Prototype property inside class constructor [duplicate] - javascript

I was trying ES6 syntax and find I cannot define prototype property or instance property within class defination, why forbids it?
I was using MyClass.prototype.prop=1 before, try ES7 by babel compiler as below, still cannot define prototype property.
class MyClass{
prop=1;
static sProp=1;
}
I don't think define instance property is any dangerous, there's 2 cases in my own browser game need prototype property:
Subclass instances need to inherit same property value from base class:
var Building=function(){...}
Building.prototype.sight=350;
TerranBuilding.CommandCenter=...(CommandCenter extends Building)
TerranBuilding.Barracks=...(Barracks extends Building)
So CommandCenter and Barracks will both have same building sight as 350.
new CommandCenter().sight===new Barracks().sight//All buildings have same sight
Buffer effect override original property and remove buffer
Marine.prototype.speed=20
var unit=new Marine()
unit.speed===20//get unit.__proto__.speed 20
unit.speed=5//Buffer:slow down speed, unit.speed will override unit.__proto__.speed
delete unit.speed//Remove buffer
unit.speed===20//true, speed restore
So I think it should add a way to set prototype property instead of forbid it completely, or can you give some other solutions to deal with above 2 cases?

Updated Answer (April, 2022)
Just two months after my previous answer, in August of 2021, the static block proposal was moved to stage 4 by the TC-39 committee. See the whole informal list of finished proposals here.
For those looking to get a use case summary of static blocks in Javascript, read the initial publication from the V8 blog from March 2021, after their implementation.
Also, see the MDN documentation for static initialization blocks.
Though most all updated browsers now support this, read below if you really like to support Internet Explorer.
Original Answer
Below is the typical pattern I follow in javascript. Native, no babel, etc..
It mirrors the static-block style that java uses. There is a Stage 3 Proposal open for this right now, and I expect therefor, that it will be standardized in the near future (as is consistent with the stage 3 proposal expectations of the TC-39 committee).
What the proposal will look like
class MyClass {
static {
// Any code here is executed directly after the initialization
// of MyClass. You can add prototype stuff here. The function
// is called bound to `MyClass`.
}
}
This can be done today using a static iife
These will function exactly the same way.
class MyClass {
// Using private properties is not required, it is just an option. Make
// sure to use an arrow function so that `this` refers to `MyClass`,
// Note that `MyClass` will still be in the functions closure.
static #_ = (() => {
// 'Almost' how functions are typically added. ES6 style
// is always recommended over this.
this.prototype.myFunc = function myFunc() {
console.log(":D");
};
// ES6 would actually do this (approximately) so that the function is
// non-enumerable in the prototype.
Reflect.defineProperty(this.prototype, "myFunc", {
// enumerable: false, // defaults 'false'
writable: true,
configurable: true,
// I'm intentionally not using the shorthand for the function
// so that it is named 'myFunc'.
value: function myFunc() {
console.log(":D");
}
});
// Note that all children of MyClass will refer to this exact
// object if put in the prototype, i.e. not a copy of it.
// Also, this property will be non-enumerable on the children
// (but enumerable on the prototype itself unless you
// use `defineProperty` as above).
this.prototype.sharedProperty = { name: "Gerald" };
})();
}

Neither of those will be on the class prototype.
The class Foo { bar = 1; } syntax will assign a value to the class instance, to be accessed with this.bar.
The class Foo { static bar = 1; } syntax will assign a value to the class constructor, to be accessed with Foo.bar.
There isn't much reason to use the prototype in this case. It will only complicate who actually owns the property and assigning a number in a few different classes will have very little overhead.
I would suggest the class instance property and just use this.sight everywhere you need it.

The simplest way to add a property to the prototype inside the class body is by using the prototype assignment as a "value" for a dummy static property:
class MyClass {
static _dummy = MyClass.prototype.prop1 = <expression1>
static _dummy = MyClass.prototype.prop2 = <expression2>
// or
static _dummy = this.prototype.prop2 = <expression2>
}
(it works without parentheses because = is right-associative, and it's fine to re-use the same dummy property for each prototype assignment)
If you want to do more interesting (multi-line) computation for the values, an initializer can be an immediately-executed function expression, in which case you've basically created a static constructor and you can put all the initializations for the prototype and class object in that.

I think the other answer didn't get the point of this question. The whole point of having inheritance is that you can decide when and where to override something. and if anyone think that's an overhead, why does ya use an OOP language at all?
I don't know why it's "forbidden" after all, but I could share some ideas.
I'm pretty sure there is no way to define a Prototype Property with 'class' keyword. Any definition will be install on "hasOwnProperty". A huge setback is that in a constructor, there is no way to have any parents' constructors to interact with an overridden property.
To the point of reasoning, it's actually expelled by an other feature: you can use expressions to assign properties to this.
class A extends B { sight = this.getSight() * 3 }
When an expression excuses, it is either run with instance - created with constructor, or run at class declaration - when the prototype is created.
Accessors and methods don't have this problem. They are defined at prototype definition time and called at instance run time.
Property defined with expression with "=" is the return value of the expression. It is excused right after definition - should be the instance creation time, otherwise this could not be available.
So it's nothing about patterns. It's about having expressions or having inheritance. I definitely prefer inheritance, expressions are so pointless when you can write them right into the constructor.
class A extends B { constructor() { this.sight = this.getSight() * 3 }
Using decorators are a nice work around. You can always do something with the prototype in javascript:
#B({sight:2}) class A {};
decorator B is:
function(option) {return function(clazz) {clazz.prototype.sight = option.sight; return clazz}}

Using Class static initialization blocks1:
class MyClass {
static {
this.prototype.prop = 1;
}
}
console.log(MyClass.prototype.prop); // 1
const instance = new MyClass();
console.log(instance.__proto__.prop); // 1
this in the static block differs as1:
The this inside a static block refers to the constructor object of the class.
The code inside the static block is executed only once when the class initialization gets evaluated.
Note: Safari doesn't support this feature as of June 2022. You can check the latest info on, for example, mdn web docs1.
[1] https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Class_static_initialization_blocks

class MyClass {
constructor() {
MyClass.prototype.prop2 = "Marry";
}
}
const mc = new MyClass()
mc.__proto__ // { prop2: "Marry" }

Related

What is a difference between an object literal and a class with values in constructor in javascript?

I've been working on end to end test in testcafe and in their documentation I found following solution for Page Model:
class Page {
constructor () {
this.nameInput = Selector('#developer-name');
}
}
export default new Page();
I've been doing some research and I cannot get my head around why it is not resolved with an object literal:
export const Page = {
nameInput: Selector('#developer-name');
}
What are consequences of using each of them?
The difference is significant but fundamentally both are JavaScript objects, albeit with different properties and values. Listing all differences on the level of the language would be a long story and you'd be wise to read and understand on JavaScript prototype-based inheritance, but the most important differences are:
Page is a prototype object: whenever you create an object of class Page with new Page(), the constructor function is called with this referring to the object being created, not Page itself. Any property you access on the object is searched along the so-called "prototype chain", including the so-called prototype object. This prototype object can be accessed with Page.prototype and in fact, all methods you define in the class Page are also properties of this prototype object. Unlike own properties designed to refer to unique objects or primitives specific to an object, functions in JavaScript don't have to be bound to an object during object or function creation and can be shared between objects (belonging to the same class, for instance) and are called on the actual instance, not the prototype to which they may belong. In other words, this.nameInput in your constructor actually adds a property named nameInput to the object being created with new Page(), not the prototype, while the constructor itself (constructor) and any non-static methods you might add to Page will be added as properties of Page.prototype. The constructor is accessed as Page.prototype.constructor, by the way, as you'd naturally expect. Page.prototype.constructor === Page evaluates to true, by the way.
An expression of the form like { nameInput: ... } creates an object which prototype is Object.prototype, in practice the most basic form of object with "no prototype" and thus no superclass or any traits beyond what the fundamental object prototype object could provide. Any properties any such { ... } object may seem to have through its prototype chain, including methods, are properties of Object.prototype. This is why you can do ({}).toString() or ({}).hasOwnProperty("foobar") without actually having toString or hasOwnProperty properties in your object -- toString and hasOwnProperty are properties of Object.prototype referring to two distinct methods called toString and hasOwnProperty, respectively, and JavaScript creates a special property on your object called __proto__ referring to Object.prototype. This is how it knows how to "walk the prototype chain". The names of functions themselves do not matter like that, by the way -- I may add a property on an object referring to an anonymous function: var foo = ({}); foo.bar = function() { }; and call said unnamed function with foo.bar().
One mistake you appear to be making is confusing an object of a class with the class, otherwise you wouldn't compare export default class Page { ... } to export const Page = { nameInput: Selector(...) } -- the former creates a class accessible as Page which is used as the prototype object whenever objects of the class are created, while the latter creates an object accessible as Page which contains nameInput referring to result of evaluating expression Selector("#developer-name") (calling Selector with the sole argument "#developer-name"). Not the same thing at all, not to mention that former has Page refer to a class (invariably a prototype in JavaScript), while latter has Page refer to an object that does not seem to fit the pattern of a class.
The interesting things start when you realize that since a class is an object like any other in JavaScript, any object can be used as a class if you know how prototype-based inheritance works:
new (function() { this.nameInput = Selector("#developer-name"); })();
What happens here? You create a new object with an unnamed function as the object constructor. The effect is absolutely equivalent to otherwise creating the object with new Page with Page being your original ES6 class (ECMAScript 6 is the language specification that adds class syntax to JavaScript).
You can also do this, again equivalent to if you defined Page with class Page ...:
function Page() {
this.nameInput = Selector("#developer-name");
}
var foo = new Page();
Page.prototype will be the prototype object for foo, accessible as foo.__proto__ and otherwise making it possible for you to call instance methods on foo like foo.bar(), provided you define bar property on at least Page.prototype:
function Page() {
this.nameInput = Selector("#developer-name");
}
Page.prototype.bar = function() {
console.log(this.nameInput);
}
var foo = new Page();
foo.bar();
In fact, the above is what browser would do internally if it had to interpret the following code:
class Page {
constructor() {
this.nameInput = Selector("#developer-name");
}
bar() {
console.log(this.nameInput);
}
}
It is beyond the scope of my answer to list differences between the two last approaches (isn't the same thing as the two approaches you proposed), but one difference is that with class Page ..., Page is not a property of window in some user agents while with function Page ... it is. It's partly historical reasons, but rest assured that so far defining constructors and prototype using either approach is pretty much the same, although I can imagine smarter JavaScript runtimes will be able to optimize the latter form better (because it's an atomic declaration, and not just a sequence of expressions and statements).
If you understand prototype-based inheritance at the heart of all of this, all your questions about this will fall away by themselves as very few fundamental mechanisms of JavaScript support 99% of its idiosyncrasies. You'll also be able to optimize your object design and access patterns, knowing when to choose ES6 classes, when not to, when using object literals ({ prop: value, ... }) and when not to, and how to share fewer objects between properties.
Classes can be thought of as a blueprint, they both provide an object in the end. But as the object literals name implies, you literally create it there and then with this 'literal' syntax. A class however, we would use to instantiate new instances from 1 base blueprint.
let x = { myProp: undefined }
let y = { myProp: undefined }
x.myProp = "test";
y.myProp // undefined
Here we see we make two separate instances, but we will have to repeat code.
class X { }
let x = new X();
let y = new X();
A class does not need to repeat the code, as it is all encapsulated in the idea of what X should be, a blueprint.
Similar to above [in the literal] we have two separate instances but it's cleaner, more readable, and any change we wish to make to every instance of this 'X' object can now be changed simply in the class.
There's a plethora of other benefits and even a paradigm dedicated to Object-Oriented Programming, read here for more:
https://www.internalpointers.com/post/object-literals-vs-constructors-javascript
To go further into the constructor question... In other languages we have fields.
I believe when you assign a field in the constructor, it just creates an underthehood like field (I say underthehood like because JavaScript is prototype based, and the class syntax is syntactical sugar to help write prototypes easier for programmers familiar with class syntax in other languages).
Here is an example in C#.
public class X{
private int y;
X() {
this.y = 5;
}
}
It's more a convention to assign fields in the constructor in other languages, so I assume this has something to do with it in JavaScript.
Hope this helps.
By declaring it as a Class you can later identify what type of object it is with .constructor.name:
class Page {
constructor () {
this.nameInput = "something";
}
// No comma
anotherMethod() {
}
}
const pageClass = new Page();
const pageLiteral = {
nameInput: "something"
, // must have a comma
anotherMethod() {
}
}
console.log("Name of constructor for class: ", pageClass.constructor.name); // Page
console.log("Name of constructor for literal: ", pageLiteral.constructor.name); // Object

Difference between class method vs className.prototype method in JS

I am wondering what's the difference between setting methods via Class body vs prototype binding in JS. (if any)
I am currently working on Eloquent JavaScript example and I was surprised when author firstly created a class with bunch of methods inside its body and then created another method with className.prototype.methodName = function(){}
class Cat {
constructor() {
}
method1() {
console.log("m1");
}
}
Cat.protoype.method2 = function() {
console.log("m2");
}
The most obvious difference is:
You can mutate the prototype of every class with the second method (including native ones), while the first syntax only works for declaring your own classes (but on the other hand it keeps things clean & structured).
There are other differences, that you can ignore in most cases:
1) Class methods are not enumerable, while setting a property directly makes it enumerable.
This would be more equivalent to the class syntax:
Object.defineProperty(Cat.protoype, "method2", {
value() {
console.log("m2");
},
enumerable: false, // it's the default value, this is just for clarity
writable: true,
configurable: true,
});
2) super is only accessible in methods added during declaration (both in objects and classes) of the object / class itself.
3) The .name of the function is "test" in the first, and "anonymous" in the second case. That can be changed by making the function non anonymous, e.g. function method2() { ... }
I hope this helps: "Changes to the Object prototype object are seen by all objects through prototype chaining, unless the properties and methods subject to those changes are overridden further along the prototype chain. This provides a very powerful although potentially dangerous mechanism to override or extend object behavior."
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype

What's the difference between these two ways of creating constructor functions in Javascript? [duplicate]

With the release of ECMAScript 6 on June 2015, Javascript classes syntax was introduced.
This syntax:
class Polygon {
constructor(width, height) {
this.width = width;
this.height = height;
}
}
is basically same as:
function Polygon(width, height) {
this.width = width;
this.height = height;
}
So what is the benefit of using class instead of traditional function?
And in what condition I should use class instead of function?
There are some differences between Class and Function - most people will start by saying that the Class is "just syntax sugar", but that sugar does matter quite a bit. When the JS parser is processing the JavaScript code the parser will save them in different AST nodes, like shown here the ClassDeclaration and ClassExpression are different node types in the resulting AST tree:
https://github.com/estree/estree/blob/master/es2015.md#classes
You can see that for this parser, the new ES6 Classes spec introduces a number of new AST elements to the syntax:
ClassBody
MethodDefinition
ClassDeclaration
ClassExpression
MetaProperty
Since the AST syntax is not standard, there can be more or less types depending on the parser, but what is important to notice that when the code enters the class declaration or class expression it will be interpreted differently by the JavaScript engine.
This means, that Class and Function declarations can not be exchanged. You can see this if you try to write
class notWorking {
return 1; // <-- creates a parser error
};
This is because when the parser encounters the class -keyword, it will start treating the following code as ClassBody of either ClassDeclaration or ClassExpression and then it expects to find MethodDefinitions.
This is a small problem, because creating private variables becomes a bit more challenging. The function declaration could define a private variable neatly like this:
function myClass() {
var privateVar;
}
The class declaration can not have this:
class myClass {
var privateVar; // ERROR: should be a method
}
This is because the syntax of class allows only methods to be declared inside the class body. At least right now.
However, there exists a proposal for creating private fields:
https://github.com/zenparsing/es-private-fields
Thus, in the future you might be able to say
class myClass {
#privateVar; // maybe this works in the future?
}
There is a separate answer considering the private properties in ES6 Classes, which is suggesting some workarounds, like the use of Symbols:
Private properties in JavaScript ES6 classes
var property = Symbol(); // private property workaround example
class Something {
constructor(){
this[property] = "test";
}
}
Naturally there are more differences between classes and functions. One of them is Hoisting 1 - unlike Functions, you can't declare the Class anywhere in the scope:
An important difference between function declarations and class
declarations is that function declarations are hoisted and class
declarations are not. You first need to declare your class and then
access it
The Class declarations and Function declarations are quite similar;
function foo1() {} // can be used before declaration
class foo2{} // new foo2(); works only after this declaration
The class expressions work quite similarly to function expressions, for example they can be assigned to a variable:
var myClass = class foobar {};
More differences are 1
The Class expression / declaration body is always executed in Strict mode - no need to specify that manually
Classes have special keyword constructor - there can be only one of them, or error is thrown. Functions could have multiple definitions of variable of function named "constructor"
Classes have special keyword super which relates to the parent classes constructor. If you are inside the constructor you can call super(x, y); to call the parent class constructor but inside the Method you can call super.foobar() to create call to any parent class function. This kind of functionality is not available for standard Functions although you might emulate it with some custom hacking.
Inside class body you can define function with static keyword so it can be called using only ClassName.FunctionName() -syntax.
Both class declarations and expressions can use extends keyword like class Dog extends Animal
MethodDeclaration does not need function -prefix, thus you can define function "ok" inside the class "m" like this: class m { ok() { } }. Actually it is not even allowed to define function as class m { function ok() { } }
However, after the parser has completed it's job, the class instance is essentially running the same way as any other object.
The new ES6 Class syntax is essentially more clear way of expressing objects in a traditional OOP way and if you like it, then you should use it.
EDIT: also, the ES6 Class syntax has also another limitation: it does not allow the member functions to use lexically binded using fat arrow. ES7 seems to have experimental feature allowing it. That can be useful for example when binding methods to event handlers, the related question is here.
1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
class its nothing but a syntactical sugar over javascript logic class creation using function. if you are using a function as class the entire function is act as a constructor, if you want to put other member functions you need to do that in constructor like this.something = ..., or var something = ... in case of private members (if you are not injecting from outside, assume you are creating object with other methods / properties), but in case of class the entire function is not actually act a constructor you can explicitly separate it with other member functions and data.

Making Sense of Class Keyword in Javascript

I am getting into ES6 lately and finally looking into classes seriously. I read that classes are just a cover over Objects in Javascript, however, I am finding the syntax most uncomfortable.
Could someone please explain / point to a reference where they explain, how classes simulate & importantly how we can map them into Javascript way of Object manipulation in our mind.
class NoteStore {
constructor() {
this.bindActions(NoteActions);
this.notes = [];
}
}
As per the example code above, I thought classes are mere constructors, but then what is a constructor doing within a constructor?
As someone who started learning programming with Js, I find the addition of classes (also React's classes) to be a terrible addition to Js so any help would be awesome.
Thanks
Classical class-based programming is based on defining a class which contains a constructor method and other methods which will be inherited by the constructed object. This is written as you show in your sample: the class is defined with its name, then contains a constructor function, then further functions.
The constructor method in a class definition is somewhat special, in that it gets invoked upon object construction. Since it's special, it somehow needs to be marked as such, and that's done by naming it constructor.
In classical Javascript (prototype-based OOP), this works differently: an object constructor is a simple function, and methods inherited by each object instance are defined on an object on the .prototype property of that function. There's nothing special about the constructor in prototype-based OOP, it's just a function, and the real magic lies in the new keyword and the use of this when the object gets constructed.
Expressing this in the form of a class with a constructor method is merely catering to classical-OOP developers, and arguably provides a more compact syntax.
class NoteStore {
constructor() {
this.bindActions(NoteActions);
this.notes = [];
}
bindActions(actions) {
..
}
}
This expressed in simple Javascript is:
function NoteStore() {
this.bindActions(NoteActions);
this.notes = [];
}
NoteStore.prototype.bindActions = function (actions) {
..
}
I think the explanation at MDN is quite clear.
class keyword is nothing but a new name for old style OOP implementation where we use a function constructor to get same functionality.
class keyword is brought to JavaScript to make it more similar to other traditional object oriented languages like C++, Java. But at core it is still function constructor with few changes.
For your question "what a constructor doing under constructor" ES6 has done some modification for older version so that class will not act as a constructor for examaple class cannot be invoked directly(without new keyword) like
NoteStore();
This will throw error in ES6 but if it was a function constructor like in ES5 than it works leaving you in a risk of bugs. classes are also not Hoisted.
For more detail and example you can read this link.
The JS class keyword:
Javascript has a system of inheritance which is called prototypal inheritance. This is a system were objects inherit properties from other objects. When a function is invoked using the new keyword the new object created with it 'inherits' properties from from the constructor function's prototype property.
The JS class keyword is merely syntactical sugar for a constructor function. The class keyword just has different syntax but it essentially achieves the same goal of Object creation with prototypes. Take for example the following snippet:
class human {
constructor (name) {
this.name = name;
}
speak () { console.log('hi')}
};
console.log(typeof human);
// logs function, a class is just a constructor function under the hood
const me = new human('Willem');
console.log(Object.getPrototypeOf(me) === human.prototype);
// logs true, the object me has a reference to the human.prototype object.
me.speak();
// This speak method is located on the prototype of the object, not the object itself
console.log(me.hasOwnProperty('speak')); // logs false
console.log(human.prototype.hasOwnProperty('speak')); // logs true

javascript inheritance

I know there is a lot of similar questions are tons of great answers to this. I tried to look at the classical inheritance methods, or those closure methods etc. Somehow I consider they are more or less "hack" methods to me, as it doesn't really what the javascript is designed to do. (Welcome anybody correct me if I am wrong).
OK, as long as it works, I satisfy with the classical inheritance pattern like:
PARENTClass = function (basevar) { do something here; };
PARENTClass.prototype = { a: b, c: d}; // prototype is auto gen
// Inheritance goes here
CHILDClass = function (childvar) { do something; };
CHILDClass.prototype = new PARENTClass(*1); // Actual inheritance to the prototype statement
// Instance
CHILDInstance = new CHILDClass(whatever);
Above is somehow, to my understanding the inheritance of JS. But one scenario I have no idea how to implement, is that what if I want to do some initializing DURING object creation (ie, within constructor), and the new object can be used right away.... My illustration on problem might not be too clear, so let me use the following C# Psuedo to explain what I want to do:
class PARENT {
public PARENT (basevar) { ... }
}
class CHILD : PARENT {
public CHILD (basevar) : PARENT (basevar) // constructor of child, and call parent constructor during construct.
{ ... }
}
For some reason (like init. UI elements), putting them in constructor seems the best way to do. Anyone have idea on how can I do it.
PS: in the *1, I have no idea what I should put there.
PS2: The above situation I DID found the jquery.inherit library can do, I just wonder if not using library can achieve it.
PS3: Or my understanding is wrong. Since javascript is not intended to mimick OOP (that's why i call it hack), what is the "CORRECT" logic to implement this.
It is not a hack as such; JavaScript is a prototyped language, as defined by Wikipedia as where:
..classes are not present, and behavior reuse (known as inheritance in class-based languages) is performed via a process of cloning existing objects that serve as prototypes.
As it says, classes are not used in JavaScript; each object that you create is descended from the JavaScript Object; all objects in JavaScript have the prototype object, and all instances of objects you create 'inherit' methods and properties from their object's prototype object. Take a look at the MDC prototype object reference for more information.
As of this, when you call the line:
CHILDClass.prototype = new PARENTClass();
This allows the CHILDClass object to add methods and properties to its prototype object from the PARENTClass object, which creates an effect similar to the idea of inheritance present in class-based languages. Since the prototype object affects every instance created of that object, this allows the parent object's methods and properties to be present in every instance of your child object.
If you want to call your parent class's constructor in your child class's constructor, you use the JavaScript call function; this allows you to call the parent class's constructor in the context of the child class's constructor, therefore setting the newly prototyped properties in your child class to what they are set as in the parent class.
You also do not need to put anything where you have specified the *1, since that line is merely used to add the methods and properties to the child class's prototype object; however, bear in mind that it calls the parent class's constructor, so if there are any arguments that are fundamental in the operation of the parent class constructor, you should check that these are present so as to avoid JavaScript errors.
You can manually invoke the parent constructor in the subclass constructor like this:
CHILDClass = function (basevar) {
PARENTClass.call(this, basevar);
// do something;
};
The trick here is using the call method, which allows you to invoke a method in the context of a different object. See the documentation of call for more details.
JavaScript has no built-in support for inheritance hierarchies as type extension is supposed to be done via aggregation, ie adding desired functionality directly to the object itself or its prototype if the property is to be shared between instances.
Nevertheless, JS is powerful enough to make implementing other forms of object construction possible, including classical inheritance.
Given a clone function - which is enough to add 'true' prototypical inheritance, and not JavaScript's bastardization thereof - your exampe can be implemented like this:
function ParentClass(baseVar) {
// do stuff
}
// don't overwrite the prototype object if you want to keep `constructor`
// see http://joost.zeekat.nl/constructors-considered-mildly-confusing.html
ParentClass.prototype.a = 'b';
ParentClass.prototype.c = 'd';
function ChildClass(childVar) {
// call the super constructor
ParentClass.call(this, childVar);
}
// don't inherit from a ParentClass instance, but the actual prototype
ChildClass.prototype = clone(ParentClass.prototype);
ChildClass.prototype.e = 'f';
It's also possible to add some syntactic sugar for class-based inheritance - my own implementation can be found here.
The example from above would then read
var ParentClass = Class.extend({
constructor: function(baseVar) {
// do stuff
},
a: 'b',
c: 'd'
});
var ChildClass = ParentClass.extend({
e: 'f'
});
I've got a lightweight javascript OOP wrapper that provides 'Class-like' inheritance where you can override base methods or call base constructors or members.
You define your classes like this:
//Define the 'Cat' class
function Cat(catType, firstName, lastName)
{
//Call the 'Animal' constructor.
Cat.$baseNew.call(this, firstName, lastName);
this.catType = catType;
}
//Extend Animal, and Register the 'Cat' type.
Cat.extend(Animal, { type: 'Cat' }, {
hello: function(text)
{
return "meaoow: " + text;
},
getFullName: function()
{
//Call the base 'Animal' getFullName method.
return this.catType + ": " + Cat.$base.getFullName.call(this);
}
})
//It has a built-in type system that lets you do stuff like:
var cat = new Cat("ginger", "kitty", "kat");
Cat.getType() // "Cat"
cat.getBaseTypesAndSelf() // ["Cat","Animal","Class"]
cat.getType() // "Cat"
cat.isTypeOf(Animal.getType()) // "True"
var dynamicCat = Class.createNew("Cat", ["tab","fat","cat"])
dynamicCat.getBaseTypesAndSelf() // ["Cat","Animal","Class"]
dynamicCat.getFullName() // tab: fat cat
source code available at: Class.js
I also have more details in my blog post about OOP in javascript
Just thought I'd mention some of the issues with the classical pattern you're going for:
Reference vars on the super class(es) will be available as essentially statics on ALL instances. For example, if you have var arr = [1,2,3] in the super, and do instance_1.arr.push(4) instance_2.arr.push(5) ALL of these instances will "see" the changes.
So you solve 1. with Ayman's solution which Zakas calls "Constructor Stealing", but now you call the constructor twice: once for your prototype and once for the constructor stealing. Solution - for your prototype use a helper like inheritPrototype (I showed the whole implementation of this in this post: inheritPrototype method FWIW, this essentially came from a combination of page 181 of Zakas's book and some Crockford study.
No privacy (but then again, you'd need to use something like the Durable Object pattern to get this and that may not be what you want)
Object definition is left "dangling": Solution - put an if statement checking for any of your prototype's functions and then define the prototype with a prototype literal.
I have running examples of all of this on github!!!
It's been just as much of a challenge for me to truly grok both: Zakas and Crockford books on object creation and inheritance. I also needed to try some different JavaScript TDD frameworks. So I decided to create an essay on both TDD Frameworks and JavaScript Object Creation & Inheritance. It has running code and jspec tests! Here's the link:*
My GitHub Open Source Essay/Book

Categories

Resources