:
const itemSchema = new Schema({
name: String,
},{
toJSON: { virtuals: true }
});
itemSchema.virtual('stores', {
ref: 'StoreItem',
localField: '_id',
foreignField: 'itemId'
});
You assign the virtual field with it's localField and foreignField mappings so the subsequent .populate() call knows what to use.
The intermediary collection has a fairly standard definition:
const storeItemSchema = new Schema({
storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});
And instead of "pushing" new items onto arrays, we instead add them to this new collection. A reasonable method for this is using "upserts" to create a new entry only when this combination does not exist:
// Add toothpaste to both stores
for( let store of [billsStore,tedsStore] ) {
await StoreItem.update(
{ storeId: store._id, itemId: toothpaste._id },
{ },
{ 'upsert': true }
);
}
It's a pretty simple method that merely creates a new document with the two keys supplied in the query where one was not found, or essentially tries to update the same document when matched, and with "nothing" in this case. So existing matches just end up as a "no-op", which is the desired thing to do. Alternately you could simply .insertOne() an ignore duplicate key errors. Whatever takes your fancy.
Actually querying this "related" data works a little differently again. Because there is another collection involved, we call .populate() in a way that considers it needs to "lookup" the relation on other retrieved property as well. So you have calls like this:
// Show stores
let stores = await Store.find().populate({
path: 'items',
populate: { path: 'itemId' }
});
log(stores);
Listing 3 - Use Modern Features to do it on the server
So depending on which approach taken, being using arrays or an intermediary collection to store the relation data in as an alternative to "growing arrays" within the documents, then the obvious thing you should be noting is that the .populate() calls used are actually making additional queries to MongoDB and pulling those documents over the network in separate requests.
This might appear all well and fine in small doses, however as things scale up and especially over volumes of requests, this is never a good thing. Additionally there might well be other conditions you want to apply that means you don't need to pull all the documents from the server, and would rather match data from those "relations" before you returned results.
This is why modern MongoDB releases include $lookup which actually "joins" the data on the server itself. By now you should have been looking at all the output those API calls produce as shown by mongoose.set('debug',true).
So instead of producing multiple queries, this time we make it one aggregation statement to "join" on the server, and return the results in one request:
// Show Stores
let stores = await Store.aggregate([
{ '$lookup': {
'from': StoreItem.collection.name,
'let': { 'id': '$_id' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$$id', '$storeId' ] }
}},
{ '$lookup': {
'from': Item.collection.name,
'let': { 'itemId': '$itemId' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$_id', '$$itemId' ] }
}}
],
'as': 'items'
}},
{ '$unwind': '$items' },
{ '$replaceRoot': { 'newRoot': '$items' } }
],
'as': 'items'
}}
])
log(stores);
Which whilst longer in coding, is actually far superior in efficiency even for the very trivial action right here. This of course scales considerably.
Following the same "intermediary" model as before ( and just for example, because it could be done either way ) we have a full listing:
const { Schema } = mongoose = require('mongoose');
const uri = 'mongodb://localhost:27017/manydemo',
options = { useNewUrlParser: true };
mongoose.Promise = global.Promise;
mongoose.set('debug', true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);
const itemSchema = new Schema({
name: String
}, {
toJSON: { virtuals: true }
});
itemSchema.virtual('stores', {
ref: 'StoreItem',
localField: '_id',
foreignField: 'itemId'
});
const storeSchema = new Schema({
name: String
}, {
toJSON: { virtuals: true }
});
storeSchema.virtual('items', {
ref: 'StoreItem',
localField: '_id',
foreignField: 'storeId'
});
const storeItemSchema = new Schema({
storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});
const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);
const StoreItem = mongoose.model('StoreItem', storeItemSchema);
const log = data => console.log(JSON.stringify(data, undefined, 2));
(async function() {
try {
const conn = await mongoose.connect(uri, options);
// Clean data
await Promise.all(
Object.entries(conn.models).map(([k,m]) => m.deleteMany())
);
// Create some instances
let [toothpaste, brush] = await Item.insertMany(
['toothpaste', 'brush'].map(name => ({ name }) )
);
let [billsStore, tedsStore] = await Store.insertMany(
['Bills', 'Teds'].map( name => ({ name }) )
);
// Add toothpaste to both stores
for ( let { _id: storeId } of [billsStore, tedsStore] ) {
await StoreItem.updateOne(
{ storeId, itemId: toothpaste._id },
{ },
{ 'upsert': true }
);
}
// Add brush to billsStore
await StoreItem.updateOne(
{ storeId: billsStore._id, itemId: brush._id },
{ },
{ 'upsert': true }
);
// Show Stores
let stores = await Store.aggregate([
{ '$lookup': {
'from': StoreItem.collection.name,
'let': { 'id': '$_id' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$$id', '$storeId' ] }
}},
{ '$lookup': {
'from': Item.collection.name,
'let': { 'itemId': '$itemId' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$_id', '$$itemId' ] }
}}
],
'as': 'items'
}},
{ '$unwind': '$items' },
{ '$replaceRoot': { 'newRoot': '$items' } }
],
'as': 'items'
}}
])
log(stores);
// Show Items
let items = await Item.aggregate([
{ '$lookup': {
'from': StoreItem.collection.name,
'let': { 'id': '$_id' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$$id', '$itemId' ] }
}},
{ '$lookup': {
'from': Store.collection.name,
'let': { 'storeId': '$storeId' },
'pipeline': [
{ '$match': {
'$expr': { '$eq': [ '$_id', '$$storeId' ] }
}}
],
'as': 'stores',
}},
{ '$unwind': '$stores' },
{ '$replaceRoot': { 'newRoot': '$stores' } }
],
'as': 'stores'
}}
]);
log(items);
} catch(e) {
console.error(e);
} finally {
mongoose.disconnect();
}
})()
And the output:
Mongoose: stores.aggregate([ { '$lookup': { from: 'storeitems', let: { id: '$_id' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$$id', '$storeId' ] } } }, { '$lookup': { from: 'items', let: { itemId: '$itemId' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$_id', '$$itemId' ] } } } ], as: 'items' } }, { '$unwind': '$items' }, { '$replaceRoot': { newRoot: '$items' } } ], as: 'items' } } ], {})
[
{
"_id": "5ca7210717dadc69652b37da",
"name": "Bills",
"__v": 0,
"items": [
{
"_id": "5ca7210717dadc69652b37d8",
"name": "toothpaste",
"__v": 0
},
{
"_id": "5ca7210717dadc69652b37d9",
"name": "brush",
"__v": 0
}
]
},
{
"_id": "5ca7210717dadc69652b37db",
"name": "Teds",
"__v": 0,
"items": [
{
"_id": "5ca7210717dadc69652b37d8",
"name": "toothpaste",
"__v": 0
}
]
}
]
Mongoose: items.aggregate([ { '$lookup': { from: 'storeitems', let: { id: '$_id' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$$id', '$itemId' ] } } }, { '$lookup': { from: 'stores', let: { storeId: '$storeId' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$_id', '$$storeId' ] } } } ], as: 'stores' } }, { '$unwind': '$stores' }, { '$replaceRoot': { newRoot: '$stores' } } ], as: 'stores' } } ], {})
[
{
"_id": "5ca7210717dadc69652b37d8",
"name": "toothpaste",
"__v": 0,
"stores": [
{
"_id": "5ca7210717dadc69652b37da",
"name": "Bills",
"__v": 0
},
{
"_id": "5ca7210717dadc69652b37db",
"name": "Teds",
"__v": 0
}
]
},
{
"_id": "5ca7210717dadc69652b37d9",
"name": "brush",
"__v": 0,
"stores": [
{
"_id": "5ca7210717dadc69652b37da",
"name": "Bills",
"__v": 0
}
]
}
]
What should be obvious is the significant reduction in the queries issued on the end to return the "joined" form of the data. This means lower latency and more responsive applications as a result of removing all the network overhead.
Final Notes
Those a are generally your approaches to dealing with "many to many" relations, which essentially comes down to either:
Keeping arrays in each document on either side holding the references to the related items.
Storing an intermediary collection and using that as a lookup reference to retrieving the other data.
In all cases it is up to you to actually store those references if you expect things to work on "both directions". Of course $lookup and even "virtuals" where that applies means that you don't always need to store on every source since you could then "reference" in just one place and use that information by applying those methods.
The other case is of course "embedding", which is an entirely different game and what document oriented databases such as MongoDB are really all about. Therefore instead of "fetching from another collection" the concept is of course to "embed" the data.
This means not just the ObjectId values that point to the other items, but actually storing the full data within arrays in each document. There is of course an issue of "size" and of course issues with updating data in multiple places. This is generally the trade off for there being a single request and a simple request that does not need to go and find data in other collections because it's "already there".
There is plenty of material around on the subject of referencing vs embedding. Once such summary source is Mongoose populate vs object nesting or even the very general MongoDB relationships: embed or reference? and many many others.
You should spend some time thinking about the concepts and how this applies to your application in general. And note that you are not actually using an RDBMS here, so you might as well use the correct features that you are meant to exploit, rather than simply making one act like the other.
You first should consider the usage of data in your application before modeling the database.
I don't have the detailed requirements of your application. But why do you have to keep 2 references in 2 schemas? Why not just keep 1 reference from Store to Item (which means 1 store has many items), and then if you want execute a query to find which stores does a item belong to, there is also away to do it by querying Store collection.
In addition, there is nothing called "many-to-many" in MongoDB. It depends on how the data is being used that you must figure out the efficient way to form the relationship between collections, as well as to structure your database.
Anyway, if you still want to use your current schemas, you can first create the item, then create the store and push the created item's id in to items array, then execute a update to the item with created store's id.