How can I use an IIFE script in a Deno program? - javascript

We have a library of JS that currently must target ES3 because a production product uses a tool with an older JS engine, and this is non-negotiable. But I need to be able to use this library in Deno, and I can't convert it to ES modules. The library is currently using function-closure modules, ala Crockford, where every source is a single constructor function like this:
function ModuleName() {
"use strict";
...
}
and then the module is consumed with let mod=new ModuleName();.
Is there any way I can use these in deno? I don't care how, exactly -- I can load the script and eval it if necessary, but it would be nice to just use some form of import.
I've tried loading the script file and using eval and using Function, in various forms, and about every variation of import documented. I've scoured the Deno docs and tried every search I can think of. All to no avail.
Any suggestions would be appreciated.

The key was to wrap the source file with Function(return (+ ... +);)() to get a reference to the module constructor function, which can then be constructed. I'm open to better ideas, but this works for my case.
function createModule(pthORurl, ...args) {
try {
let mod = Function("return ("+Deno.readTextFileSync(pthORurl)+");")();
if(typeof(mod)!=="function") { throw Error("Loaded module is type '"+typeof(mod)+"' not type 'function'"); }
mod = new mod(...args);
if(typeof(mod)!=="object") { throw Error("Loaded module is type '"+typeof(mod)+"' not type 'object'"); }
return mod;
}
catch(err) { err.message += " (loading "+pthORurl+")"; throw err; }
}

Related

Is it possible to only convert a dart function to javascript

I am currently using the following package where the readme illustrates the following
final bool loaded = await JsIsolatedWorker().importScripts(['test.js']);
I am using the isolate worker package so my code can work on web and outside of web. I would like to generate javascript code from my dart code. I have one file with a top level function and I use
dart compile js -O0 -o test.js test.dart
which I found here
https://dart.dev/tools/dart2js
this is my dart file
void main(List<String> args) {
doComputation('');
}
String doComputation(String input) {
return 'output';
}
I can generate javascript only if I have a main function but this generates a javascript file where the doComutation is not a top level function, so I am not sure if the package can call the function. It looks like it generates an entire program instead of just generating one function.
The generated file is too long to post
So what my question comes down to is this. Is there a way to generate javascript from dart for 1 function with its dependencies included instead of having to generate the entire program? So that I can call this function from dart.
I am not an expert but I also had this problem. Here's what worked for me:
In web_worker.dart:
import 'package:js/js.dart';
main(){
allowInterop(doComputation);
}
#JS('doComputation')
String doComputation(String computationInput) {
// Replace this with your actual computation.
final String computationOutput = "output";
return computationOutput;
}
Compile it using:
$ dart compile js web_worker.dart -o webWorker.js
Manually edit webWorker.js, the JS file generated by the compiler:
Delete this line at the top of the file:
(function dartProgram() {
and the line at the bottom of the file with the corresponding closing brace:
})();
I don't understand what's going on here but I found the Javascript version of the function doComputation() defined in webWorker.js as a property of the object "A".
I defined a wrapper at the top of the file like this:
function doComputation(computationInput) {
return A.doComputation(computationInput)
}
and then I was able to use the file with JsIsolatedWorker like this:
final bool loaded =
await JsIsolatedWorker().importScripts(['../web/webWorker.js']);
if (loaded) {
final String computationResult = await JsIsolatedWorker()
.run(functionName: 'doComputation', arguments: computationInput);
} else {
debugPrint('Web worker is not available');
}
If someone who understands this better can elaborate or improve on this solution, that would be great. I don't really have any idea what I'm doing. I'm just posting this to hopefully help other people save time in the future by sharing what worked for me.
You can use js package to call JavaScript APIs from Dart code, or vice versa. To make a Dart function callable from JavaScript by name, use a setter annotated with #JS().
#JS()
library callable_function;
import 'package:js/js.dart';
/// Allows assigning a function to be callable from `window.functionName()`
#JS('functionName')
external set _functionName(void Function() f);
/// Allows calling the assigned function from Dart as well.
#JS()
external void functionName();
void _someDartFunction() {
print('Hello from Dart!');
}
void main() {
_functionName = allowInterop(_someDartFunction);
}
JavaScript code may now call functionName() or window.functionName().
Check google chartjs https://github.com/google/chartjs.dart/tree/master/example for a complete example.
From dart2js "Helping dart2js generate better code" there is a tip :
Don’t worry about the size of your app’s included libraries. The dart2js compiler performs tree shaking to omit unused classes, functions, methods, and so on. Just import the libraries you need, and let dart2js get rid of what you don’t need.
Related to this post https://stackoverflow.com/a/21124252/3733730.
You can do this instead by using the package dart2js
one make a program for your main.dart dart2js where the function or command you wanted to make is there, then create a separate dart file what function you wanted to call, and it will fix your problem, it is a separate file but will only execute one function that you needed to do so and that is the separate file

How to import JavaScript functions with wasm-bindgen with --target no-modules?

I am trying to work out how to call a JavaScript function using Rust and wasm-bindgen. Due to lack of browser support, I cannot use wasm-bindgen with ES6 modules together with a Web Worker.
As far as I can tell, declaring that a JavaScript function exists for me to call on the Rust side is straightforward
#[wasm_bindgen]
extern {
fn logProgress(percent: f64);
}
I have no idea where to define the JavaScript implementation however. If I try to just call a Rust function from JavaScript that calls the undefined logProgress then I get a runtime error: Error: logProgress is not defined
I can see from the wasm-bindgen docs that if I was using wasm-bindgen with ES6 modules then I could change the rust code to
#[wasm_bindgen(module = "/progress.js")]
extern {
fn logProgress(percent: f64);
}
and declare the JavaScript function in progress.js
export function logProgress(percent) {
console.log(percent)
// actual implementation would not just log
}
Since I am instead importing my Rust APIs via the wasm_bindgen global, I presume I should be able to define the implementation somewhere around the same part in my Web Worker, but I have searched through a lot of docs and can't find anything on how to do this.
importScripts('foo_wasm.js')
wasm_bindgen('foo_wasm_bg.wasm').then(fooWasmModule => {
memory = fooWasmModule.memory
const { Foo, Bar, Baz, foobar } = wasm_bindgen;
// JS has 'imported' the Rust structs and functions
// How to 'export' the JS functions to Rust?
}

How to migrate legacy JS app to modules

I have a large (~15k LoC) JS app (namely a NetSuite app) written in old-style all-global way. App consists of 26 files and dependencies between them are totally unclear.
The goal is to gracefully refactor the app to smaller modules. By gracefully I mean not breaking\locking the app for long time, but doing refactoring in smaller chunks, while after completing each chunk app remains usable.
An idea I have here is to concat all the JS files we have now into single-file bundle. After that some code could be extracted into modules. And the legacy code could start importing it. The modules & imports should be transpiled with webpack\whatever, while legacy code remains all-globals style. Finally all this is packed into single JS file and deployed.
My questions are
is there a better approach maybe? This sounds like a typical problem
are there any tools available to support my approach?
I gave webpack a try and I haven't managed to get what I want out of it. The export-loader and resolve-loader are no options because of amount of methods\vars that needs to be imported\exported.
Examples
Now code looks like
function someGlobalFunction() {
...
}
var myVar = 'something';
// and other 15k lines in 26 files like this
What I would ideally like to achieve is
function define(...) { /* function to define a module */ }
function require(moduleName) { /* function to import a module */ }
// block with my refactored out module definitions
define('module1', function () {
// extracted modularised code goes here
});
define('module2', function () {
// extracted modularised code goes here
});
// further down goes legacy code, which can import new modules
var myModule = require('myNewModule');
function myGlobalLegacyFunction() {
// use myModule
}
I'm following an approach similar to that outlined here: https://zirho.github.io/2016/08/13/webpack-to-legacy/
In brief:
Assuming that you can configure webpack to turn something like
export function myFunction(){...}
into a file bundle.js that a browser understands. In webpack's entry point, you can import everything from your module, and assign it to the window object:
// using namespace import to get all exported things from the file
import * as Utils from './utils'
// injecting every function exported from utils.js into global scope(window)
Object.assign(window, Utils).
Then, in your html, make sure to include the webpack output before the existing code:
<script type="text/javascript" src="bundle.js"></script>
<script type="text/javascript" src="legacy.js"></script>
Your IDE should be able to help identify clients of a method as you bring them into a module. As you move a function from legacy.js to myNiceModule.js, check to see if it still has clients that are aware of it globally - if it doesn't, then it doesn't need to be globally available.
No good answer here so far, and it would be great if the person asking the question would come back. I will pose a challenging answer saying that it cannot be done.
All module techniques end up breaking the sequential nature of execution of scripts in the document header.
All dynamically added scripts are loaded in parallel and they do not wait for one another. Since you can be certain that almost all such horrible legacy javascript code is dependent on the sequential execution, where the second script can depend on the first previous one, as soon as you load those dynamically, it can break.
If you use some module approach (either ES7 2018 modules or require.js or you own) you need to execute the code that depends on the loading having occurred in a call-back or Promise/then function block. This destroys the implicit global context, so all these spaghetti coils of global functions and var's we find in legacy javascript code files will not be defined in the global scope any more.
I have determined that only two tricks could allow a smooth transition:
Either some way to pause continuation of a script block until the import Promise is resolved.
const promise = require("dep1.js", "dep2.js", "dep3.js");
await promise;
// legacy stuff follows
or some way to revert the scope of a block inside a function explicitly into the global scope.
with(window) {
function foo() { return 123; }
var bar = 543;
}
But neither wish was granted by the javascript fairy.
In fact, I read that even the await keyword essentially just packs the rest of the statements into function to call when promise is resolved:
async function() {
... aaa makes promise ...
await promise;
... bbb ...
}
is just, I suppose, no different from
async function() {
... aaa makes promise ...
promise.then(r => {
... bbb ...
});
}
So this means, the only way to fix this is by putting legacy javascript statically in the head/script elements, and slowly moving things into modules, but continue to load them statically.
I am tinkering with my own module style:
(function(scope = {}) {
var v1 = ...;
function fn1() { ... }
var v2 = ...;
function fn2() { ... }
return ['v1', 'fn1', 'v2', 'fn2']
.reduce((r, n) => {
r[n] = eval(n);
return r;
}, scope);
})(window)
by calling this "module" function with the window object, the exported items would be put on there just as legacy code would do.
I gleaned a lot of this by using knockout.js and working with the source readable file that has everything together but in such module function calls, ultimately all features are on the "ko" object.
I hate using frameworks and "compilation" so generating the sequence of HTML tags to load them in the correct order by the topologically sorted dependency tree, while I could write myself such a thing quickly, I won't do this, because I do not want to have any "compilation" step, not even my own.
UPDATE: https://stackoverflow.com/a/33670019/7666635 gives the idea that we can just Object.assign(window, module) which is somewhat similar to my trick passing the window object into the "module" function.

Where does AWS-SDK Javascript code find its includes? [duplicate]

I'm trying to get JavaScript to read/write to a PostgreSQL database. I found this project on GitHub. I was able to get the following sample code to run in Node.
var pg = require('pg'); //native libpq bindings = `var pg = require('pg').native`
var conString = "tcp://postgres:1234#localhost/postgres";
var client = new pg.Client(conString);
client.connect();
//queries are queued and executed one after another once the connection becomes available
client.query("CREATE TEMP TABLE beatles(name varchar(10), height integer, birthday timestamptz)");
client.query("INSERT INTO beatles(name, height, birthday) values($1, $2, $3)", ['Ringo', 67, new Date(1945, 11, 2)]);
client.query("INSERT INTO beatles(name, height, birthday) values($1, $2, $3)", ['John', 68, new Date(1944, 10, 13)]);
//queries can be executed either via text/parameter values passed as individual arguments
//or by passing an options object containing text, (optional) parameter values, and (optional) query name
client.query({
name: 'insert beatle',
text: "INSERT INTO beatles(name, height, birthday) values($1, $2, $3)",
values: ['George', 70, new Date(1946, 02, 14)]
});
//subsequent queries with the same name will be executed without re-parsing the query plan by postgres
client.query({
name: 'insert beatle',
values: ['Paul', 63, new Date(1945, 04, 03)]
});
var query = client.query("SELECT * FROM beatles WHERE name = $1", ['John']);
//can stream row results back 1 at a time
query.on('row', function(row) {
console.log(row);
console.log("Beatle name: %s", row.name); //Beatle name: John
console.log("Beatle birth year: %d", row.birthday.getYear()); //dates are returned as javascript dates
console.log("Beatle height: %d' %d\"", Math.floor(row.height/12), row.height%12); //integers are returned as javascript ints
});
//fired after last row is emitted
query.on('end', function() {
client.end();
});
Next I tried to make it run on a webpage, but nothing seemed to happen. I checked on the JavaScript console and it just says "require not defined".
So what is this "require"? Why does it work in Node but not in a webpage?
Also, before I got it to work in Node, I had to do npm install pg. What's that about? I looked in the directory and didn't find a file pg. Where did it put it, and how does JavaScript find it?
So what is this "require?"
require() is not part of the standard JavaScript API. But in Node.js, it's a built-in function with a special purpose: to load modules.
Modules are a way to split an application into separate files instead of having all of your application in one file. This concept is also present in other languages with minor differences in syntax and behavior, like C's include, Python's import, and so on.
One big difference between Node.js modules and browser JavaScript is how one script's code is accessed from another script's code.
In browser JavaScript, scripts are added via the <script> element. When they execute, they all have direct access to the global scope, a "shared space" among all scripts. Any script can freely define/modify/remove/call anything on the global scope.
In Node.js, each module has its own scope. A module cannot directly access things defined in another module unless it chooses to expose them. To expose things from a module, they must be assigned to exports or module.exports. For a module to access another module's exports or module.exports, it must use require().
In your code, var pg = require('pg'); loads the pg module, a PostgreSQL client for Node.js. This allows your code to access functionality of the PostgreSQL client's APIs via the pg variable.
Why does it work in node but not in a webpage?
require(), module.exports and exports are APIs of a module system that is specific to Node.js. Browsers do not implement this module system.
Also, before I got it to work in node, I had to do npm install pg. What's that about?
NPM is a package repository service that hosts published JavaScript modules. npm install is a command that lets you download packages from their repository.
Where did it put it, and how does Javascript find it?
The npm cli puts all the downloaded modules in a node_modules directory where you ran npm install. Node.js has very detailed documentation on how modules find other modules which includes finding a node_modules directory.
Alright, so let's first start with making the distinction between Javascript in a web browser, and Javascript on a server (CommonJS and Node).
Javascript is a language traditionally confined to a web browser with a limited global context defined mostly by what came to be known as the Document Object Model (DOM) level 0 (the Netscape Navigator Javascript API).
Server-side Javascript eliminates that restriction and allows Javascript to call into various pieces of native code (like the Postgres library) and open sockets.
Now require() is a special function call defined as part of the CommonJS spec. In node, it resolves libraries and modules in the Node search path, now usually defined as node_modules in the same directory (or the directory of the invoked javascript file) or the system-wide search path.
To try to answer the rest of your question, we need to use a proxy between the code running in the the browser and the database server.
Since we are discussing Node and you are already familiar with how to run a query from there, it would make sense to use Node as that proxy.
As a simple example, we're going to make a URL that returns a few facts about a Beatle, given a name, as JSON.
/* your connection code */
var express = require('express');
var app = express.createServer();
app.get('/beatles/:name', function(req, res) {
var name = req.params.name || '';
name = name.replace(/[^a-zA_Z]/, '');
if (!name.length) {
res.send({});
} else {
var query = client.query('SELECT * FROM BEATLES WHERE name =\''+name+'\' LIMIT 1');
var data = {};
query.on('row', function(row) {
data = row;
res.send(data);
});
};
});
app.listen(80, '127.0.0.1');
I noticed that whilst the other answers explained what require is and that it is used to load modules in Node they did not give a full reply on how to load node modules when working in the Browser.
It is quite simple to do. Install your module using npm as you describe, and the module itself will be located in a folder usually called node_modules.
Now the simplest way to load it into your app is to reference it from your html with a script tag which points at this directory. i.e if your node_modules directory is in the root of the project at the same level as your index.html you would write this in your index.html:
<script src="node_modules/ng"></script>
That whole script will now be loaded into the page - so you can access its variables and methods directly.
There are other approaches which are more widely used in larger projects, such as a module loader like require.js. Of the two, I have not used Require myself, but I think it is considered by many people the way to go.
It's used to load modules. Let's use a simple example.
In file circle_object.js:
var Circle = function (radius) {
this.radius = radius
}
Circle.PI = 3.14
Circle.prototype = {
area: function () {
return Circle.PI * this.radius * this.radius;
}
}
We can use this via require, like:
node> require('circle_object')
{}
node> Circle
{ [Function] PI: 3.14 }
node> var c = new Circle(3)
{ radius: 3 }
node> c.area()
The require() method is used to load and cache JavaScript modules. So, if you want to load a local, relative JavaScript module into a Node.js application, you can simply use the require() method.
Example:
var yourModule = require( "your_module_name" ); //.js file extension is optional
Necromancing.
IMHO, the existing answers leave much to be desired.
At first, it's very confusing.
You have a (nowhere defined) function "require", which is used to get modules.
And in said (CommonJS) modules, you can use require, exports and module, WITHOUT THEM EVER BEING DEFINED.
Not that it would be new that you could use undefined variables in JS, but you couldn't use an undefined function.
So it looks a little like magic at first.
But all magic is based on deception.
When you dig a little deeper, it turns out it is really quite simple:
Require is simply a (non-standard) function defined at global scope.
(global scope = window-object in browser, global-object in NodeJS).
Note that by default, the "require function" is only implemented in NodeJS, not in the browser.
Also, note that to add to the confusion, for the browser, there is RequireJS, which, despite the name containing the characters "require", RequireJS absolutely does NOT implement require/CommonJS - instead RequireJS implements AMD, which is something similar, but not the same (aka incompatible).
That last one is just one important thing you have to realize on your way to understanding require.
Now, as such, to answer the question "what is require", we "simply" need to know what this function does.
This is perhaps best explained with code.
Here's a simple implementation by Michele Nasti, the code you can find on his github page.
Let's call our minimalisc implementation of the require function "myRequire":
function myRequire(name)
{
console.log(`Evaluating file ${name}`);
if (!(name in myRequire.cache)) {
console.log(`${name} is not in cache; reading from disk`);
let code = fs.readFileSync(name, 'utf8');
let module = { exports: {} };
myRequire.cache[name] = module;
let wrapper = Function("require, exports, module", code);
wrapper(myRequire, module.exports, module);
}
console.log(`${name} is in cache. Returning it...`);
return myRequire.cache[name].exports;
}
myRequire.cache = Object.create(null);
window.require = myRequire;
const stuff = window.require('./main.js');
console.log(stuff);
Now you notice, the object "fs" is used here.
For simplicity's sake, Michele just imported the NodeJS fs module:
const fs = require('fs');
Which wouldn't be necessary.
So in the browser, you could make a simple implementation of require with a SYNCHRONOUS XmlHttpRequest:
const fs = {
file: `
// module.exports = \"Hello World\";
module.exports = function(){ return 5*3;};
`
, getFile(fileName: string, encoding: string): string
{
// https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
let client = new XMLHttpRequest();
// client.setRequestHeader("Content-Type", "text/plain;charset=UTF-8");
// open(method, url, async)
client.open("GET", fileName, false);
client.send();
if (client.status === 200)
return client.responseText;
return null;
}
, readFileSync: function (fileName: string, encoding: string): string
{
// this.getFile(fileName, encoding);
return this.file; // Example, getFile would fetch this file
}
};
Basically, what require thus does, is it downloads a JavaScript-file, evals it in an anonymous namespace (aka Function), with the parameters "require", "exports" and "module", and returns the exports, meaning an object's public functions and properties.
Note that this evaluation is recursive: you require files, which themselfs can require files.
This way, all "global" variables used in your module are variables in the require-wrapper-function namespace, and don't pollute the global scope with unwanted variables.
Also, this way, you can reuse code without depending on namespaces, so you get "modularity" in JavaScript. "modularity" in quotes, because this is not exactly true, though, because you can still write window.bla/global.bla, and hence still pollute the global scope... Also, this establishes a separation between private and public functions, the public functions being the exports.
Now instead of saying
module.exports = function(){ return 5*3;};
You can also say:
function privateSomething()
{
return 42:
}
function privateSomething2()
{
return 21:
}
module.exports = {
getRandomNumber: privateSomething
,getHalfRandomNumber: privateSomething2
};
and return an object.
Also, because your modules get evaluated in a function with parameters
"require", "exports" and "module", your modules can use the undeclared variables "require", "exports" and "module", which might be startling at first. The require parameter there is of course a pointer to the require function saved into a variable.
Cool, right ?
Seen this way, require looses its magic, and becomes simple.
Now, the real require-function will do a few more checks and quirks, of course, but this is the essence of what that boils down to.
Also, in 2020, you should use the ECMA implementations instead of require:
import defaultExport from "module-name";
import * as name from "module-name";
import { export1 } from "module-name";
import { export1 as alias1 } from "module-name";
import { export1 , export2 } from "module-name";
import { foo , bar } from "module-name/path/to/specific/un-exported/file";
import { export1 , export2 as alias2 , [...] } from "module-name";
import defaultExport, { export1 [ , [...] ] } from "module-name";
import defaultExport, * as name from "module-name";
import "module-name";
And if you need a dynamic non-static import (e.g. load a polyfill based on browser-type), there is the ECMA-import function/keyword:
var promise = import("module-name");
note that import is not synchronous like require.
Instead, import is a promise, so
var something = require("something");
becomes
var something = await import("something");
because import returns a promise (asynchronous).
So basically, unlike require, import replaces fs.readFileSync with fs.readFileAsync.
async readFileAsync(fileName, encoding)
{
const textDecoder = new TextDecoder(encoding);
// textDecoder.ignoreBOM = true;
const response = await fetch(fileName);
console.log(response.ok);
console.log(response.status);
console.log(response.statusText);
// let json = await response.json();
// let txt = await response.text();
// let blo:Blob = response.blob();
// let ab:ArrayBuffer = await response.arrayBuffer();
// let fd = await response.formData()
// Read file almost by line
// https://developer.mozilla.org/en-US/docs/Web/API/ReadableStreamDefaultReader/read#Example_2_-_handling_text_line_by_line
let buffer = await response.arrayBuffer();
let file = textDecoder.decode(buffer);
return file;
} // End Function readFileAsync
This of course requires the import-function to be async as well.
"use strict";
async function myRequireAsync(name) {
console.log(`Evaluating file ${name}`);
if (!(name in myRequireAsync.cache)) {
console.log(`${name} is not in cache; reading from disk`);
let code = await fs.readFileAsync(name, 'utf8');
let module = { exports: {} };
myRequireAsync.cache[name] = module;
let wrapper = Function("asyncRequire, exports, module", code);
await wrapper(myRequireAsync, module.exports, module);
}
console.log(`${name} is in cache. Returning it...`);
return myRequireAsync.cache[name].exports;
}
myRequireAsync.cache = Object.create(null);
window.asyncRequire = myRequireAsync;
async () => {
const asyncStuff = await window.asyncRequire('./main.js');
console.log(asyncStuff);
};
Even better, right ?
Well yea, except that there is no ECMA-way to dynamically import synchronously (without promise).
Now, to understand the repercussions, you absolutely might want to read up on promises/async-await here, if you don't know what that is.
But very simply put, if a function returns a promise, it can be "awaited":
"use strict";
function sleep(interval)
{
return new Promise(
function (resolve, reject)
{
let wait = setTimeout(function () {
clearTimeout(wait);
//reject(new Error(`Promise timed out ! (timeout = ${timeout})`));
resolve();
}, interval);
});
}
The promise would then normally be used like this:
function testSleep()
{
sleep(3000).then(function ()
{
console.log("Waited for 3 seconds");
});
}
But when you return a promise, you can also use await, which means we get rid of the callback (sort of - actually, it is being replaced with a state-machine in the compiler/interpreter).
This way, we make asynchronous code feel like synchronous, so we now can use try-catch for error-handling.
Note that if you want to use await in a function, that function must be declared async (hence async-await).
async function testSleep()
{
await sleep(5000);
console.log("i waited 5 seconds");
}
And also please note that in JavaScript, there is no way to call an async function (blockingly) from a synchronous one (the ones you know). So if you want to use await (aka ECMA-import), all your code needs to be async, which most likely is a problem, if everything isn't already async...
An example of where this simplified implementation of require fails, is when you require a file that is not valid JavaScript, e.g. when you require css, html, txt, svg and images or other binary files.
And it's easy to see why:
If you e.g. put HTML into a JavaScript function body, you of course rightfully get
SyntaxError: Unexpected token '<'
because of Function("bla", "<doctype...")
Now, if you wanted to extend this to for example include non-modules, you could just check the downloaded file-contents for code.indexOf("module.exports") == -1, and then e.g. eval("jquery content") instead of Func (which works fine as long as you're in the browser). Since downloads with Fetch/XmlHttpRequests are subject to the same-origin-policy, and integrity is ensured by SSL/TLS, the use of eval here is rather harmless, provided you checked the JS files before you added them to your site, but that much should be standard-operating-procedure.
Note that there are several implementations of require-like functionality:
the CommonJS (CJS) format, used in Node.js, uses a require function and module.exports to define dependencies and modules. The npm ecosystem is built upon this format. (this is what is implemented above)
the Asynchronous Module Definition (AMD) format, used in browsers, uses a define function to define modules. (basically, this is overcomplicated archaic crap that you wouldn't ever want to use). Also, AMD is the format that is implemented by RequireJS (note that despite the name containing the characters "require", AMD absolutely is NOT CommonJS).
the ES Module (ESM) format. As of ES6 (ES2015), JavaScript supports a native module format. It uses an export keyword to export a module’s public API and an import keyword to import it. This is the one you should use if you don't give a flying f*ck about archaic browsers, such as Safari and IE/EdgeHTML.
the System.register format, designed to support ES6 modules within ES5. (the one you should use, if you need support for older browsers (Safari & IE & old versions of Chrome on mobile phones/tablets), because it can load all formats [for some, plugins are required], can handle cyclic-dependencies, and CSS and HTML - don't define your modules as system.register, though - the format is rather complicated, and remember, it can read the other easier formats)
the Universal Module Definition (UMD) format, compatible to all the above mentioned formats (except ECMA), used both in the browser and in Node.js. It’s especially useful if you write modules that can be used in both NodeJS and the browser. It's somewhat flawed, as it doesn't support the latest ECMA modules, though (maybe this will get fixed) - use System.register instead.
Important sidenote on the function argument "exports":
JavaScript uses call-by-value-sharing - meaning objects are passed as a pointer, but the pointer-value itselfs is passed BY VALUE, not by reference. So you can't override exports by assigning it a new object. Instead, if you want to override exports, you need to assign the new object to module.exports - because hey, module is the pointer passed by value, but exports in module.exports is the reference to the original exports pointer.
Important sidenote on module-Scope:
Modules are evaluated ONCE, and then cached by require.
That means all your modules have a Singleton scope.
If you want a non-singleton scope, you have to do something like:
var x = require("foo.js").createInstance();
or simply
var x = require("foo.js")();
with appropriate code returned by your module.
If you need CommonJS-support for the browser (IE5+, Chrome, Firefox),
check out my code in my comment on Michele Nasti's project
You know how when you are running JavaScript in the browser, you have access to variables like "window" or Math? You do not have to declare these variables, they have been written for you to use whenever you want.
Well, when you are running a file in the Node.js environment, there is a variable that you can use. It is called "module" It is an object. It has a property called "exports." And it works like this:
In a file that we will name example.js, you write:
example.js
module.exports = "some code";
Now, you want this string "some code" in another file.
We will name the other file otherFile.js
In this file, you write:
otherFile.js
let str = require('./example.js')
That require() statement goes to the file that you put inside of it, finds whatever data is stored on the module.exports property. The let str = ... part of your code means that whatever that require statement returns is stored to the str variable.
So, in this example, the end-result is that in otherFile.js you now have this:
let string = "some code";
or -
let str = ('./example.js').module.exports
Note:
the file-name that is written inside of the require statement: If it is a local file, it should be the file-path to example.js. Also, the .js extension is added by default, so I didn't have to write it.
You do something similar when requiring node.js libraries, such as Express. In the express.js file, there is an object named 'module', with a property named 'exports'.
So, it looks something like along these lines, under the hood (I am somewhat of a beginner so some of these details might not be exact, but it's to show the concept:
express.js
module.exports = function() {
//It returns an object with all of the server methods
return {
listen: function(port){},
get: function(route, function(req, res){}){}
}
}
If you are requiring a module, it looks like this:
const moduleName = require("module-name");
If you are requiring a local file, it looks like this:
const localFile = require("./path/to/local-file");
(notice the ./ at the beginning of the file name)
Also note that by default, the export is an object .. eg module.exports = {} So, you can write module.exports.myfunction = () => {} before assigning a value to the module.exports. But you can also replace the object by writing module.exports = "I am not an object anymore."
Two flavours of module.exports / require:
(see here)
Flavour 1
export file (misc.js):
var x = 5;
var addX = function(value) {
return value + x;
};
module.exports.x = x;
module.exports.addX = addX;
other file:
var misc = require('./misc');
console.log("Adding %d to 10 gives us %d", misc.x, misc.addX(10));
Flavour 2
export file (user.js):
var User = function(name, email) {
this.name = name;
this.email = email;
};
module.exports = User;
other file:
var user = require('./user');
var u = new user();

What is this JavaScript "require"?

I'm trying to get JavaScript to read/write to a PostgreSQL database. I found this project on GitHub. I was able to get the following sample code to run in Node.
var pg = require('pg'); //native libpq bindings = `var pg = require('pg').native`
var conString = "tcp://postgres:1234#localhost/postgres";
var client = new pg.Client(conString);
client.connect();
//queries are queued and executed one after another once the connection becomes available
client.query("CREATE TEMP TABLE beatles(name varchar(10), height integer, birthday timestamptz)");
client.query("INSERT INTO beatles(name, height, birthday) values($1, $2, $3)", ['Ringo', 67, new Date(1945, 11, 2)]);
client.query("INSERT INTO beatles(name, height, birthday) values($1, $2, $3)", ['John', 68, new Date(1944, 10, 13)]);
//queries can be executed either via text/parameter values passed as individual arguments
//or by passing an options object containing text, (optional) parameter values, and (optional) query name
client.query({
name: 'insert beatle',
text: "INSERT INTO beatles(name, height, birthday) values($1, $2, $3)",
values: ['George', 70, new Date(1946, 02, 14)]
});
//subsequent queries with the same name will be executed without re-parsing the query plan by postgres
client.query({
name: 'insert beatle',
values: ['Paul', 63, new Date(1945, 04, 03)]
});
var query = client.query("SELECT * FROM beatles WHERE name = $1", ['John']);
//can stream row results back 1 at a time
query.on('row', function(row) {
console.log(row);
console.log("Beatle name: %s", row.name); //Beatle name: John
console.log("Beatle birth year: %d", row.birthday.getYear()); //dates are returned as javascript dates
console.log("Beatle height: %d' %d\"", Math.floor(row.height/12), row.height%12); //integers are returned as javascript ints
});
//fired after last row is emitted
query.on('end', function() {
client.end();
});
Next I tried to make it run on a webpage, but nothing seemed to happen. I checked on the JavaScript console and it just says "require not defined".
So what is this "require"? Why does it work in Node but not in a webpage?
Also, before I got it to work in Node, I had to do npm install pg. What's that about? I looked in the directory and didn't find a file pg. Where did it put it, and how does JavaScript find it?
So what is this "require?"
require() is not part of the standard JavaScript API. But in Node.js, it's a built-in function with a special purpose: to load modules.
Modules are a way to split an application into separate files instead of having all of your application in one file. This concept is also present in other languages with minor differences in syntax and behavior, like C's include, Python's import, and so on.
One big difference between Node.js modules and browser JavaScript is how one script's code is accessed from another script's code.
In browser JavaScript, scripts are added via the <script> element. When they execute, they all have direct access to the global scope, a "shared space" among all scripts. Any script can freely define/modify/remove/call anything on the global scope.
In Node.js, each module has its own scope. A module cannot directly access things defined in another module unless it chooses to expose them. To expose things from a module, they must be assigned to exports or module.exports. For a module to access another module's exports or module.exports, it must use require().
In your code, var pg = require('pg'); loads the pg module, a PostgreSQL client for Node.js. This allows your code to access functionality of the PostgreSQL client's APIs via the pg variable.
Why does it work in node but not in a webpage?
require(), module.exports and exports are APIs of a module system that is specific to Node.js. Browsers do not implement this module system.
Also, before I got it to work in node, I had to do npm install pg. What's that about?
NPM is a package repository service that hosts published JavaScript modules. npm install is a command that lets you download packages from their repository.
Where did it put it, and how does Javascript find it?
The npm cli puts all the downloaded modules in a node_modules directory where you ran npm install. Node.js has very detailed documentation on how modules find other modules which includes finding a node_modules directory.
Alright, so let's first start with making the distinction between Javascript in a web browser, and Javascript on a server (CommonJS and Node).
Javascript is a language traditionally confined to a web browser with a limited global context defined mostly by what came to be known as the Document Object Model (DOM) level 0 (the Netscape Navigator Javascript API).
Server-side Javascript eliminates that restriction and allows Javascript to call into various pieces of native code (like the Postgres library) and open sockets.
Now require() is a special function call defined as part of the CommonJS spec. In node, it resolves libraries and modules in the Node search path, now usually defined as node_modules in the same directory (or the directory of the invoked javascript file) or the system-wide search path.
To try to answer the rest of your question, we need to use a proxy between the code running in the the browser and the database server.
Since we are discussing Node and you are already familiar with how to run a query from there, it would make sense to use Node as that proxy.
As a simple example, we're going to make a URL that returns a few facts about a Beatle, given a name, as JSON.
/* your connection code */
var express = require('express');
var app = express.createServer();
app.get('/beatles/:name', function(req, res) {
var name = req.params.name || '';
name = name.replace(/[^a-zA_Z]/, '');
if (!name.length) {
res.send({});
} else {
var query = client.query('SELECT * FROM BEATLES WHERE name =\''+name+'\' LIMIT 1');
var data = {};
query.on('row', function(row) {
data = row;
res.send(data);
});
};
});
app.listen(80, '127.0.0.1');
I noticed that whilst the other answers explained what require is and that it is used to load modules in Node they did not give a full reply on how to load node modules when working in the Browser.
It is quite simple to do. Install your module using npm as you describe, and the module itself will be located in a folder usually called node_modules.
Now the simplest way to load it into your app is to reference it from your html with a script tag which points at this directory. i.e if your node_modules directory is in the root of the project at the same level as your index.html you would write this in your index.html:
<script src="node_modules/ng"></script>
That whole script will now be loaded into the page - so you can access its variables and methods directly.
There are other approaches which are more widely used in larger projects, such as a module loader like require.js. Of the two, I have not used Require myself, but I think it is considered by many people the way to go.
It's used to load modules. Let's use a simple example.
In file circle_object.js:
var Circle = function (radius) {
this.radius = radius
}
Circle.PI = 3.14
Circle.prototype = {
area: function () {
return Circle.PI * this.radius * this.radius;
}
}
We can use this via require, like:
node> require('circle_object')
{}
node> Circle
{ [Function] PI: 3.14 }
node> var c = new Circle(3)
{ radius: 3 }
node> c.area()
The require() method is used to load and cache JavaScript modules. So, if you want to load a local, relative JavaScript module into a Node.js application, you can simply use the require() method.
Example:
var yourModule = require( "your_module_name" ); //.js file extension is optional
Necromancing.
IMHO, the existing answers leave much to be desired.
At first, it's very confusing.
You have a (nowhere defined) function "require", which is used to get modules.
And in said (CommonJS) modules, you can use require, exports and module, WITHOUT THEM EVER BEING DEFINED.
Not that it would be new that you could use undefined variables in JS, but you couldn't use an undefined function.
So it looks a little like magic at first.
But all magic is based on deception.
When you dig a little deeper, it turns out it is really quite simple:
Require is simply a (non-standard) function defined at global scope.
(global scope = window-object in browser, global-object in NodeJS).
Note that by default, the "require function" is only implemented in NodeJS, not in the browser.
Also, note that to add to the confusion, for the browser, there is RequireJS, which, despite the name containing the characters "require", RequireJS absolutely does NOT implement require/CommonJS - instead RequireJS implements AMD, which is something similar, but not the same (aka incompatible).
That last one is just one important thing you have to realize on your way to understanding require.
Now, as such, to answer the question "what is require", we "simply" need to know what this function does.
This is perhaps best explained with code.
Here's a simple implementation by Michele Nasti, the code you can find on his github page.
Let's call our minimalisc implementation of the require function "myRequire":
function myRequire(name)
{
console.log(`Evaluating file ${name}`);
if (!(name in myRequire.cache)) {
console.log(`${name} is not in cache; reading from disk`);
let code = fs.readFileSync(name, 'utf8');
let module = { exports: {} };
myRequire.cache[name] = module;
let wrapper = Function("require, exports, module", code);
wrapper(myRequire, module.exports, module);
}
console.log(`${name} is in cache. Returning it...`);
return myRequire.cache[name].exports;
}
myRequire.cache = Object.create(null);
window.require = myRequire;
const stuff = window.require('./main.js');
console.log(stuff);
Now you notice, the object "fs" is used here.
For simplicity's sake, Michele just imported the NodeJS fs module:
const fs = require('fs');
Which wouldn't be necessary.
So in the browser, you could make a simple implementation of require with a SYNCHRONOUS XmlHttpRequest:
const fs = {
file: `
// module.exports = \"Hello World\";
module.exports = function(){ return 5*3;};
`
, getFile(fileName: string, encoding: string): string
{
// https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests
let client = new XMLHttpRequest();
// client.setRequestHeader("Content-Type", "text/plain;charset=UTF-8");
// open(method, url, async)
client.open("GET", fileName, false);
client.send();
if (client.status === 200)
return client.responseText;
return null;
}
, readFileSync: function (fileName: string, encoding: string): string
{
// this.getFile(fileName, encoding);
return this.file; // Example, getFile would fetch this file
}
};
Basically, what require thus does, is it downloads a JavaScript-file, evals it in an anonymous namespace (aka Function), with the parameters "require", "exports" and "module", and returns the exports, meaning an object's public functions and properties.
Note that this evaluation is recursive: you require files, which themselfs can require files.
This way, all "global" variables used in your module are variables in the require-wrapper-function namespace, and don't pollute the global scope with unwanted variables.
Also, this way, you can reuse code without depending on namespaces, so you get "modularity" in JavaScript. "modularity" in quotes, because this is not exactly true, though, because you can still write window.bla/global.bla, and hence still pollute the global scope... Also, this establishes a separation between private and public functions, the public functions being the exports.
Now instead of saying
module.exports = function(){ return 5*3;};
You can also say:
function privateSomething()
{
return 42:
}
function privateSomething2()
{
return 21:
}
module.exports = {
getRandomNumber: privateSomething
,getHalfRandomNumber: privateSomething2
};
and return an object.
Also, because your modules get evaluated in a function with parameters
"require", "exports" and "module", your modules can use the undeclared variables "require", "exports" and "module", which might be startling at first. The require parameter there is of course a pointer to the require function saved into a variable.
Cool, right ?
Seen this way, require looses its magic, and becomes simple.
Now, the real require-function will do a few more checks and quirks, of course, but this is the essence of what that boils down to.
Also, in 2020, you should use the ECMA implementations instead of require:
import defaultExport from "module-name";
import * as name from "module-name";
import { export1 } from "module-name";
import { export1 as alias1 } from "module-name";
import { export1 , export2 } from "module-name";
import { foo , bar } from "module-name/path/to/specific/un-exported/file";
import { export1 , export2 as alias2 , [...] } from "module-name";
import defaultExport, { export1 [ , [...] ] } from "module-name";
import defaultExport, * as name from "module-name";
import "module-name";
And if you need a dynamic non-static import (e.g. load a polyfill based on browser-type), there is the ECMA-import function/keyword:
var promise = import("module-name");
note that import is not synchronous like require.
Instead, import is a promise, so
var something = require("something");
becomes
var something = await import("something");
because import returns a promise (asynchronous).
So basically, unlike require, import replaces fs.readFileSync with fs.readFileAsync.
async readFileAsync(fileName, encoding)
{
const textDecoder = new TextDecoder(encoding);
// textDecoder.ignoreBOM = true;
const response = await fetch(fileName);
console.log(response.ok);
console.log(response.status);
console.log(response.statusText);
// let json = await response.json();
// let txt = await response.text();
// let blo:Blob = response.blob();
// let ab:ArrayBuffer = await response.arrayBuffer();
// let fd = await response.formData()
// Read file almost by line
// https://developer.mozilla.org/en-US/docs/Web/API/ReadableStreamDefaultReader/read#Example_2_-_handling_text_line_by_line
let buffer = await response.arrayBuffer();
let file = textDecoder.decode(buffer);
return file;
} // End Function readFileAsync
This of course requires the import-function to be async as well.
"use strict";
async function myRequireAsync(name) {
console.log(`Evaluating file ${name}`);
if (!(name in myRequireAsync.cache)) {
console.log(`${name} is not in cache; reading from disk`);
let code = await fs.readFileAsync(name, 'utf8');
let module = { exports: {} };
myRequireAsync.cache[name] = module;
let wrapper = Function("asyncRequire, exports, module", code);
await wrapper(myRequireAsync, module.exports, module);
}
console.log(`${name} is in cache. Returning it...`);
return myRequireAsync.cache[name].exports;
}
myRequireAsync.cache = Object.create(null);
window.asyncRequire = myRequireAsync;
async () => {
const asyncStuff = await window.asyncRequire('./main.js');
console.log(asyncStuff);
};
Even better, right ?
Well yea, except that there is no ECMA-way to dynamically import synchronously (without promise).
Now, to understand the repercussions, you absolutely might want to read up on promises/async-await here, if you don't know what that is.
But very simply put, if a function returns a promise, it can be "awaited":
"use strict";
function sleep(interval)
{
return new Promise(
function (resolve, reject)
{
let wait = setTimeout(function () {
clearTimeout(wait);
//reject(new Error(`Promise timed out ! (timeout = ${timeout})`));
resolve();
}, interval);
});
}
The promise would then normally be used like this:
function testSleep()
{
sleep(3000).then(function ()
{
console.log("Waited for 3 seconds");
});
}
But when you return a promise, you can also use await, which means we get rid of the callback (sort of - actually, it is being replaced with a state-machine in the compiler/interpreter).
This way, we make asynchronous code feel like synchronous, so we now can use try-catch for error-handling.
Note that if you want to use await in a function, that function must be declared async (hence async-await).
async function testSleep()
{
await sleep(5000);
console.log("i waited 5 seconds");
}
And also please note that in JavaScript, there is no way to call an async function (blockingly) from a synchronous one (the ones you know). So if you want to use await (aka ECMA-import), all your code needs to be async, which most likely is a problem, if everything isn't already async...
An example of where this simplified implementation of require fails, is when you require a file that is not valid JavaScript, e.g. when you require css, html, txt, svg and images or other binary files.
And it's easy to see why:
If you e.g. put HTML into a JavaScript function body, you of course rightfully get
SyntaxError: Unexpected token '<'
because of Function("bla", "<doctype...")
Now, if you wanted to extend this to for example include non-modules, you could just check the downloaded file-contents for code.indexOf("module.exports") == -1, and then e.g. eval("jquery content") instead of Func (which works fine as long as you're in the browser). Since downloads with Fetch/XmlHttpRequests are subject to the same-origin-policy, and integrity is ensured by SSL/TLS, the use of eval here is rather harmless, provided you checked the JS files before you added them to your site, but that much should be standard-operating-procedure.
Note that there are several implementations of require-like functionality:
the CommonJS (CJS) format, used in Node.js, uses a require function and module.exports to define dependencies and modules. The npm ecosystem is built upon this format. (this is what is implemented above)
the Asynchronous Module Definition (AMD) format, used in browsers, uses a define function to define modules. (basically, this is overcomplicated archaic crap that you wouldn't ever want to use). Also, AMD is the format that is implemented by RequireJS (note that despite the name containing the characters "require", AMD absolutely is NOT CommonJS).
the ES Module (ESM) format. As of ES6 (ES2015), JavaScript supports a native module format. It uses an export keyword to export a module’s public API and an import keyword to import it. This is the one you should use if you don't give a flying f*ck about archaic browsers, such as Safari and IE/EdgeHTML.
the System.register format, designed to support ES6 modules within ES5. (the one you should use, if you need support for older browsers (Safari & IE & old versions of Chrome on mobile phones/tablets), because it can load all formats [for some, plugins are required], can handle cyclic-dependencies, and CSS and HTML - don't define your modules as system.register, though - the format is rather complicated, and remember, it can read the other easier formats)
the Universal Module Definition (UMD) format, compatible to all the above mentioned formats (except ECMA), used both in the browser and in Node.js. It’s especially useful if you write modules that can be used in both NodeJS and the browser. It's somewhat flawed, as it doesn't support the latest ECMA modules, though (maybe this will get fixed) - use System.register instead.
Important sidenote on the function argument "exports":
JavaScript uses call-by-value-sharing - meaning objects are passed as a pointer, but the pointer-value itselfs is passed BY VALUE, not by reference. So you can't override exports by assigning it a new object. Instead, if you want to override exports, you need to assign the new object to module.exports - because hey, module is the pointer passed by value, but exports in module.exports is the reference to the original exports pointer.
Important sidenote on module-Scope:
Modules are evaluated ONCE, and then cached by require.
That means all your modules have a Singleton scope.
If you want a non-singleton scope, you have to do something like:
var x = require("foo.js").createInstance();
or simply
var x = require("foo.js")();
with appropriate code returned by your module.
If you need CommonJS-support for the browser (IE5+, Chrome, Firefox),
check out my code in my comment on Michele Nasti's project
You know how when you are running JavaScript in the browser, you have access to variables like "window" or Math? You do not have to declare these variables, they have been written for you to use whenever you want.
Well, when you are running a file in the Node.js environment, there is a variable that you can use. It is called "module" It is an object. It has a property called "exports." And it works like this:
In a file that we will name example.js, you write:
example.js
module.exports = "some code";
Now, you want this string "some code" in another file.
We will name the other file otherFile.js
In this file, you write:
otherFile.js
let str = require('./example.js')
That require() statement goes to the file that you put inside of it, finds whatever data is stored on the module.exports property. The let str = ... part of your code means that whatever that require statement returns is stored to the str variable.
So, in this example, the end-result is that in otherFile.js you now have this:
let string = "some code";
or -
let str = ('./example.js').module.exports
Note:
the file-name that is written inside of the require statement: If it is a local file, it should be the file-path to example.js. Also, the .js extension is added by default, so I didn't have to write it.
You do something similar when requiring node.js libraries, such as Express. In the express.js file, there is an object named 'module', with a property named 'exports'.
So, it looks something like along these lines, under the hood (I am somewhat of a beginner so some of these details might not be exact, but it's to show the concept:
express.js
module.exports = function() {
//It returns an object with all of the server methods
return {
listen: function(port){},
get: function(route, function(req, res){}){}
}
}
If you are requiring a module, it looks like this:
const moduleName = require("module-name");
If you are requiring a local file, it looks like this:
const localFile = require("./path/to/local-file");
(notice the ./ at the beginning of the file name)
Also note that by default, the export is an object .. eg module.exports = {} So, you can write module.exports.myfunction = () => {} before assigning a value to the module.exports. But you can also replace the object by writing module.exports = "I am not an object anymore."
Two flavours of module.exports / require:
(see here)
Flavour 1
export file (misc.js):
var x = 5;
var addX = function(value) {
return value + x;
};
module.exports.x = x;
module.exports.addX = addX;
other file:
var misc = require('./misc');
console.log("Adding %d to 10 gives us %d", misc.x, misc.addX(10));
Flavour 2
export file (user.js):
var User = function(name, email) {
this.name = name;
this.email = email;
};
module.exports = User;
other file:
var user = require('./user');
var u = new user();

Categories

Resources