Equivalent of exportFunction or cloneInto for classes? - javascript

The title says it all. I'm trying to inject a class into the global object / default scope of affected webpages, from a WebExtension. (I have no objections to supporting Chrome; however, I'm tagging this question as Firefox-specific for now, since it seems that Chrome does not yet support this use-case at all.)
For functions, exportFunction() may be used to inject functions into the global object.
For Objects, cloneInto() may be used.
However, neither of these seemed to work for a class.
Here is a sample content_script that I've been using for troubleshooting:
console.log("Content script initializing...");
function patch_function(f, name, dest=window) {
exportFunction(f, dest, {defineAs: name});
console.log(`Patched function ${name} into window!`);
}
function patch_object(o, name, dest=window) {
window.wrappedJSObject[name] = cloneInto(o, dest, {cloneFunctions: true});
console.log(`Patched object ${name} into window!`);
}
let basicObject = {'hello': 'world'};
class MyClass {
constructor(x=7) {
this.x = x;
}
return_x() {
return this.x;
}
}
console.log("Patching...");
// This works PERFECTLY from the webpage...
patch_object(basicObject, 'basicObject');
// ...but neither of these works! Swap the comment to try out the other one
//patch_function(MyClass, 'MyClass');
patch_object(MyClass, 'MyClass');
console.log("Content script done!")
In particular, running a statement such as (new MyClass(3)).return_x() yields Permission denied to access property "return_x" no matter how it was injected!
How can I inject a custom class (which — crucially — might even call WebExtension-privileged code) into a webpage from a WebExtension? (Or, if not possible: what is the tracker # for this — I can't currently find it.)

Related

How to avoid accidentally implicitly referring to properties on the global object?

Is it possible to execute a block of code without the implicit with(global) context that all scripts seem to have by default? For example, in a browser, would there be any way to set up a script so that a line such as
const foo = location;
throws
Uncaught ReferenceError: location is not defined
instead of accessing window.location, when location has not been declared first? Lacking that, is there a way that such an implicit reference could result in a warning of some sort? It can be a source of bugs when writing code (see below), so having a way to guard against it could be useful.
(Of course, due to ordinary scoping rules, it's possible to declare another variable with the same name using const or let, or within an inner block, to ensure that using that variable name references the new variable rather than the global property, but that's not the same thing.)
This may be similar to asking whether it's possible to stop referencing a property from within an actual with statement:
const obj = { prop: 'prop' };
with (obj) {
// how to make referencing "prop" from somewhere within this block throw a ReferenceError
}
It's known that with should not be used in the first place, but unfortunately it seems we have no choice when it comes to the with(global), which occasionally saves a few characters at the expense of confusing bugs which pop up somewhat frequently: 1 2 3 4 5 6. For example:
var status = false;
if (status) {
console.log('status is actually truthy!');
}
(the issue here: window.status is a reserved property - when assigned to, it coerces the assigned expression to a string)
These sorts of bugs are the same reason that explicit use of with is discouraged or prohibited, yet the implicit with(global) continues to cause issues, even in strict mode, so figuring out a way around it would be useful.
There are some things you need to consider before trying to answer this question.
For example, take the Object constructor. It is a "Standard built-in object".
window.status is part of the Window interface.
Obviously, you don't want status to refer to window.status, but do you want Object to refer to window.Object?
The solution to your problem of it not being able to be redefined is to use a IIFE, or a module, which should be what you are doing anyways.
(() => {
var status = false;
if (!status) {
console.log('status is now false.');
}
})();
And to prevent accidentally using global variables, I would just set up your linter to warn against it. Forcing it using a solution like with (fake_global) would not only have errors exclusively at run time, which might be not caught, but also be slower.
Specifically with ESLint, I can't seem to find a "good" solution. Enabling browser globals allows implicit reads.
I would suggest no-implicit-globals (As you shouldn't be polluting the global scope anyways, and it prevents the var status not defining anything problem), and also not enabling all browser globals, only, say, window, document, console, setInterval, etc., like you said in the comments.
Look at the ESLint environments to see which ones you would like to enable. By default, things like Object and Array are in the global scope, but things like those listed above and atob are not.
To see the exact list of globals, they are defined by this file in ESLint and the globals NPM package. I would would pick from (a combination of) "es6", "worker" or "shared-node-browser".
The eslintrc file would have:
{
"rules": {
"no-implicit-globals": "error"
},
"globals": {
"window": "readonly",
"document": "readonly"
},
"env": {
"browser": false,
"es6": [true/false],
"worker": [true/false],
"shared-node-browser": [true/false]
}
}
If you're not in strict mode, one possibility is to iterate over the property names of the global (or withed) object, and create another object from those properties, whose setters and getters all throw ReferenceErrors, and then nest your code in another with over that object. See comments in the code below.
This isn't a nice solution, but it's the only one I can think of:
const makeObjWhosePropsThrow = inputObj => Object.getOwnPropertyNames(inputObj)
.reduce((a, propName) => {
const doThrow = () => { throw new ReferenceError(propName + ' is not defined!'); };
Object.defineProperty(a, propName, { get: doThrow, set: doThrow });
return a;
}, {});
// (using setTimeout so that console shows both this and the next error)
setTimeout(() => {
const windowWhichThrows = makeObjWhosePropsThrow(window);
with (windowWhichThrows) {
/* Use an IIFE
* so that variables with the same name declared with "var" inside
* create a locally scoped variable
* rather than try to reference the property, which would throw
*/
(() => {
// Declaring any variable name will not throw:
var alert = true; // window.alert
const open = true; // window.open
// Referencing a property name without declaring it first will throw:
const foo = location;
})();
}
});
const obj = { prop1: 'prop1' };
with (obj) {
const inner = makeObjWhosePropsThrow(obj);
with (inner) {
// Referencing a property name without declaring it first will throw:
console.log(prop1);
}
}
.as-console-wrapper {
max-height: 100% !important;
}
Caveats:
This explicitly uses with, which is forbidden in strict mode
This doesn't exactly escape the implicit with(global) scope, or the with(obj) scope: variables in the outer scope with the same name as a property will not be referenceable.
window has a property window, which refers to window. window.window === window. So, referencing window inside the with will throw. Either explicitly exclude the window property, or save another reference to window first.
Somewhat simpler to implement than #CertainPerformance's answer, you can use a Proxy to catch implicit access to everything except window. The only caveat is you can't run this in strict mode:
const strictWindow = Object.create(
new Proxy(window, {
get (target, property) {
if (typeof property !== 'string') return undefined
console.log(`implicit access to ${property}`)
throw new ReferenceError(`${property} is not defined`)
}
}),
Object.getOwnPropertyDescriptors({ window })
)
with (strictWindow) {
try {
const foo = location
} catch (error) {
window.console.log(error.toString())
}
// doesn't throw error
const foo = window.location
}
Notice that even console has to have an explicit reference in order to not throw. If you want to add that as another exception, just modify strictWindow with another own property using
Object.getOwnPropertyDescriptors({ window, console })
In fact, there are a lot of standard built-in objects you may want to add exceptions for, but that is beyond the scope of this answer (no pun intended).
In my opinion, the benefits this offers fall short of the benefits of running in strict mode. A much better solution is to use a properly configured linter that catches implicit references during development rather than at runtime in non-strict mode.
Perhaps slightly cleaner (YMMV) is to set getter traps (like you did), but in a worker so that you don't pollute your main global scope. I didn't need to use with though, so perhaps that is an improvement.
Worker "Thread"
//worker; foo.js
addEventListener('message', function ({ data }) {
try {
eval(`
for (k in self) {
Object.defineProperty(self, k, {
get: function () {
throw new ReferenceError(':(');
}
});
}
// code to execute
${data}
`);
postMessage('no error thrown ');
} catch (e) {
postMessage(`error thrown: ${e.message}`);
}
});
Main "Thread"
var w = new Worker('./foo.js');
w.addEventListener('message', ({data}) => console.log(`response: ${data}`));
w.postMessage('const foo = location');
Another option that may be worth exploring is Puppeteer.
Just use "use strict". More on Strict Mode.

Preserve prototypes in ADVANCED mode

I need to compile my code with closure compiler in ADVANCED mode. I also need to keep prototypes of my objects in my application because I'm looping on Javascript objects prototypes. Trying to get both results in some ReferenceError when starting the application.
When compiling with ADVANCED mode, some prototypes are removed and replaced by a function that is using an object parameter in order to recover "this" keyword. This is due to crossModuleCodeMotionNoStubMethods attribute of CompilerOptions.java.
Example of code before compilation :
function MyClass() = { // Some code }
MyClass.prototype.someFunc = function() { // Some code calling someOtherFunc };
MyClass.prototype.someOtherFunc = function(someParam) { // Some code };
Example of code after compilation :
function MyCompiledClass = { // Some code }
MyCompiledClass.prototype.someCompiledFunc = function() { // Some code calling someOtherFunc }
function someOtherCompiledFunc(that, someParam) = { // Some code }
I first tried to use #this and #preserve JSDoc tags to solve the problem, without success. Using #export is not a solution, because functions will then keep their original names.
I've found two options to solve my problem for now :
Refactor the code as seen here
Build a custom version of Closure Compiler as seen here
Option 1 will need to much modifications in my code and will make it less readable, if it's the only solution, I will have a go for this one.
Option 2 seems to be a nice workaround, but I've read that some changes on CompilationLevel.java may violate some core assumptions of the compiler. Can someone tell me if by modifying setCrossModuleMethodMotion from true to false, will it still respect all core assumptions of the compiler ?
I'm currently building a custom version of the compiler to check if the code is compiling properly, but even if the code is usable, I need to be sure it will be properly obfuscated.
Thank you !
The specific optimization pass you are referring to is DevirtualizePrototypeMethods. The best way to block the optimization would be to use the #nocollapse annotation. It will allow your method to be renamed but not allow it to be removed from the prototype.
I'm not 100% sure it will work for this case, but if it doesn't it should and you can file an issue to have that fixed: https://github.com/google/closure-compiler/issues
You can export constructors and prototype properties in the same way.
For example:
MyClass = function(name) {
this.myName = name;
};
MyClass.prototype.myMethod = function() {
alert(this.myName);
};
window['MyClass'] = MyClass; // <-- Constructor
MyClass.prototype['myMethod'] = MyClass.prototype.myMethod;
As in https://developers.google.com/closure/compiler/docs/api-tutorial3

How can I log information about global variables whenever these are created?

Background
I just learned that calling keys(window) (or Object.keys(window)) in the DevTools console reveals variables in the global scope (source). I called that code on the StackOverflow page and got this result:
Variable i got my attention as it seems to be in the global scope by a mistake. I tried locating code that is responsible for declaring i, but it turned out to be cumbersome (there is a lot of code and a lot of is).
Question
Getting console warnings that say
Global variable "i" created (main.js:342)
could be useful. How can I implement that feature?
Research
I figured that I need some kind of an event whenever new variable is created.
We do have setters in JavaScript. However, creating a setter requires that you provide a property name. Since I want to monitor all properties I can't really use that.
__noSuchMethod__ (MDN) would be perfect but it only covers methods (and there is no __noSuchProperty__ method).
Object.observe (HTML5 Rocks) doesn't reveal anything about the code that created the property (console.trace() gives me only the name of the observer function).
Object.prototype.watch (MDN) - same as the setter, you have to specify a property name.
Calling Object.preventExtensions(window) (MDN) causes errors with a nice stack trace whenever new global variable is created. The problem with this solution is that it interferes with the script execution and may change its behaviour. It also doesn't allow me to catch the error and format it properly.
Notes
I know about jshint/jslint and I still think that catching these declarations in the runtime could be useful.
I don't care about i variable on the SO page that much, you can probably find the declaration using setters. My question concerns the general solution for this problem.
IMO you have two decent options:
JSHint.
Strict mode.
Both will yell at you when you leak a global. Strict mode will probably be better for your usecases.
You've definitely done your homework, and you thought of all the things I would have thought of and, as you discovered, none of them fit.
The only way I can think of doing is to just monitor the global object (this example is using window as the global object: modify accordingly for Node or another JavaScript container). Here's an example that monitors new globals and deleted globals (if you don't need to monitor deletions, you can remove that functionality):
var globals = Object.keys(window);
var monitorGlobalInterval = 50;
setInterval(function(){
var globalsNow = Object.keys(window);
var newGlobals = globalsNow.filter(function(key){
return globals.indexOf(key)===-1;
});
var deletedGlobals = globals.filter(function(key){
return globalsNow.indexOf(key)===-1;
});
newGlobals.forEach(function(key){
console.log('new global: ' + key);
});
deletedGlobals.forEach(function(key){
console.log('global deleted: ' + key);
});
globals = globalsNow;
}, monitorGlobalInterval);
See it in action here: http://jsfiddle.net/dRjP9/2/
You can try this method to get a list of global variables that you've created:
(function(){
var differences = {},
ignoreList = (prompt('Ignore filter (comma sep)?', 'jQuery, Backbone, _, $').split(/,\s?/) || []),
iframe = document.createElement('iframe'),
count = 0; ignoreList.push('prop');
for (prop in window) {
differences[prop] = {
type: typeof window[prop],
val: window[prop]
}; count++;
}
iframe.src = 'about:blank';
iframe.style.display = 'none';
document.body.appendChild(iframe);
iframe = iframe.contentWindow || iframe.contentDocument;
for (prop in differences) {
if (prop in iframe || ignoreList.indexOf(prop) >= 0) {
delete differences[prop];
count--;
}
}
console.info('Total globals: %d', count);
return differences;
})();

Overriding external object's function using JavaScript in Internet Explorer

I am currently working on an IE-only project which makes use of an external object model provided by the host application. Internet Explorer allows access to this external object through browser components:
http://msdn.microsoft.com/en-us/library/ie/ms535246(v=vs.85).aspx
Access to the object takes the form of JavaScript function invocations, similar to:
external.MethodName(arg1, arg2);
One of the recent changes to the application flow will introduce hundreds, if not thousands of if-statement conditionals around these JavaScript invocations, e.g.:
if (X) {
external.MethodName(arg1, arg2);
} else {
// do something else
}
Rather than modify potentially thousands of HTML files, it would seem to make sense if we could override or rewrite the external object's functions so that the if condition only appears in one place. Normally, this could be accomplished in JavaScript with:
external.OldMethodName = external.MethodName;
external.MethodName = function(arg1, arg2) {
if (X) {
external.OldMethodName(arg1, arg2);
} else {
// do something else
}
};
However, this results in an "Invalid procedure call or argument" script error, because you cannot reference the external host method this way.
I do not have access to the host application proprietary code to change the external method directly.
Is there any way I can use JavaScript to override the external object's functions, or will I need to wrap the (potential) thousands of invocations with if-statements (a very bad practice)?
UPDATE: After much back-and-forth with the client, we have managed to reach out to the third-party vendor to update the external host method, which is vastly preferable to our method of wrapping the method on the front end. I have accepted Paul's answer in the meantime.
Use toString() and eval:
var foo = external.MethodName.toString().replace("OldMethodName", "MethodName").replace("bar","baz");
eval(foo);
if(x)
{
external.OldMethodName(arg1,arg2);
}
else
{
MethodName(arg1,arg2)
}

Is it possible to sandbox JavaScript running in the browser?

I'm wondering if it's possible to sandbox JavaScript running in the browser to prevent access to features that are normally available to JavaScript code running in an HTML page.
For example, let's say I want to provide a JavaScript API for end users to let them define event handlers to be run when "interesting events" happen, but I don't want those users to access the properties and functions of the window object. Am I able to do this?
In the simplest case, let's say I want to prevent users calling alert. A couple of approaches I can think of are:
Redefine window.alert globally. I don't think this would be a valid approach because other code running in the page (i.e., stuff not authored by users in their event handlers) might want to use alert.
Send the event handler code to the server to process. I'm not sure that sending the code to the server to process is the right approach, because the event handlers need to run in the context of the page.
Perhaps a solution where the server processes the user defined function and then generates a callback to be executed on the client would work? Even if that approach works, are there better ways to solve this problem?
Google Caja is a source-to-source translator that "allows you to put untrusted third-party HTML and JavaScript inline in your page and still be secure."
Have a look at Douglas Crockford's ADsafe:
ADsafe makes it safe to put guest code (such as third party scripted advertising or widgets) on any web page. ADsafe defines a subset of JavaScript that is powerful enough to allow guest code to perform valuable interactions, while at the same time preventing malicious or accidental damage or intrusion. The ADsafe subset can be verified mechanically by tools like JSLint so that no human inspection is necessary to review guest code for safety. The ADsafe subset also enforces good coding practices, increasing the likelihood that guest code will run correctly.
You can see an example of how to use ADsafe by looking at the template.html and template.js files in the project's GitHub repository.
I created a sandboxing library called jsandbox that uses web workers to sandbox evaluated code. It also has an input method for explicitly giving sandboxed code data it wouldn't otherwise be able to get.
The following is an example of the API:
jsandbox
.eval({
code : "x=1;Math.round(Math.pow(input, ++x))",
input : 36.565010597564445,
callback: function(n) {
console.log("number: ", n); // number: 1337
}
}).eval({
code : "][];.]\\ (*# ($(! ~",
onerror: function(ex) {
console.log("syntax error: ", ex); // syntax error: [error object]
}
}).eval({
code : '"foo"+input',
input : "bar",
callback: function(str) {
console.log("string: ", str); // string: foobar
}
}).eval({
code : "({q:1, w:2})",
callback: function(obj) {
console.log("object: ", obj); // object: object q=1 w=2
}
}).eval({
code : "[1, 2, 3].concat(input)",
input : [4, 5, 6],
callback: function(arr) {
console.log("array: ", arr); // array: [1, 2, 3, 4, 5, 6]
}
}).eval({
code : "function x(z){this.y=z;};new x(input)",
input : 4,
callback: function(x) {
console.log("new x: ", x); // new x: object y=4
}
});
An improved version of RyanOHara's web workers sandbox code, in a single file (no extra eval.js file is necessary).
function safeEval(untrustedCode)
{
return new Promise(function (resolve, reject)
{
var blobURL = URL.createObjectURL(new Blob([
"(",
function ()
{
var _postMessage = postMessage;
var _addEventListener = addEventListener;
(function (obj)
{
"use strict";
var current = obj;
var keepProperties =
[
// Required
'Object', 'Function', 'Infinity', 'NaN', 'undefined', 'caches', 'TEMPORARY', 'PERSISTENT',
// Optional, but trivial to get back
'Array', 'Boolean', 'Number', 'String', 'Symbol',
// Optional
'Map', 'Math', 'Set',
];
do
{
Object.getOwnPropertyNames(current).forEach(function (name)
{
if (keepProperties.indexOf(name) === -1)
{
delete current[name];
}
});
current = Object.getPrototypeOf(current);
}
while (current !== Object.prototype)
;
})(this);
_addEventListener("message", function (e)
{
var f = new Function("", "return (" + e.data + "\n);");
_postMessage(f());
});
}.toString(),
")()"],
{type: "application/javascript"}));
var worker = new Worker(blobURL);
URL.revokeObjectURL(blobURL);
worker.onmessage = function (evt)
{
worker.terminate();
resolve(evt.data);
};
worker.onerror = function (evt)
{
reject(new Error(evt.message));
};
worker.postMessage(untrustedCode);
setTimeout(function ()
{
worker.terminate();
reject(new Error('The worker timed out.'));
}, 1000);
});
}
Test it:
https://jsfiddle.net/kp0cq6yw/
var promise = safeEval("1+2+3");
promise.then(function (result) {
alert(result);
});
It should output 6 (tested in Chrome and Firefox).
As mentioned in other responces, it's enough to jail the code in a sandboxed iframe (without sending it to the server-side) and communicate with messages.
I would suggest to take a look at a small library I created mostly because of the need to providing some API to the untrusted code, just like as described in the question: there's an opportunity to export the particular set of functions right into the sandbox where the untrusted code runs. And there's also a demo which executes the code submitted by a user in a sandbox:
http://asvd.github.io/jailed/demos/web/console/
I think that js.js is worth mentioning here. It's a JavaScript interpreter written in JavaScript.
It's about 200 times slower than native JavaScript, but its nature makes it a perfect sandbox environment. Another drawback is its size – almost 600 KB, which may be acceptable for desktops in some cases, but not for mobile devices.
All the browser vendors and the HTML5 specification are working towards an actual sandbox property to allow sandboxed iframes -- but it's still limited to iframe granularity.
In general, no degree of regular expressions, etc. can safely sanitise arbitrary user provided JavaScript as it degenerates to the halting problem :-/
An ugly way, but maybe this works for you:
I took all the globals and redefined them in the sandbox scope, as well I added the strict mode so they can't get the global object using an anonymous function.
function construct(constructor, args) {
function F() {
return constructor.apply(this, args);
}
F.prototype = constructor.prototype;
return new F();
}
// Sanboxer
function sandboxcode(string, inject) {
"use strict";
var globals = [];
for (var i in window) {
// <--REMOVE THIS CONDITION
if (i != "console")
// REMOVE THIS CONDITION -->
globals.push(i);
}
globals.push('"use strict";\n'+string);
return construct(Function, globals).apply(inject ? inject : {});
}
sandboxcode('console.log( this, window, top , self, parent, this["jQuery"], (function(){return this;}()));');
// => Object {} undefined undefined undefined undefined undefined undefined
console.log("return of this", sandboxcode('return this;', {window:"sanboxed code"}));
// => Object {window: "sanboxed code"}
https://gist.github.com/alejandrolechuga/9381781
An independent JavaScript interpreter is more likely to yield a robust sandbox than a caged version of the built-in browser implementation.
Ryan has already mentioned js.js, but a more up-to-date project is JS-Interpreter. The documentation covers how to expose various functions to the interpreter, but its scope is otherwise very limited.
As of 2019, vm2 looks like the most popular and most regularly-updated solution to running JavaScript in Node.js. I'm not aware of a front-end solution.
With NISP you'll be able to do sandboxed evaluation.
Though the expression you write is not exactly JavaScript code, instead you'll write S-expressions. It is ideal for simple DSLs that doesn't demand extensive programming.
Suppose you have code to execute:
var sCode = "alert(document)";
Now, suppose you want to execute it in a sandbox:
new Function("window", "with(window){" + sCode + "}")({});
These two lines when executed will fail, because "alert" function is not available from the "sandbox"
And now you want to expose a member of window object with your functionality:
new Function("window", "with(window){" + sCode + "}")({
'alert':function(sString){document.title = sString}
});
Indeed you can add quotes escaping and make other polishing, but I guess the idea is clear.
Where is this user JavaScript code coming from?
There is not much you can do about a user embedding code into your page and then calling it from their browser (see Greasemonkey). It's just something browsers do.
However, if you store the script in a database, then retrieve it and eval() it, then you can clean up the script before it is run.
Examples of code that removes all window. and document. references:
eval(
unsafeUserScript
.replace(/\/\/.+\n|\/\*.*\*\/, '') // Clear all comments
.replace(/\s(window|document)\s*[\;\)\.]/, '') // Removes window. Or window; or window)
)
This tries to prevent the following from being executed (not tested):
window.location = 'http://example.com';
var w = window;
There are a lot of limitations you would have to apply to the unsafe user script. Unfortunately, there isn't any 'sandbox container' available for JavaScript.
I've been working on a simplistic JavaScript sandbox for letting users build applets for my site. Although I still face some challenges with allowing DOM access (parentNode just won't let me keep things secure =/), my approach was just to redefine the window object with some of its useful/harmless members, and then eval() the user code with this redefined window as the default scope.
My "core" code goes like this... (I'm not showing it entirely ;)
function Sandbox(parent){
this.scope = {
window: {
alert: function(str){
alert("Overriden Alert: " + str);
},
prompt: function(message, defaultValue){
return prompt("Overriden Prompt:" + message, defaultValue);
},
document: null,
.
.
.
.
}
};
this.execute = function(codestring){
// Here some code sanitizing, please
with (this.scope) {
with (window) {
eval(codestring);
}
}
};
}
So, I can instantiate a Sandbox and use its execute() function to get code running. Also, all new declared variables within eval'd code will ultimately bound to the execute() scope, so there will not be clashing names or messing with existing code.
Although global objects will still be accessible, those which should remain unknown to the sandboxed code must be defined as proxies in the Sandbox::scope object.
You can wrap the user's code in a function that redefines forbidden objects as parameters -- these would then be undefined when called:
(function (alert) {
alert ("uh oh!"); // User code
}) ();
Of course, clever attackers can get around this by inspecting the JavaScript DOM and finding a non-overridden object that contains a reference to the window.
Another idea is scanning the user's code using a tool like JSLint. Make sure it's set to have no preset variables (or: only variables you want), and then if any globals are set or accessed do not let the user's script be used. Again, it might be vulnerable to walking the DOM -- objects that the user can construct using literals might have implicit references to the window object that could be accessed to escape the sandbox.

Categories

Resources