WebGL Alpha blending between scene elements and background - javascript

I'm trying to figure out alpha blending in WebGL and almost there but need some insight.
I've read this question WebGL: How to correctly blend alpha channel png and a few articles on the topic like this one David Guan: Alpha Blending and WebGL which talk about the blend modes, premultiplying alpha and fragment shaders but can't quite figure this out.
Here's what I've got so far:
The squares blend onto the background but not onto each other.
Also the top edge of the red box has a dark border.
Anyone have any ideas?
function drawHtml5() {
var html5 = document.getElementById("html5Canvas").getContext("2d");
html5.fillStyle = "rgba(255,0,0,0.5)";
html5.fillRect(50,20,200,75);
html5.fillStyle = "rgba(0,255,0,0.5)";
html5.fillRect(100,50,175,75);
html5.fillStyle = "rgba(0,0,255,0.5)";
html5.fillRect(30,75,175,70);
}
function drawWebGL() {
var gl = document.getElementById("canvas").getContext("webgl", {
premultipliedAlpha: false,
});
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
var vertices = [
-0.5,0.5,0.0,
-0.5,-0.5,0.0,
0.5,-0.5,0.0,
0.5,0.5,0.0
];
indices = [3,2,1,3,1,0];
// Create an empty buffer object to store vertex buffer
var vertex_buffer = gl.createBuffer();
// Bind appropriate array buffer to it
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
// Pass the vertex data to the buffer
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
// Unbind the buffer
gl.bindBuffer(gl.ARRAY_BUFFER, null);
// Create an empty buffer object to store Index buffer
var Index_Buffer = gl.createBuffer();
// Bind appropriate array buffer to it
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, Index_Buffer);
// Pass the vertex data to the buffer
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), gl.STATIC_DRAW);
// Unbind the buffer
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
/*====================== Shaders =======================*/
// Vertex shader source code
var vertCode =
'attribute vec3 coordinates;' +
'uniform vec4 translation;'+
'void main(void) {' +
' gl_Position = vec4(coordinates, 1) + translation;' +
'}';
// Create a vertex shader object
var vertShader = gl.createShader(gl.VERTEX_SHADER);
// Attach vertex shader source code
gl.shaderSource(vertShader, vertCode);
// Compile the vertex shader
gl.compileShader(vertShader);
// Fragment shader source code
var fragCode =
'precision mediump float;' +
'uniform vec4 u_fragColor;' +
'void main(void) {' +
' gl_FragColor = u_fragColor;' +
//' gl_FragColor.rgb *= u_fragColor.a;' +
'}';
// Create fragment shader object
var fragShader = gl.createShader(gl.FRAGMENT_SHADER);
// Attach fragment shader source code
gl.shaderSource(fragShader, fragCode);
// Compile the fragmentt shader
gl.compileShader(fragShader);
// Create a shader program object to
// store the combined shader program
var shaderProgram = gl.createProgram();
// Attach a vertex shader
gl.attachShader(shaderProgram, vertShader);
// Attach a fragment shader
gl.attachShader(shaderProgram, fragShader);
// Link both the programs
gl.linkProgram(shaderProgram);
// Use the combined shader program object
gl.useProgram(shaderProgram);
/* ======= Associating shaders to buffer objects =======*/
// Bind vertex buffer object
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
// Bind index buffer object
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, Index_Buffer);
// Get the attribute location
var coord = gl.getAttribLocation(shaderProgram, "coordinates");
// Point an attribute to the currently bound VBO
gl.vertexAttribPointer(coord, 3, gl.FLOAT, false, 0, 0);
// Enable the attribute
gl.enableVertexAttribArray(coord);
/*============= Drawing the Quad ================*/
// Clear the canvas
gl.clearColor(0.0, 0.0, 0.0, 0.0);
// Enable the depth test
gl.enable(gl.DEPTH_TEST);
// Clear the color buffer bit
gl.clear(gl.COLOR_BUFFER_BIT);
// Set the view port
gl.viewport(0,0,canvas.width,canvas.height);
// Draw red box
//
var u_FragColor = gl.getUniformLocation(shaderProgram, 'u_fragColor');
gl.uniform4f(u_FragColor, 1,0,0,0.5);
var translation = gl.getUniformLocation(shaderProgram, 'translation');
gl.uniform4f(translation, 0, 0, 0, 0);
gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT,0);
// Draw green box
//
var u_FragColor = gl.getUniformLocation(shaderProgram, 'u_fragColor');
gl.uniform4f(u_FragColor, 0,1,0,0.5);
var translation = gl.getUniformLocation(shaderProgram, 'translation');
gl.uniform4f(translation, 0.2, -0.2, 0, 0);
gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT,0);
// Draw Blue box
//
var u_FragColor = gl.getUniformLocation(shaderProgram, 'u_fragColor');
gl.uniform4f(u_FragColor, 0,0,1,0.5);
var translation = gl.getUniformLocation(shaderProgram, 'translation');
gl.uniform4f(translation, -0.2, -0.4, 0, 0);
gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT,0);
}
drawHtml5();
drawWebGL();
div {
background-color: purple;
background-image: linear-gradient(45deg, rgba(255, 255, 255, 1) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 1) 50%, rgba(255, 255, 255, 1) 75%, transparent 75%, transparent);
background-size: 50px 50px;
min-height: 600px;
padding: 50px;
}
canvas {
border: 3px solid red;
height: 300px;
width: 400px;
}
p {
color: red;
font-family: "Arial";
font-weight: "Bold";
font-size: 2em;
background: white;
}
<div>
<p>
WebGL Canvas
</p>
<canvas id="canvas"></canvas>
<p>
HTML5 Canvas (Expected output)
</p>
<canvas id="html5Canvas"></canvas>
</div>
Link to JS Fiddle
Check out the JS Fiddle below if you want a live playground
https://jsfiddle.net/scichart/wr6Lny4x/

I saw your post on LinkedIn. Posting my answer here as well for awareness.
Heres a link to a jsfiddle containing all the changes: https://jsfiddle.net/uom3ckqy/1/
The actual alpha blending is disabled in the fragment shader on line 78. Try uncommenting it, so that the fragment shader now is:
// Fragment shader source code
var fragCode =
'precision mediump float;' +
'uniform vec4 u_fragColor;' +
'void main(void) {' +
' gl_FragColor = u_fragColor;' +
' gl_FragColor.rgb *= u_fragColor.a;' +
'}';
You can now enable the premultipliedAlpha argument, by setting it to true, leaving the gl variable as:
var gl = document.getElementById("canvas").getContext("webgl", {
premultipliedAlpha: true,
});
I tried it with your jsfiddle, and it now looks like this:
I also noticed that the drawn quads by WebGL are a bit blurry. I am no expert on the field, but it seems like you need to set the dimensions of the canvas both in the HTML element's attributes and in either CSS or JS. These answers go into more detail: WebGL: Everything is blurry despite using same code and Canvas width and height in HTML5
I changed the canvas to include the width and height attributes. Setting these to be the same as in the CSS, The canvas containing the WebGL elements is now:
<canvas id="canvas" height='300' width='400'></canvas>
The canvas now looks as expected:

Related

WebGL is not rendering 3d objects properly

I have a generator of 3d objects in a canvas context.
The rendering is carried out with the painter's algorithm. However, I need a more accurate approach for my project.
Therefore, I have implemented a WebGL renderer. The idea is to transform the objects generated in the canvas context to the WebGL context ( I have two overlayed canvases for this purpose) in order to render them accurately with regards to the HSA (hidden surface algorithm) problem.
I have a function that transforms the canvas coordinates to clip coordinates, and that sets up the different elements and peculiarities required by WebGL, basically, the function prepares the 3d objects to be rendered by WebGL.
As I also need the segments of the shapes to be rendered, my approach consists in creating a buffer, in which all the coordinates of all the objects are stored, together with the coordinates of the segments of these objects, which will be represented and drawn as thin 3d squares (that is, each line will be formed by 2 thin coupled-up triangles, whose vertices and positions will be determined beforehand in canvas coordinates).
So far I am only testing and have coded the rendering of the shapes without lines. The problem is, it is not working properly. Triangles are drawn wrongly, with points and positions that either do not exist in the buffer or are mistaken.
Here is what should be drawn: (this cube is rendered in the canvas with the painter's algorithm)
Here is the colored silhouette that is drawn, however:
If only drawing the face 0 with LINE_LOOP
soon things get pretty messed up, face 0 + face 1 (face 1 is obviously being mistakenly drawn)
3 faces
Things get worse with more complicated objects (notice that this one is not perfectly rendered either)
I do not really know what is happening. My knowledge of WebGL and of 3d graphics, in general, is pretty limited, not to say inexistent. I do not have studies in computer science or any IT-related domain either. I just need a function to render my javascript 3d objects properly for a personal project. Here is the code that I am using:
function webglPrepare(escena){ //Takes canvas 3d objects as inputs, and outputs the arrays requiered by webgl; vertices, indices, and colors
var zprep=2000;
var nbVertices; var FacesHSA=[]; var cont=0; var zmean=[]; var temp=[]; var vertices=[]; var cont2=0; var indices=[]; var sumer=0; var controlador=0;
var colors=[]; var cont3=0; var prueba=0; //These variables are irrelevant
object_for: for(var i=0; i<escena.length; i++){ //this is irrelevant
face_for: for(var a=0; a<escena[i].arrayObjetos.length; a++){ //Just looping over all the objects
check_loop: for(var ff=0; ff<escena[i].arrayObjetos[a].faces.length; ff++){ //for each face of the object
if(escena[i].arrayObjetos[a].faces[ff].vertices.length==3){ //If the face has 3 vertices, then
indices[cont2]=sumer; cont2=cont2+1; sumer=sumer+1; //We setup the indices array, which will store the indices to form the triangles, needed by webgl
indices[cont2]=sumer; cont2=cont2+1; sumer=sumer+1;
indices[cont2]=sumer; cont2=cont2+1; sumer=sumer+1;
}
else if(escena[i].arrayObjetos[a].faces[ff].vertices.length==4){ //The same, but if the face has 4 vertices. I do not have faces longer than that
indices[cont2]=sumer; cont2=cont2+1; sumer=sumer+1;
indices[cont2]=sumer; cont2=cont2+1; sumer=sumer+1;
indices[cont2]=sumer; cont2=cont2+1;
indices[cont2]=indices[cont2-3]; cont2=cont2+1;
indices[cont2]=indices[cont2-2]; cont2=cont2+1; sumer=sumer+1;
indices[cont2]=sumer; sumer=sumer+1; cont2=cont2+1;
}
for (var j = 0; j < (nbVertices = escena[i].arrayObjetos[a].faces[ff].vertices.length) ; j++) { // For each vertex of the face.
vertices[cont] = escena[i].arrayObjetos[a].vertices[j].x/ gl.canvas.width * 2 - 1; //The x coordinate is transformed to clip coordinates
cont=cont+1;
vertices[cont] = escena[i].arrayObjetos[a].faces[ff].vertices[j].y/ gl.canvas.height * -2 + 1; //Same with the y coordinate
cont=cont+1;
vertices[cont] = escena[i].arrayObjetos[a].faces[ff].vertices[j].z; //Same with the Z. Zprep is an arbitrary Zmax value, used to
//Used to carry out the transformation
if(vertices[cont]>=0){ if(vertices[cont]>zprep){alert("error en Z, es mayor");} vertices[cont]=vertices[cont]/zprep; }
else if(vertices[cont]<=0){ if(vertices[cont]>zprep){alert("error en Z, es menor");} vertices[cont]= -(vertices[cont]/zprep); }
//Supuestamente el z- es el mas cercano y el + el mas
cont=cont+1; //The colours are also prepared
//cont=cont+3;
colors[cont3]=0;
colors[cont3+1]=0;
colors[cont3+2]=0;
cont3=cont3+3;
}
}
}}
webgl2(vertices, indices, colors); //Once everything is ready, we call the WebGL renderer
}
The webgl2 function (which does the rendering)
function webgl2(vertices, indices, colors){
// Create and store data into vertex buffer
var vertex_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
// Create and store data into color buffer
var color_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
// Create and store data into index buffer
var index_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), gl.STATIC_DRAW);
/*=================== SHADERS =================== */
var vertCode = 'attribute vec3 position;'+
'uniform mat4 Pmatrix;'+
'uniform mat4 Vmatrix;'+
'uniform mat4 Mmatrix;'+
'attribute vec3 color;'+//the color of the point
'varying vec3 vColor;'+
'void main(void) { '+//pre-built function
'gl_Position = Pmatrix*Vmatrix*Mmatrix*vec4(position, 1.);'+
'vColor = color;'+
'}';
var fragCode = 'precision mediump float;'+
'varying vec3 vColor;'+
'void main(void) {'+
'gl_FragColor = vec4(vColor, 1.);'+
'}';
var vertShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertShader, vertCode);
gl.compileShader(vertShader);
var fragShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragShader, fragCode);
gl.compileShader(fragShader);
var shaderprogram = gl.createProgram();
gl.attachShader(shaderprogram, vertShader);
gl.attachShader(shaderprogram, fragShader);
gl.linkProgram(shaderprogram);
/*======== Associating attributes to vertex shader =====*/
var _Pmatrix = gl.getUniformLocation(shaderprogram, "Pmatrix");
var _Vmatrix = gl.getUniformLocation(shaderprogram, "Vmatrix");
var _Mmatrix = gl.getUniformLocation(shaderprogram, "Mmatrix");
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
var _position = gl.getAttribLocation(shaderprogram, "position");
gl.vertexAttribPointer(_position, 3, gl.FLOAT, false,0,0);
gl.enableVertexAttribArray(_position);
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
var _color = gl.getAttribLocation(shaderprogram, "color");
gl.vertexAttribPointer(_color, 3, gl.FLOAT, false,0,0) ;
gl.enableVertexAttribArray(_color);
gl.useProgram(shaderprogram);
var proj_matrix = get_projection(40, canvas.width/canvas.height, 1, 100); //The parameters inserted here are not used.
// Right now, get_projection returns an identity matrix
var mo_matrix = [ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 ];
var view_matrix = [ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 ];
gl.enable(gl.DEPTH_TEST);
// gl.depthFunc(gl.LEQUAL);
gl.clearColor(0.5, 0.5, 0.5, 0.9);
// gl.clearDepth(1.0);
gl.viewport(0.0, 0.0, canvas.width, canvas.height);
// gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.uniformMatrix4fv(_Pmatrix, false, proj_matrix);
gl.uniformMatrix4fv(_Vmatrix, false, view_matrix);
gl.uniformMatrix4fv(_Mmatrix, false, mo_matrix);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
// gl.drawElements(gl.LINE_LOOP, indices.length, gl.UNSIGNED_SHORT, 0);
gl.drawElements(gl.TRIANGLES, indices.length , gl.UNSIGNED_SHORT, 0);
// gl.drawArrays(gl.TRIANGLES, 0, indices.length);
// gl.drawArrays(gl.LINE_LOOP, 0, vertices.length/3);
// gl.drawArrays(gl.LINE_LOOP, 0, 56);
}
The get_projection function:
function get_projection(angle, a, zMin, zMax) {
var ang = Math.tan((angle*.5)*Math.PI/180);//angle*.5
/* return [
0.5/ang, 0 , 0, 0,
0, 0.5*a/ang, 0, 0,
0, 0, -(zMax+zMin)/(zMax-zMin), -1,
0, 0, (-2*zMax*zMin)/(zMax-zMin), 0
]; */
return [
1, 0 , 0, 0,
0, 1 , 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
}
It might probably be due to several errors instead of just 1, I just can't find any of them.

Unable to load texture in WebGl

I am able to load RGB colours but not textures. If it could be some settings problem please prompt me.
This is the screenshot of chrome://flags
The HTML code is given :
<!DOCTYPE html>
<meta charset="UTF-8">
<html>
<head>
<title>WebGL Cube with Texture</title>
<script type="x-shader/x-vertex" id="vshader">
attribute vec3 coords;
attribute vec2 texCoords;
uniform vec3 normal;
uniform mat4 modelview;
uniform mat4 projection;
uniform mat3 normalMatrix;
varying vec3 vNormal;
varying vec2 vTexCoords;
void main() {
vec4 coords = vec4(coords,1.0);
vec4 transformedVertex = modelview * coords;
vNormal = normalMatrix * normal;
vTexCoords = texCoords;
gl_Position = projection * transformedVertex;
}
</script>
<script type="x-shader/x-fragment" id="fshader">
precision mediump float;
uniform bool textured;
uniform sampler2D sampler;
varying vec3 vNormal;
varying vec2 vTexCoords;
uniform vec4 color;
void main() {
if (textured) {
vec4 color = texture2D(sampler, vTexCoords);
vec3 unitNormal = normalize(vNormal);
float multiplier = abs(unitNormal.z);
gl_FragColor = vec4( multiplier*color.r, multiplier*color.g, multiplier*color.b, color.a );
}
else {
gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0); // use basic white when texture's not there.
}
}
</script>
<script type="text/javascript" src="gl-matrix-min.js"></script>
<script type="text/javascript" src="simple-rotator.js"></script>
<script type="text/javascript">
"use strict";
var gl; // The webgl context.
var aCoords; // Location of the coords attribute variable in the shader program.
var aCoordsBuffer; // Buffer to hold coords.
var aTexCoords; // Location of the texCoords attribute variable in the shader program.
var aTexCoordsBuffer; // Buffer to hold texCoords.
var uProjection; // Location of the projection uniform matrix in the shader program.
var uModelview; // Location of the modelview unifirm matrix in the shader program.
var uNormal; // Location of the normal uniform in the shader program.
var uColor; // Location of the color uniform in the shader program, used only for axes.
var uTextured; // Location of the textured uniform in the shader program.
var uSampler; // Location of the sampler in the shader program.
var uNormalMatrix; // Location of the normalMatrix uniform matrix in the shader program.
var projection = mat4.create(); // projection matrix
var modelview = mat4.create(); // modelview matrix
var normalMatrix = mat3.create(); // matrix, derived from modelview matrix, for transforming normal vectors
var rotator; // A SimpleRotator object to enable rotation by mouse dragging.
var textureID = null; // Texture object, to be created after image has loaded.
/* Draws a colored cube, along with a set of coordinate axes.
* (Note that the use of the above drawPrimitive function is not an efficient
* way to draw with WebGL. Here, the geometry is so simple that it doesn't matter.)
*/
function draw() {
gl.clearColor(0,0,0,1);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
if (document.getElementById("persproj").checked) {
mat4.perspective(projection, Math.PI/4, 1, 2, 10);
}
else {
mat4.ortho(projection,-2.5, 2.5, -2.5, 2.5, 2, 10);
}
gl.uniformMatrix4fv(uProjection, false, projection );
var modelview = rotator.getViewMatrix();
var saveModelview = mat4.clone(modelview);
if (textureID) {
gl.uniform1i( uTextured, 1 ); // Tell shader to use texture and lighting.
gl.bindTexture(gl.TEXTURE_2D, textureID); // Which texture should be used.
gl.uniform1i(uSampler, 0); // Set sampler in shadre to use texture unit zero.
}
else {
gl.uniform1i( uTextured, 0 ); // Cube will appear in plain white.
}
drawFace(modelview) // front face of the cube
mat4.rotateY(modelview,modelview,Math.PI/2); //right face
drawFace(modelview) // front face
mat4.rotateY(modelview,modelview,Math.PI/2); //back face
drawFace(modelview) // front face
mat4.rotateY(modelview,modelview,Math.PI/2); //left face
drawFace(modelview) // front face
modelview = mat4.clone(saveModelview);
mat4.rotateX(modelview,modelview,Math.PI/2);
drawFace(modelview) // top face
mat4.rotateX(modelview,modelview,Math.PI);
drawFace(modelview) // bottom face
}
/**
* Draws the front face of the cube, subject to a modelview transform.
*/
function drawFace(modelview) {
gl.uniformMatrix4fv(uModelview, false, modelview );
mat3.normalFromMat4(normalMatrix, modelview);
gl.uniformMatrix3fv(uNormalMatrix, false, normalMatrix);
gl.uniform3f(uNormal, 0, 0, 1);
gl.drawArrays(gl.TRIANGLE_FAN, 0, 4); // front face
}
/**
* Loads data for the front face of the cube into VBOs.
*/
function createFace() {
var vertices = [ -1,-1,1, 1,-1,1, 1,1,1, -1,1,1 ];
var texCoords = [ 0,0, 2,0, 2,2, 0,2 ];
gl.enableVertexAttribArray(aCoords);
gl.bindBuffer(gl.ARRAY_BUFFER,aCoordsBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
gl.vertexAttribPointer(aCoords, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aTexCoords);
gl.bindBuffer(gl.ARRAY_BUFFER,aTexCoordsBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(texCoords), gl.STATIC_DRAW);
gl.vertexAttribPointer(aTexCoords, 2, gl.FLOAT, false, 0, 0);
}
/**
* Load an image from the URL "textures/bridk001.jpg". The image is loade
* asynchronously. When the
*/
function loadTexture() {
var img = new Image();
img.onload = function() {
var id = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D,id);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, img);
gl.generateMipmap(gl.TEXTURE_2D);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT);
textureID = id;
draw();
}
img.src = "./skin.jpg";
}
/* Creates a program for use in the WebGL context gl, and returns the
* identifier for that program. If an error occurs while compiling or
* linking the program, an exception of type String is thrown. The error
* string contains the compilation or linking error. If no error occurs,
* the program identifier is the return value of the function.
*/
function createProgram(gl, vertexShaderSource, fragmentShaderSource) {
var vsh = gl.createShader( gl.VERTEX_SHADER );
gl.shaderSource(vsh,vertexShaderSource);
gl.compileShader(vsh);
if ( ! gl.getShaderParameter(vsh, gl.COMPILE_STATUS) ) {
throw "Error in vertex shader: " + gl.getShaderInfoLog(vsh);
}
var fsh = gl.createShader( gl.FRAGMENT_SHADER );
gl.shaderSource(fsh, fragmentShaderSource);
gl.compileShader(fsh);
if ( ! gl.getShaderParameter(fsh, gl.COMPILE_STATUS) ) {
throw "Error in fragment shader: " + gl.getShaderInfoLog(fsh);
}
var prog = gl.createProgram();
gl.attachShader(prog,vsh);
gl.attachShader(prog, fsh);
gl.linkProgram(prog);
if ( ! gl.getProgramParameter( prog, gl.LINK_STATUS) ) {
throw "Link error in program: " + gl.getProgramInfoLog(prog);
}
return prog;
}
/* Gets the text content of an HTML element. This is used
* to get the shader source from the script elements that contain
* it. The parameter should be the id of the script element.
*/
function getTextContent( elementID ) {
var element = document.getElementById(elementID);
var fsource = "";
var node = element.firstChild;
var str = "";
while (node) {
if (node.nodeType == 3) // this is a text node
str += node.textContent;
node = node.nextSibling;
}
return str;
}
/**
* Initializes the WebGL program including the relevant global variables
* and the WebGL state. Creates a SimpleView3D object for viewing the
* cube and installs a mouse handler that lets the user rotate the cube.
*/
function init() {
try {
var canvas = document.getElementById("glcanvas");
gl = canvas.getContext("webgl");
if ( ! gl ) {
gl = canvas.getContext("experimental-webgl");
}
if ( ! gl ) {
throw "Could not create WebGL context.";
}
var vertexShaderSource = getTextContent("vshader");
var fragmentShaderSource = getTextContent("fshader");
var prog = createProgram(gl,vertexShaderSource,fragmentShaderSource);
gl.useProgram(prog);
aCoords = gl.getAttribLocation(prog, "coords");
aTexCoords = gl.getAttribLocation(prog, "texCoords");
uModelview = gl.getUniformLocation(prog, "modelview");
uProjection = gl.getUniformLocation(prog, "projection");
uSampler = gl.getUniformLocation(prog, "sampler");
uNormal = gl.getUniformLocation(prog, "normal");
uColor = gl.getUniformLocation(prog, "color");
uTextured = gl.getUniformLocation(prog, "textured");
uNormalMatrix = gl.getUniformLocation(prog, "normalMatrix");
aCoordsBuffer = gl.createBuffer();
aTexCoordsBuffer = gl.createBuffer();
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE); // no need to draw back faces
document.getElementById("persproj").checked = true;
rotator = new SimpleRotator(canvas,draw);
rotator.setView( [2,2,5], [0,1,0], 6 );
}
catch (e) {
document.getElementById("message").innerHTML =
"Could not initialize WebGL: " + e;
return;
}
createFace();
loadTexture();
draw();
}
</script>
</head>
<body onload="init()" style="background-color:#DDD">
<h2>A Cube With a Brick Texture</h2>
<p id=message>Drag the mouse on the canvas to rotate the view.</p>
<p>
<input type="radio" name="projectionType" id="persproj" value="perspective" onchange="draw()">
<label for="persproj">Perspective projection</label>
<input type="radio" name="projectionType" id="orthproj" value="orthogonal" onchange="draw()" style="margin-left:1cm">
<label for="orthproj">Orthogonal projection</label>
<button onclick="rotator.setView( [2,2,5], [0,1,0], 6 ); draw()" style="margin-left:1cm">Reset View</button>
</p>
<noscript><hr><h3>This page requires Javascript and a web browser that supports WebGL</h3><hr></noscript>
<div>
<canvas width=600 height=600 id="glcanvas" style="background-color:red"></canvas>
</div>
</body>
</html>
All i get as an output is
The other functions are loading fine. The file paths are correct.
The issue is you need to run a simple web server for WebGL dev. It should take you about 2 minutes to get setup
See this
Try defining the minification and magnification parameters for the texture object.
eg:
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
Use the appropriate value for min and mag filter, based on your project requirement.

How to save a value inside a fragment shader to use it later?

I want to save a calculated value from fragment shader in some variable ,so that I would be able to use it next time.
Currently, I am preparing a image using a huge algorithm and I want to save it to some vec4 and , once requested again , I want to just get that vec4 and should say
gl_FragColor = vec4(previously saved variable)
This question is related to another question here which is also asked by me , but I feel that if this question has a answer then I can easily crack the other one.
Any suggestions ?
Fragment shaders in WebGL write to 1 of 2 things. Either (1) the canvas to (2) the attachments of a framebuffer. The attachments of a framebuffer can be textures. Textures can be used as inputs to a shader. Therefore you can write to a texture and use that texture in your next draw.
Here's an example
var vs = `
attribute vec4 position;
void main() {
gl_Position = position;
}
`;
var fs = `
precision mediump float;
uniform sampler2D u_texture;
void main() {
// just grab the middle pixel(s) from the texture
// but swizzle the colors g->r, b->g, r->b
gl_FragColor = texture2D(u_texture, vec2(.5)).gbra;
}`;
var canvas = document.querySelector("canvas");
var gl = canvas.getContext("webgl");
var program = twgl.createProgramFromSources(gl, [vs, fs]);
var positionLocation = gl.getAttribLocation(program, "position");
// we don't need to look up the texture's uniform location because
// we're only using 1 texture. Since the uniforms default to 0
// it will use texture 0.
// put in a clipspace quad
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
-1, -1,
1, -1,
-1, 1,
-1, 1,
1, -1,
1, 1,
]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(positionLocation);
gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false, 0, 0);
// make 2 1x1 pixel textures and put a red pixel the first one
var tex1 = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, tex1);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 1, 1, 0, gl.RGBA,
gl.UNSIGNED_BYTE, new Uint8Array([255, 0, 0, 255]));
var tex2 = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, tex2);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 1, 1, 0, gl.RGBA,
gl.UNSIGNED_BYTE, null);
// make a framebuffer for tex1
var fb1 = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb1);
// attach tex1
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
gl.TEXTURE_2D, tex1, 0);
// check this will actually work
if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) !==
gl.FRAMEBUFFER_COMPLETE) {
alert("this combination of attachments not supported");
}
// make a framebuffer for tex2
var fb2 = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb2);
// attach tex2
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
gl.TEXTURE_2D, tex2, 0);
// check this will actually work
if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) !==
gl.FRAMEBUFFER_COMPLETE) {
alert("this combination of attachments not supported");
}
function render() {
gl.useProgram(program);
// render tex1 to the tex2
// input to fragment shader
gl.bindTexture(gl.TEXTURE_2D, tex1);
// output from fragment shader
gl.bindFramebuffer(gl.FRAMEBUFFER, fb2);
gl.viewport(0, 0, 1, 1);
gl.drawArrays(gl.TRIANGLES, 0, 6);
// render to canvas so we can see it
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
// input to fragment shader, the texture we just rendered to
gl.bindTexture(gl.TEXTURE_2D, tex2);
gl.drawArrays(gl.TRIANGLES, 0, 6);
// swap which texture we are rendering from and to
var t = tex1;
tex1 = tex2;
tex2 = t;
var f = fb1;
fb1 = fb2;
fb2 = f;
requestAnimationFrame(render);
}
requestAnimationFrame(render);
<script src="https://twgljs.org/dist/twgl-full.min.js"></script>
<canvas></canvas>
The sample above puts red in a texture. It then renders that texture by swizzling the color. Green goes to the red channel, Blue goes to the green channel, Red goes to the Blue channel.
I makes 2 textures and attaches them to 2 framebuffers.
First iteration
tex1 = red
tex2 = 0,0,0,0
render to fb2
tex2 is now blue (because red was copied to blue)
render tex2 to canvas (canvas is now green because blue is copied to green)
switch which textures we're rendering to
Second iteration
tex1 = blue (was tex2 last time)
tex2 = red (was tex1 last time)
render to fb2 (was fb1 last time)
tex2 = green (because blue is copied to green)
render tex2 to canvas (canvas is now red because green is copied to red)
switch which textures we're rendering to
Fragment shader executes per fragment(pixel).And as any other shader it cannot store values by default, as you would expect in regular programming language.
There are several ways to do what you want:
You can use imageLoad/Store ,which allows you to read and write data from shader into image.Image uses GL textures as memory storage.What is good about it is that you can store and load numeric data without losing precision when using images because texture filtering is disabled when accessing texture data via image.
Another way to store and read data in shaders is using buffers.Uniform buffers,or since GL4.3 Shader storage buffers..
SSBO allows to read and write huge amount of data.It is really up to you to decide which of those to use for storing and retrieving your data in the shaders.Some people say texture memory access is faster on some hardware.From my experience,using SSBO vs image load store,I haven't found significant difference in performance on Nvidia GPUs.
In your scenario I would probably go with Image Load/Store.Because you can use the same UV indexing into image data as you do into sampled texture.
Also,I don't really know what version of OpenGL you are using ,but to use these extensions you must use GL4.2 and GL4.3.

WebGL Texture resize unexpected output

When using textures in WebGL, sometimes I need to make them larger than they were originally. When I do that, it causes the textures to appear differently, especially on lighter backgrounds.
I have the following image (256 x 256):
When rendered in WebGL, it is slightly larger than the original image. Here is how the image appears on two different backgrounds:
As you can see, the image appears correctly on the dark background, but when on the light background, has a white outline.
My setup code:
gl.clearColor(0x22 / 0xFF, 0x22 / 0xFF, 0x22 / 0xFF, 1); // set background color
gl.enable(gl.BLEND); // enable transparency
gl.disable(gl.DEPTH_TEST); // disable depth test (causes problems with alpha if enabled)
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA); //set up blending
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); //clear the gl canvas
gl.viewport(0, 0, canvas.width, canvas.height); //set the viewport
And this is the code called every time a texture is loaded:
function handleTextureLoaded(image, texture) {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_NEAREST);
gl.generateMipmap(gl.TEXTURE_2D);
gl.bindTexture(gl.TEXTURE_2D, null);
loadCount++;
}
What is causing the outline to appear, and how do I fix it?
NOTE: When I put the original image on these same two backgrounds, this problem does not occur, even when I resize the image.
I tried disabling the alpha on the WebGL context (as told by #zfedoran):
gl = canvas.getContext('webgl', {antialias: false, alpha: false })
|| canvas.getContext('experimental-webgl', {antialias: false, alpha: false });
And a small blank border now appears around the image, like this (enlarged):
On top of the canvas's alpha as mentioned by #zfedoran how do you make the original image?
I believe the issue is as follows
Let's say you have an anti-aliased edge like this. What color is this pixel?
Assume the main color, the color of the pixels in the bottom right, was 1,0,0 (pure red). Ideally the pixel pointed to by the arrow would be (1,0,0,0.5). In other words, pure red with an alpha of 0.5. But, depending how on the image was created to generate that anti-aliased pixel it might have been blended with the purely transparent pixels next to it so it no longer pure red. Those purely transparent pixels are likely (0,0,0,0) which is transparent black.
Even if your drawing program handles this correctly, GL likely does not. When you draw an image with texture filtering on (gl.LINEAR etc) GL is going to average the pixels near each other, some of those pixels are transparent black. Blending black with red gives dark red. Hence you get a dark border.
Here you can see the issue
"use strict";
function main() {
var planeVertices = [
-1, -1,
1, -1,
-1, 1,
1, 1,
];
var texcoords = [
0, 1,
1, 1,
0, 0,
1, 0,
];
var indices = [
0, 1, 2,
2, 1, 3,
];
var canvas = document.getElementById("c");
var gl = canvas.getContext("webgl", {alpha:false});
var programs = {}
programs.normalProgram = twgl.createProgramFromScripts(
gl, ["2d-vertex-shader", "2d-fragment-shader"], ["a_position", "a_texcoord"]);
programs.preMultiplyAlphaProgram = twgl.createProgramFromScripts(
gl, ["2d-vertex-shader", "pre-2d-fragment-shader"], ["a_position", "a_texcoord"]);
var positionLoc = 0; // assigned in createProgramsFromScripts
var texcoordLoc = 1; // assigned in createProgramsFromScripts
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(
gl.ARRAY_BUFFER,
new Float32Array(planeVertices),
gl.STATIC_DRAW);
gl.enableVertexAttribArray(positionLoc);
gl.vertexAttribPointer(positionLoc, 2, gl.FLOAT, false, 0, 0);
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(
gl.ARRAY_BUFFER,
new Float32Array(texcoords),
gl.STATIC_DRAW);
gl.enableVertexAttribArray(texcoordLoc);
gl.vertexAttribPointer(texcoordLoc, 2, gl.FLOAT, false, 0, 0);
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffer);
gl.bufferData(
gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indices),
gl.STATIC_DRAW);
var img = new Image();
img.onload = createTextures;
img.src = document.getElementById("i").text;
function createTexture() {
var tex = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, tex);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, img);
gl.generateMipmap(gl.TEXTURE_2D); // assuming power-of-2
return tex;
}
var textures = {};
function createTextures() {
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false);
textures.unpremultipliedAlphaTexture = createTexture();
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);
textures.premultipliedAlphaTexture = createTexture();
document.body.appendChild(document.createElement("hr"));
insert("original image");
document.body.appendChild(img);
render();
}
function insert(text) {
var pre = document.createElement("pre");
pre.appendChild(document.createTextNode(text));
document.body.appendChild(pre);
};
function grabImage(prg, blend, texName) {
document.body.appendChild(document.createElement("hr"));
insert(
"gl.useProgram(" + prg + ")\n" +
"gl.blendFunc(gl." + blend.src + ", gl." + blend.dst + ")\n" +
"gl.bindTexture(gl.TEXTURE2D, " + texName + ")");
var img = new Image();
img.src = gl.canvas.toDataURL();
document.body.appendChild(img);
};
function render() {
gl.enable(gl.BLEND);
Object.keys(programs).forEach(function(p, pndx) {
gl.useProgram(programs[p]);
[
{ src: "SRC_ALPHA", dst: "ONE_MINUS_SRC_ALPHA" },
{ src: "ONE", dst: "ONE_MINUS_SRC_ALPHA" },
].forEach(function(b, bndx) {
gl.blendFunc(gl[b.src], gl[b.dst]);
Object.keys(textures).forEach(function(texName, tndx) {
gl.bindTexture(gl.TEXTURE_2D, textures[texName]);
gl.clearColor(0x3D/0xFF, 0x87/0xFF, 0xEA/0xFF, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
grabImage(p, b, texName);
});
});
});
}
}
main();
canvas {
border: 1px solid black;
display: none;
}
img {
background-color: #3D87EA;
border: 1px solid black;
width: 256px;
height: 256px;
}
<script src="https://twgljs.org/dist/3.x/twgl.min.js"></script>
<!-- vertex shader -->
<script id="2d-vertex-shader" type="x-shader/x-vertex">
attribute vec4 a_position;
attribute vec2 a_texcoord;
varying vec2 v_texcoord;
void main() {
gl_Position = a_position;
v_texcoord = a_texcoord;
}
</script>
<!-- fragment shaders -->
<script id="2d-fragment-shader" type="x-shader/x-fragment">
precision mediump float;
varying vec2 v_texcoord;
uniform sampler2D u_texture;
void main() {
gl_FragColor = texture2D(u_texture, v_texcoord);
}
</script>
<script id="pre-2d-fragment-shader" type="x-shader/x-fragment">
precision mediump float;
varying vec2 v_texcoord;
uniform sampler2D u_texture;
void main() {
vec4 textureColor = texture2D(u_texture, v_texcoord);
gl_FragColor = vec4(textureColor.rgb * textureColor.a, textureColor.a);
}
</script>
<canvas id="c" width="32" height="32"></canvas>
<script type="not-js" id="i"></script>
There's a few solutions
Make sure transparent area actually has color in.
In other words, if all the pixels in the top left of the image above are RED with 0 alpha then when the pixels get filtered they'll be blending (1,0,0,0) transparent red instead of (0,0,0,0) transparent black. Unfortunately there's no easy way to do this in most drawing programs.
There's a plugin for Photoshop that lets you do it called SuperPNG It lets you create a 4th channel for the alpha instead of using photoshop's transparency. That lets you set the alpha separate from the image.
In your case you'd end up with an image with layers like this
Now there are no bad colors to blend with.
Switch to pre-multiplied alpha
In this case before calling gl.texImage2D to upload the image call
gl.pixelStorei(UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);
before calling gl.texImage2D. That tells WebGL to multiply the colors by their alpha when the image is loaded. You then use blending with
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
Turn off filtering in GL
gl.texParameter(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameter(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
Assuming your source image doesn't have any bad colors this means GL won't making new bad colors as it filters but of course it also means if you scale or rotate the image you'll get aliasing.
Create your own mips
Most apps use gl.genereateMipmap to generate mips but you can generate them yourself offline and upload them yourself. That's not a perfect solution either but it does let you use `gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_NEAREST);
Combinations of the above
Have you tried disabling the alpha on the WebGL context?
var gl = this.canvas.getContext('webgl', {antialias: false, alpha: false })
|| this.canvas.getContext('experimental-webgl', {antialias: false, alpha: false });

2D Image Processing With WebGL

I intend to create a simple photo editor in JS. My main question is, is it possible to create filters that render in real-time? For example, adjusting brightness and saturation. All I need is a 2D image where I can apply filters using the GPU.
All the tutorials I've read are very complex and don't really explain what the API mean. Please point me in the right direction. Thanks.
I was going to write a tutorial and post it on my blog but I don't know when I'll have time to finish so here's what I have Here's a more detailed set of posts on my blog.
WebGL is actually a rasterization library. I takes in attributes (streams of data), uniforms (variables) and expects you to provide "clip space" coordinates in 2d and color data for pixels.
Here's a simple example of 2d in WebGL (some details left out)
// Get A WebGL context
var gl = canvas.getContext("experimental-webgl");
// setup GLSL program
vertexShader = createShaderFromScriptElement(gl, "2d-vertex-shader");
fragmentShader = createShaderFromScriptElement(gl, "2d-fragment-shader");
program = createProgram(gl, vertexShader, fragmentShader);
gl.useProgram(program);
// look up where the vertex data needs to go.
var positionLocation = gl.getAttribLocation(program, "a_position");
// Create a buffer and put a single clipspace rectangle in
// it (2 triangles)
var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
-1.0, -1.0,
1.0, -1.0,
-1.0, 1.0,
-1.0, 1.0,
1.0, -1.0,
1.0, 1.0]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(positionLocation);
gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false, 0, 0);
// draw
gl.drawArrays(gl.TRIANGLES, 0, 6);
Here's the 2 shaders
<script id="2d-vertex-shader" type="x-shader/x-vertex">
attribute vec2 a_position;
void main() {
gl_Position = vec4(a_position, 0, 1);
}
</script>
<script id="2d-fragment-shader" type="x-shader/x-fragment">
void main() {
gl_FragColor = vec4(0,1,0,1); // green
}
</script>
This will draw a green rectangle the entire size of the canvas.
In WebGL it's your responsibility to provide a vertex shader that provides clipspace coordinates. Clipspace coordinates always go from -1 to +1 regardless of the size of the canvas. If you want 3d it's up to you to supply shaders that convert from 3d to 2d because WebGL is only a rasterization API
In one simple example, if you want to work in pixels you could pass in a rectangle that uses pixels instead of clip space coordinates and convert to clip space in the shader
For example:
<script id="2d-vertex-shader" type="x-shader/x-vertex">
attribute vec2 a_position;
uniform vec2 u_resolution;
void main() {
// convert the rectangle from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace, 0, 1);
}
</script>
Now we can draw rectangles by changing the data we supply
// set the resolution
var resolutionLocation = gl.getUniformLocation(program, "u_resolution");
gl.uniform2f(resolutionLocation, canvas.width, canvas.height);
// setup a rectangle from 10,20 to 80,30 in pixels
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
10, 20,
80, 20,
10, 30,
10, 30,
80, 20,
80, 30]), gl.STATIC_DRAW);
You'll notice WebGL considers the bottom right corner to be 0,0. To get it to be the more traditional top right corner used for 2d graphics we just flip the y coordinate.
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
You want to manipulate images you need to pass in textures. In the same way the size of the canvas is represented by clipspace coordinates textures are are referenced by texture coordinates that go from 0 to 1.
<script id="2d-vertex-shader" type="x-shader/x-vertex">
attribute vec2 a_position;
attribute vec2 a_texCoord;
uniform vec2 u_resolution;
varying vec2 v_texCoord;
void main() {
// convert the rectangle from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace, 0, 1);
// pass the texCoord to the fragment shader
// The GPU will interpolate this value between points.
v_texCoord = a_texCoord;
}
</script>
<script id="2d-fragment-shader" type="x-shader/x-fragment">
precision float mediump;
// our texture
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
}
</script>
To draw an image requires loading the image and since that happen asynchronously we need to change our code a little. Take all the code we had and put it in a function called "render"
var image = new Image();
image.src = "http://someimage/on/our/server"; // MUST BE SAME DOMAIN!!!
image.onload = function() {
render();
}
function render() {
...
// all the code we had before except gl.draw
// look up where the vertex data needs to go.
var texCoordLocation = gl.getAttribLocation(program, "a_texCoord");
// provide texture coordinates for the rectangle.
var texCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, texCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
1.0, 1.0,
0.0, 1.0,
0.0, 0.0,
1.0, 1.0,
0.0, 0.0,
1.0, 0.0]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(texCoordLocation);
gl.vertexAttribPointer(texCoordLocation, 2, gl.FLOAT, false, 0, 0);
var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.draw(...)
If you want to do image processing you just change your shader. Example, Swap red and blue
void main() {
gl_FragColor = texture2D(u_image, v_texCoord).bgra;
}
Or blend with the pixels next to it.
uniform vec2 u_textureSize;
void main() {
vec2 onePixel = vec2(1.0, 1.0) / u_textureSize;
gl_FragColor = (texture2D(u_image, v_texCoord) +
texture2D(u_image, v_texCoord + vec2(onePixel.x, 0.0)) +
texture2D(u_image, v_texCoord + vec2(-onePixel.x, 0.0))) / 3.0;
}
And we have to pass in the size of the texture
var textureSizeLocation = gl.getUniformLocation(program, "u_textureSize");
...
gl.uniform2f(textureSizeLocation, image.width, image.height);
Etc... Click the last link below for a convolution sample.
Here are working versions with a slightly different progression
Draw Rect in Clip Space
Draw Rect in Pixels
Draw Rect with origin at top left
Draw a bunch of rects in different colors
Draw an image
Draw an image red and blue swapped
Draw an image with left and right pixels averaged
Draw an image with a 3x3 convolution
Draw an image with multiple effects
You can make a custom pixel shader for each operation you're intending to use. Just learn some GLSL and follow the "Learning WebGL" tutorials to get a grasp of basic WebGL.
You can render your image with the shader modifying the parameters you can include to control the different visual styles and then when the user clicks "ok" you can read back the pixels to store it as your current image.
Just remember to avoid cross domain images, because that will disable the reading back of pixels.
Also, check the quick reference card (PDF) for quick info on shader operations.
Just try glfx ( http://evanw.github.com/glfx.js/ )
I think it is exactly what you need.
You can use set of predefined shaders or easily add yours ;)
enjoy! It is very easy with glfx!
<script src="glfx.js"></script>
<script>
window.onload = function() {
// try to create a WebGL canvas (will fail if WebGL isn't supported)
try {
var canvas = fx.canvas();
} catch (e) {
alert(e);
return;
}
// convert the image to a texture
var image = document.getElementById('image');
var texture = canvas.texture(image);
// apply the ink filter
canvas.draw(texture).ink(0.25).update();
// replace the image with the canvas
image.parentNode.insertBefore(canvas, image);
image.parentNode.removeChild(image);
};
</script>
<img id="image" src="image.jpg">

Categories

Resources