I'm at a loose end here and trying to understand the flow of how angular subscriptions work.
I make a call to an API and in the response I set the data in a behaviourSubject. So I can then subscribe to that data in my application.
Normally I would use async pipes in my templates cause its cleaner and it gets rid of all the subscription data for me.
All methods are apart of the same class method.
my first try.....
exportedData: BehaviourSubject = new BehaviourSubject([]);
exportApiCall(id) {
this.loadingSubject.next(true)
this.api.getReport(id).pipe(
catchError((err, caught) => this.errorHandler.errorHandler(err, caught)),
finalize(() => => this.loadingSubject.next(false))
).subscribe(res => {
this.exportedData.next(res)
})
}
export(collection) {
let x = []
this.exportCollection(collection.id); /// calls api
this.exportedData.subscribe(exportData => {
if(exportData){
x = exportData
}
})
}
console.log(x)//// first time it's empthy, then it's populated with the last click of data
/// in the template
<button (click)="export(data)">Export</button>
My problem is....
There is a list of buttons with different ID's. Each ID goes to the API and gives back certain Data. When I click, the console log firstly gives a blank array. Then there after I get the previous(the one I originally clicked) set of data.
I'm obviously not understanding subscriptions, pipes and behavior Subjects correctly. I understand Im getting a blank array because I'm setting the behaviour subject as a blank array.
my other try
export(collection) {
let x = []
this.exportCollection(collection.id).pip(tap(res => x = res)).subscribe()
console.log(x) //// get blank array
}
exportApiCall(id) {
return this.api.getReport(id).pipe(
catchError((err, caught) => this.errorHandler.errorHandler(err, caught))
)
}
Not sure about the first example - the placement of console.log() and what does the method (that is assigned on button click) do - but for the second example, you're getting an empty array because your observable has a delay and TypeScript doesn't wait for its execution to be completed.
You will most likely see that you will always receive your previous result in your console.log() (after updating response from API).
To get the initial results, you can update to such:
public exportReport(collection): void {
this.exportCollection(collection.id).pipe(take(1)).subscribe(res => {
const x: any = res;
console.log(x);
});
}
This will print your current iteration/values. You also forgot to end listening for subscription (either by unsubscribing or performing operators such as take()). Without ending listening, you might get unexpected results later on or the application could be heavily loaded.
Make sure the following step.
better to add console.log inside your functions and check whether values are coming or not.
Open your chrome browser network tab and see service endpoint is get hitting or not.
check any response coming from endpoints.
if it is still not identifiable then use below one to check whether you are getting a response or not
public exportReport(collection): void {
this.http.get(url+"/"+collection.id).subscribe(res=> {console.log(res)});
}
You would use BehaviourSubject, if there needs to be an initial/default value. If not, you can replace it by a Subject. This is why the initial value is empty array as BehaviourSubject gets called once by default. But if you use subject, it wont get called before the api call and you wont get the initial empty array.
exportedData: BehaviourSubject = new BehaviourSubject([]);
Also, you might not need to subscribe here, instead directly return it and by doing so you could avoid using the above subject.
exportApiCall(id) {
this.loadingSubject.next(true);
return this.api.getReport(id).pipe(
catchError((err, caught) => this.errorHandler.errorHandler(err, caught)),
finalize(() => => this.loadingSubject.next(false))
);
}
Console.log(x) needs to be inside the subscription, as subscribe is asynchronous and we dont knw when it might get complete. And since you need this data, you might want to declare in global score.
export(collection) {
// call api
this.exportApiCall(collection.id).subscribe(exportData => {
if (exportData) {
this.x = exportData; // or maybe this.x.push(exportData) ?
console.log(this.x);
}
});
}
Related
I know that Observables take some time to get data while javascript keeps running the others codes and that is troubling me a lot.
I have used ngrx in my angular project. Here, I am trying to fetch some data from the store which is working fine. Then, I convert this data stream into string[] which is also working fine.
To use this string[] me subscribeto this observable. And inside subscription I try to assign the value to other values named filterSizeValues.
Here, the problem comes. If I console.logthis filterSizeValuesinitially I got and empty array. When the observable finishes his job filterSizeValues variable is filled with data.
But I can not effort filterSizeValues variable to be empty array initially. What can I do?
I have already searched the solution in the internet but nothing is working out.
Help me out please. And Many Many Thanks in advance.
Here is my code;
this.sizeTargetingStore$.dispatch(SizeTargetingActions.getSizeTargeting({
campaignId: this.campaignId,
lineItemId: this.lineItemId
}));
Here I am accessing the store to get data.
this.sizeTargeting$
.pipe(switchMap(sizes=>{
let temporary:string[] = [];
sizes.forEach(eachSize=>{
temporary.push(eachSize.name);
})
this.filterSizeValues$ = of(temporary);
return this.filterSizeValues$;
}))
.subscribe(size_name=>{
this.filters.set('size_name', size_name);
})
Here, I am trying to set the filter values.
I also tried this way also.
this.sizeTargeting$
.pipe(switchMap(sizes=>{
let temporary:string[] = [];
sizes.forEach(eachSize=>{
temporary.push(eachSize.name);
})
this.filterSizeValues$ = of(temporary);
return this.filterSizeValues$;
}))
.subscribe(size_name=>{
this.filterSizeValues = size_name
})
this.filters.set('size_name', this.filterSizeValues);
But all ways filters set to an empty array.
Anyone can help me out please?
From my understanding, you have 2 possibilities, either filter out the empty values or skip the first value. You can do so with the filter and skip rxjs operator respectively.
Also I believe that you are misusing the switchMap operator, since you are not using asynchronous operations within your switchMap we can use the map operator instead, so below I have a simplified version of your code with your 2 options to fix your problem.
Option 1:
this.sizeTargeting$.pipe(
filter(sizes => sizes.length > 0), // filter out empty array values
map(sizes => sizes.map(size => size.name)) // perform your remap
).subscribe(sizes => {
this.filterSizeValues = size_name; // Only arrays with values will reach this step
});
Option 2:
this.sizeTargeting$.pipe(
skip(1), // skip the first value
map(sizes => sizes.map(size => size.name)) // perform your remap
).subscribe(sizes => {
this.filterSizeValues = size_name; // Only arrays with values will reach this step
});
Normally when I subscribe to something that I am waiting on to return what I do is I set up a Subject:
private componentDestroyed$ = new Subject<void>();
then in the Observable piping and subscription I do it as:
this.sizeTargeting$
.pipe(takeUntil(this.componentDestroyed$))
.subscribe((sizes: YourTypeHere[]) => {
if(sizes) {
//Do what I need to do with my sizes here, populate what I need,
//dispatch any other actions needed.
}
})
I have a caching method in a container:
get(): Observable<T[]> {
if (!this.get$) {
this.get$ = merge(
this.behaviorSubject.asObservable(),
this._config.get().pipe(shareReplay(1), tap(x => this.behaviorSubject.next(x))));
}
return this.get$;
}
This works fine with normal observables, however when I cache the bellow in a myContainer2 (e.g using cached observable's result to create another cached observable) method like:
// get is assigned to _config.get in the above function
const myContainer2 = new Container({get: () => myContainer1.get().pipe(mergeMap(res1 => getObs2(res1))});
// please note, the end goal is to resolve the first observable on the first subscription
// and not when caching it in the above method (using cold observables)
myContainer2.get().subscribe(...) // getObs2 gets called
myContainer2.get().subscribe(...) // getObs2 gets called again
myContainer2.get().subscribe(...) // getObs2 gets called for a third time, and so on
every time when the second cache is subscribed to getObs2 gets called (it caches nothing).
I suspect my implementation of get is faulty, since I am merging an behavior subject (which emits at the beginning), but I cant think of any other way to implement it (in order to use cold observables).
Please note that if I use normal observable instead of myContainer.get() everything works as expected.
Do you know where the problem lies?
Using a declarative approach, you can handle caching as follows:
// Declare the Observable that retrieves the set of
// configuration data and shares it.
config$ = this._config.get().pipe(shareReplay(1));
When subscribed to config$, the above code will automatically go get the configuration if it's not already been retrieved or return the retrieved configuration.
I'm not clear on what the BehaviorSubject code is for in your example. If it was to hold the emitted config data, it's not necessary as the config$ will provide it.
We are currently using Angular.
Component is receiving data from API. After getting API Data, it goes through Data Services which transform and customize the data, concatenate First Last Name, rounds dollar amounts, makes calculations, etc.
The last step tries to populate the Sales year in a Dropdown, after parsing all the data.
this.webStoreSearchHttpService.GetAllCustomerSalesData(this.customerId).subscribe((response) => {
this.customerList= customerDataService.createCustomerList(response);
this.productList = customerDataService.createProductAnalysis(response);
this.salesList= customerDataService.createSalesList(response);
this.salesYearList= customerDataService.createYearList(response);
this.salesYearItemCurrent = _.cloneDeep(this.salesYearList[0]); <--- this goes into a Mat Select Dropdown
However, correlating data does not appear after selecting web dropdown, because the Data Services is not finished parsing/created yet, even though its in original API subscribe.
What I am trying to do, is make sure all 4 Data services are totally complete, and Then populate salesYear. How can this be done with Angular typescript ?
The data services can be run in Parallel, however last step is salesYear population in dropdown.
The methods return class arrays, not promises or observables.
Update
You added the sentece The methods return class arrays, not promises or observables.. This implies that you have no possibility from outside to wait for asynchroneous calls to finish. Hence you have to change the return value of the customerDataService methods. I am assuming that inside this methods some asynchroneous stuff is done, because you say What I am trying to do, is make sure all 4 Data services are totally complete.
Old version
To answer your question one have to know what the customerDataService methods return type is. Do the method return Promise or Observable? Depending on that you can use Promise.all or forkJoin operator to wait for all methods to finish and then execute the select population. This is an example using observables:
this.webStoreSearchHttpService.GetAllCustomerSalesData(this.customerId).subscribe(response => {
forkJoin([
customerDataService.createCustomerList(response),
customerDataService.createProductAnalysis(response),
customerDataService.createSalesList(response),
customerDataService.createYearList(response)
]).subscribe(([customerList, productList, salesList, salesYearList]) => {
this.customerList = customerList;
this.productList = productList;
this.salesList = salesList;
this.salesYearList = salesYearList;
this.salesYearItemCurrent = _.cloneDeep(this.salesYearList[0]);
});
});
or even better to avoid the inner subscription and has only one subscription:
this.webStoreSearchHttpService.GetAllCustomerSalesData(this.customerId).pipe(
flatMap(response =>
forkJoin([
customerDataService.createCustomerList(response),
customerDataService.createProductAnalysis(response),
customerDataService.createSalesList(response),
customerDataService.createYearList(response)
])
)
).subscribe(([customerList, productList, salesList, salesYearList]) => {
this.customerList = customerList;
this.productList = productList;
this.salesList = salesList;
this.salesYearList = salesYearList;
this.salesYearItemCurrent = _.cloneDeep(this.salesYearList[0]);
});
I have an angular application that makes a request to an Http service and calls a switchMap on another Http service. For some reason the request in the switchMap only runs the first time the parent call is called. Otherwise the parent request fires and the switchMap one doesn't, here is the code:
this._receivableService.newTenantDebitCredit(tenantCredit)
.take(1)
.switchMap(result =>
// Refresh the lease receivables before giving result
this._receivableService.getAll({
refresh: true,
where: { leaseId: this.leaseId }
}).take(1).map(() => result)
)
.subscribe(
...
)
How can I make the getAll request in the switch map run every time the newTenantDebitCredit method is called above it?
Edit: Here is the entirety of the function that is called on click. when i click the button the first time for a given unit both methods are executed. If I try a Unit that has already had that method called (without a refresh) only the first method is executed. I realize a lot of this may not be clear it's a rather large project at this point.
public submitTenantCredit() {
this.isLoading = true;
let tenantCredit: NewTenantDebitCreditData;
let receivableDefinitions: ReceivableDefinition[] = [];
// construct receivable defintions for NewTenantDebitData model
receivableDefinitions = this._constructReceivableDefinitions();
// construct data we will be POSTing to server.
tenantCredit = new NewTenantDebitCreditData({
siteId: this._apiConfig.siteId,
leaseId: this.leaseId,
isCredit: true,
receivables: receivableDefinitions,
reason: this.actionReason
});
// make service call and handle response
this._receivableService.newTenantDebitCredit(tenantCredit)
.take(1)
.switchMap(result =>
// Refresh the lease receivables before giving result
this._receivableService.getAll({
refresh: true,
where: { leaseId: this.leaseId }
}).take(1).map(() => result)
)
.take(1)
.subscribe(
(receivables) => {
this.closeReasonModal();
let refreshLeaseId = this.leaseId;
this.leaseId = refreshLeaseId;
this.isLoading = false;
this.refreshBool = !this.refreshBool;
this._debitCreditService.refreshUnitInfo();
this._notifications.success(`The tenant credit for ${this.customerName} - Unit ${this.unitNumber} was submitted successfully`);
},
(error) => {
console.error(error);
this.isLoading = false;
}
)
}
If it helps newTenantDebitCredit() is a HTTP POST request and getAll() is a GET request.
You used take operator. When your service observable will emit then take operator will execute first and take will chain only first emit from observable. Subsequent emit will not taken by your code.
If you want to take all emits from observable then remove take from your code.
Hope it will help.
Testing the Rx code in isolation, here's a mockup. The console logs happen each time, so I think the Rx you're using is ok.
The best guess at a likely culprit is this.refreshBool = !this.refreshBool, but we'd need to see the internals of newTenantDebitCredit and getAll to be definitive.
// Some mocking
const _receivableService = {
newTenantDebitCredit: (tc) => {
console.log('inside newTenantDebitCredit')
return Rx.Observable.of({prop1:'someValue'})
},
getAll: (options) => {
console.log('inside getAll')
return Rx.Observable.of({prop2:'anotherValue'})
}
}
const tenantCredit = {}
// Test
_receivableService.newTenantDebitCredit(tenantCredit)
.take(1)
.switchMap(result => {
console.log('result', result)
return _receivableService.getAll({
refresh: true,
where: { leaseId: this.leaseId }
})
.take(1)
.map(() => result)
})
.take(1)
.subscribe(
(receivables) => {
console.log('receivables', receivables)
//this.refreshBool = !this.refreshBool;
},
(error) => {
console.error(error);
}
)
<script src="https://cdnjs.cloudflare.com/ajax/libs/rxjs/5.5.6/Rx.js"></script>
First of all, this has nothing to do with the switchMap operator.
Normaly removing the take(1) would cause this behaviour. In this case it wouldn't because it itsn't a so called hot observable.
The problem is that you are using a http.post. This is a cold observable which means it will only return a value once. That is also the reason why you don't need to unsubscribe. It will NEVER fire twice. Possible sollutions might be:
Using web sockets to get realtime data.
Creating a timer which will periodically fetch the data.
Simply get the data again whenever you need it.
The way you are asking the question
How can I make the getAll request in the switch map run every time the newTenantDebitCredit method is called above it?
actually sounds to me as if you are calling only newTenantDebitCredit from somewhere in your code, expecting the second request to happen; so I think this might be a misunderstanding of how observable chains work. Let's make an example:
const source$ = Observable.of(42);
source$
.map(value => 2 * value)
.subscribe(console.log);
source$
.subscribe(console.log);
What would you expect this to log? If your answer is "It would log 84 twice", then that is wrong: it logs 84 and 42.
Conceptually, your situation is the same. The second request only happens when the observable returned by newTenantDebitCredit() emits; it will not happen anytime some caller calls newTenantDebitCredit. This is because observable chains do not mutate an observable in-place, they only ever return a new observable.
If you want the second request to happen, you have to actually change the definition of the newTenantDebitCredit method to return an observable set up to perform the second request; alternatively, set up a chained observable that you subscribe to instead of calling newTenantDebitCredit.
Not really an answer but I did solve my problem. It will almost certainly be of no use to anyone BUT it was an issue in the receivableService it was not properly cheeking the boolean: refresh and was pulling values from cache after the first time.
I'm trying to create an observable flow that fulfills the following requirements:
Loads data from storage at subscribe time
If the data has not yet expired, return an observable of the stored value
If the data has expired, return an HTTP request observable that uses the refresh token to get a new value and store it
If this code is reached again before the request has completed, return the same request observable
If this code is reached after the previous request completed or with a different refresh token, start a new request
I'm aware that there are many different answers on how to perform step (3), but as I'm trying to perform these steps together I am looking for guidance on whether the solution I've come up with is the most succinct it can be (which I doubt!).
Here's a sample demonstrating my current approach:
var cachedRequestToken;
var cachedRequest;
function getOrUpdateValue() {
return loadFromStorage()
.flatMap(data => {
// data doesn't exist, shortcut out
if (!data || !data.refreshtoken)
return Rx.Observable.empty();
// data still valid, return the existing value
if (data.expires > new Date().getTime())
return Rx.Observable.return(data.value);
// if the refresh token is different or the previous request is
// complete, start a new request, otherwise return the cached request
if (!cachedRequest || cachedRequestToken !== data.refreshtoken) {
cachedRequestToken = data.refreshtoken;
var pretendHttpBody = {
value: Math.random(),
refreshToken: Math.random(),
expires: new Date().getTime() + (10 * 60 * 1000) // set by server, expires in ten minutes
};
cachedRequest = Rx.Observable.create(ob => {
// this would really be a http request that exchanges
// the one use refreshtoken for new data, then saves it
// to storage for later use before passing on the value
window.setTimeout(() => { // emulate slow response
saveToStorage(pretendHttpBody);
ob.next(pretendHttpBody.value);
ob.completed();
cachedRequest = null; // clear the request now we're complete
}, 2500);
});
}
return cachedRequest;
});
}
function loadFromStorage() {
return Rx.Observable.create(ob => {
var storedData = { // loading from storage goes here
value: 15, // wrapped in observable to delay loading until subscribed
refreshtoken: 63, // other process may have updated this between requests
expires: new Date().getTime() - (60 * 1000) // pretend to have already expired
};
ob.next(storedData);
ob.completed();
})
}
function saveToStorage(data) {
// save goes here
}
// first request
getOrUpdateValue().subscribe(function(v) { console.log('sub1: ' + v); });
// second request, can occur before or after first request finishes
window.setTimeout(
() => getOrUpdateValue().subscribe(function(v) { console.log('sub2: ' + v); }),
1500);
First, have a look at a working jsbin example.
The solution is a tad different then your initial code, and I'd like to explain why. The need to keep returning to your local storage, save it, save flags (cache and token) didn't not fit for me with reactive, functional approach. The heart of the solution I gave is:
var data$ = new Rx.BehaviorSubject(storageMock);
var request$ = new Rx.Subject();
request$.flatMapFirst(loadFromServer).share().startWith(storageMock).subscribe(data$);
data$.subscribe(saveToStorage);
function getOrUpdateValue() {
return data$.take(1)
.filter(data => (data && data.refreshtoken))
.switchMap(data => (data.expires > new Date().getTime()
? data$.take(1)
: (console.log('expired ...'), request$.onNext(true) ,data$.skip(1).take(1))));
}
The key is that data$ holds your latest data and is always up to date, it is easily accessible by doing a data$.take(1). The take(1) is important to make sure your subscription gets a single values and terminates (because you attempt to work in a procedural, as opposed to functional, manner). Without the take(1) your subscription would stay active and you would have multiple handlers out there, that is you'll handle future updates as well in a code that was meant only for the current update.
In addition, I hold a request$ subject which is your way to start fetching new data from the server. The function works like so:
The filter ensures that if your data is empty or has no token, nothing passes through, similar to the return Rx.Observable.empty() you had.
If the data is up to date, it returns data$.take(1) which is a single element sequence you can subscribe to.
If not, it needs a refresh. To do so, it triggers request$.onNext(true) and returns data$.skip(1).take(1). The skip(1) is to avoid the current, out dated value.
For brevity I used (console.log('expired ...'), request$.onNext(true) ,data$.skip(1).take(1))). This might look a bit cryptic. It uses the js comma separated syntax which is common in minifiers/uglifiers. It executes all statements and returns the result of the last statement. If you want a more readable code, you could rewrite it like so:
.switchMap(data => {
if(data.expires > new Date().getTime()){
return data$.take(1);
} else {
console.log('expired ...');
request$.onNext(true);
return data$.skip(1).take(1);
}
});
The last part is the usage of flatMapFirst. This ensures that once a request is in progress, all following requests are dropped. You can see it works in the console printout. The 'load from server' is printed several times, yet the actual sequence is invoked only once and you get a single 'loading from server done' printout. This is a more reactive oriented solution to your original refreshtoken flag checking.
Though I didn't need the saved data, it is saved because you mentioned that you might want to read it on future sessions.
A few tips on rxjs:
Instead of using the setTimeout, which can cause many problems, you can simply do Rx.Observable.timer(time_out_value).subscribe(...).
Creating an observable is cumbersome (you even had to call next(...) and complete()). You have a much cleaner way to do this using Rx.Subject. Note that you have specifications of this class, the BehaviorSubject and ReplaySubject. These classes are worth knowing and can help a lot.
One last note. This was quite a challange :-) I'm not familiar with your server side code and design considerations yet the need to suppress calls felt uncomfortable to me. Unless there is a very good reason related to your backend, my natural approach would be to use flatMap and let the last request 'win', i.e. drop previous un terminated calls and set the value.
The code is rxjs 4 based (so it can run in jsbin), if you're using angular2 (hence rxjs 5), you'll need to adapt it. Have a look at the migration guide.
================ answers to Steve's other questions (in comments below) =======
There is one article I can recommend. It's title says it all :-)
As for the procedural vs. functional approach, I'd add another variable to the service:
let token$ = data$.pluck('refreshtoken');
and then consume it when needed.
My general approach is to first map my data flows and relations and then like a good "keyboard plumber" (like we all are), build the piping. My top level draft for a service would be (skipping the angular2 formalities and provider for brevity):
class UserService {
data$: <as above>;
token$: data$.pluck('refreshtoken');
private request$: <as above>;
refresh(){
request.onNext(true);
}
}
You might need to do some checking so the pluck does not fail.
Then, each component that needs the data or the token can access it directly.
Now lets suppose you have a service that needs to act on a change to the data or the token:
class SomeService {
constructor(private userSvc: UserService){
this.userSvc.token$.subscribe(() => this.doMyUpdates());
}
}
If your need to synthesize data, meaning, use the data/token and some local data:
Rx.Observable.combineLatest(this.userSvc.data$, this.myRelevantData$)
.subscribe(([data, myData] => this.doMyUpdates(data.someField, myData.someField));
Again, the philosophy is that you build the data flow and pipes, wire them up and then all you have to do is trigger stuff.
The 'mini pattern' I've come up with is to pass to a service once my trigger sequence and register to the result. Lets take for example autocomplete:
class ACService {
fetch(text: string): Observable<Array<string>> {
return http.get(text).map(response => response.json().data;
}
}
Then you have to call it every time your text changes and assign the result to your component:
<div class="suggestions" *ngFor="let suggestion; of suggestions | async;">
<div>{{suggestion}}</div>
</div>
and in your component:
onTextChange(text) {
this.suggestions = acSVC.fetch(text);
}
but this could be done like this as well:
class ACService {
createFetcher(textStream: Observable<string>): Observable<Array<string>> {
return textStream.flatMap(text => http.get(text))
.map(response => response.json().data;
}
}
And then in your component:
textStream: Subject<string> = new Subject<string>();
suggestions: Observable<string>;
constructor(private acSVC: ACService){
this.suggestions = acSVC.createFetcher(textStream);
}
onTextChange(text) {
this.textStream.next(text);
}
template code stays the same.
It seems like a small thing here, but once the app grows bigger, and the data flow complicated, this works much better. You have a sequence that holds you data and you can use it around the component wherever you need it, you can even further transform it. For example, lets say you need to know the number of suggestions, in the first method, once you get the result, you need to further query it to get it, thus:
onTextChange(text) {
this.suggestions = acSVC.fetch(text);
this.suggestionsCount = suggestions.pluck('length'); // in a sequence
// or
this.suggestions.subscribe(suggestions => this.suggestionsCount = suggestions.length); // in a numeric variable.
}
Now in the second method, you just define:
constructor(private acSVC: ACService){
this.suggestions = acSVC.createFetcher(textStream);
this.suggestionsCount = this.suggestions.pluck('length');
}
Hope this helps :-)
While writing, I tried to reflect about the path I took to getting to use reactive like this. Needless to say that on going experimentation, numerous jsbins and strange failures are big part of it. Another thing that I think helped shape my approach (though I'm not currently using it) is learning redux and reading/trying a bit of ngrx (angular's redux port). The philosophy and the approach does not let you even think procedural so you have to tune in to functional, data, relations and flows based mindset.