Is there any point to use getters/setters for an object? - javascript

It seems to me that using getters and setters for an object inside a class has no point to it. As I understand it, get/set is useful because it prevents someone outside the class changing something that shouldn't be changed or changing it to something it shouldn't be. However it seems pointless for objects. For example, I have a person with an address, I want to prevent editing the address, you can only view it:
class Person{
constructor(name, address){
this._name = name;
this._address = address;
}
get address(){
return this._address;
}
}
let bob = new Person("bob", {
street: "123 Main Street",
city: "Los Angelos",
state: "California"
});
But then you can still edit it like this:
let address = bob.address;
address.state = "New York";
To prevent this, I would think that you have to return a copy of the object instead of the reference. However, as far as i know, there is no standard way to deep clone an object. So you either have to shallow clone it, which seems not ideal if you have lots of nested references, or just return the reference to the object, which can be edited.
Am I missing something here?

Consider this class.
class Test {
constructor(val) {
this._foo = val;
}
set foo(val) {
throw new Error("It's not possible to change the foo property!")
}
set boo(val) {
console.log("setting _boo")
this._boo = val;
}
get foo() {
console.log("getting _foo");
return this._foo;
}
}
try {
let test = new Test('foooooo');
test.boo = "booooo";
console.log(`foo: ${test.foo}`);
test.foo = "bar";
} catch (e) {
console.log(e);
}
With "Setter" it's possible to control initializing properties.
You can see that it's possible to change the value of "boo" property but any attempt to change the value of the "foo" will throw an exception.
With "Getter" it's possible to control retrieving the value of properties.
You can see that it's possible to retrieve the value of "foo" property but not "boo" and its value is private.
PS:
Here are some examples to better understand JS behavior with objects and arrays:
//This works fine:
//Object
const obj = {};
obj.foo = 'bar';
console.log(obj); // {foo : 'bar'}
obj.foo = 'bar2';
console.log(obj); // {foo : 'bar2'}
//---------------------------------------
//Array:
const arr = [];
arr.push('foo');
console.log(arr); // ['foo']
arr.unshift("foo2");
console.log(arr); // ['foo2', 'foo']
arr.pop();
console.log(arr); // ['foo2']
//===========================================
//but these won't work:
const obj = {};
obj = {foo: 'bar'}; // error - re-assigning
const arr = ['foo'];
const arr = ['bar']; // error - re-declaring
const foo = 'bar';
foo = 'bar2'; // error - can not re-assign
var foo = 'bar3'; // error - already declared
function foo() {}; // error - already declared
New Example:
class A {
constructor(val) {
this._foo = val;
}
set foo(val) {
throw new Error("It's not possible to change the foo property!")
}
get foo() {
return this._foo;
}
}
class B {
constructor(val) {
this._obj = new A(val);
}
get Obj() {
return this._obj;
}
}
let b = new B('Test');
b.Obj.foo = 'new value';
console.log(b.Obj.foo);
In this manner, it's not possible to change the values ​​of the internal object.

Related

How to write a global get+set method for object

My question is easy to understand, I have an object (or class), and I want to have ONE method which can getting AND setting a property.
In fact, I have no problem to write it for "simple" properties. It becomes difficult when my class has object properties, and that I want to access or alter a nested one.
My class:
var MyClass = function() {
this.name = 'defaultName';
this.list = {
a: 1,
b: 6
};
}
Simple class, isn't it? Then, what I write for my method:
MyClass.prototype.getset = function(prop) {
let value = arguments[1];
let path = prop.split('.');
prop = this;
$(path).each(function(i) { prop = prop[this]; }
if (value) {
prop = value;
return this;
}
return prop;
}
The "get part" works (MyClass.getset('list.b') returns 6).
But the "set part"... does not work.
I want that when I execute MyClass.getset('list.b', 2), the b property of list becomes 2, and that's not the case.
I know why my version is not working (my prop variable is just a "copy" and does not affect the object itself), but I can't find solution for this...
Thanks for you help!
If you're assigning a primitive, you need to assign to a property of an object for the object to be changed as well. Check if value, and if so, navigate to and change from the next to last property, rather than the final property. Use reduce for brevity:
var MyClass = function() {
this.name = 'defaultName';
this.list = {
a: 1,
b: 6
};
}
MyClass.prototype.getset = function(prop, value) {
const props = prop.split('.');
const lastProp = props.pop();
const lastObj = props.reduce((obj, prop) => obj[prop], this);
if (value) {
lastObj[lastProp] = value;
return this;
} else return lastObj[lastProp];
}
const mc = new MyClass();
mc.getset('list.b', 2);
console.log(mc.list.b);
console.log(mc.getset('list.b'));

JavaScript Class set itself

Its obvious that class properties can have it's own get and set functions.
But what about this?
As I tried so far, its legal to do something like this:
class Bind {
constructor(val) {
this.val = val;
}
set this(val) {
alert('not sure what happens here!');
}
get this() {
return this.val;
}
}
so these lines:
var b = new Bind(123);
b = 456;
should call the setter function, but the alert will never fire.
Any idea what that setter does?
b = 456;
Cause this does not change the previous value of b in any way, it just changes the previously stored reference into a value. A small example of what i mean:
let a = {it: "wont change" };
let b = a;
console.log(a, b);
b = 456;
console.log(a, b);
If rewriting b would change the referenced object in any way, a would change too.
Instead, You can reach the setter with:
b.this = 456;
class Person {
constructor(name) {
this._name = name;
}
get name() {
console.log("getter")
return this._name.toUpperCase();
}
set name(newName) {
console.log("setter")
this._name = newName;
}
}
let bob = new Person('Bob');
console.log(bob.name);// Outputs 'BOB'
bob.name = "new Bob"
console.log(bob.name); // Outputs 'NEW BOB'

JS defineProperty setter doesn't triggered

Q1: Can someone explain how to trigger setter in defineProperty, using it via function by this way?
Q2: How to get last key in setter?
fiddle is here
function test(root) {
Object.defineProperty(this, 'subtree', {
get: function() {
console.log("get");
return root.subtree;
},
set: function(value) { //doesn't triggered
console.log("set");
root.subtree = value;
}
});
}
var demo = new test({
subtree: {
state: null,
test: 1
}
});
console.log("START", demo.subtree);
demo.subtree.state = 13; // doesn't triggered setter, but change object
console.log("END", demo.subtree);
To make it simpler, this code
let variable = null;
let obj = {
set variable(value) {
variable = value;
}
get variable() {
return variable;
}
};
obj.variable = {a: 5};
console.log(obj.variable);
does exactly the same thing as this one
let variable = null;
let obj = {
setVariable(value) {
variable = value;
}
getVariable() {
return variable;
}
};
obj.setVariable({a: 5}); // equivalent to obj.variable = {a: 5}
console.log(obj.getVariable()); // equivalent to obj.variable
but the latter clearly shows what's going on.
We want to access a and set it to some value
console.log(obj.getVariable().a); // get a
obj.getVariable().a = 6; // set a!
Notice that we don't call setVariable to set a's value!!! This is exactly what happens in your code. You get subtree and set state to 13. To call setter, you do the following
obj.setVariable({a: 6});
obj.variable = {a: 6}; // getter/setter example
demo.subtree = {state: 13}; // your code
This and this (linked by you) present how scopes and capturing work, so you should get your hands on some book that covers all those things (or browse SO, there are (probably) plenty of questions about that).

How to define a non-extensible javascript object

I'd like to, if possible, define a javascript object that has a few properties along with getters/setters for those properties, but I don't want others to be able to add new properties to objects without extending the object definition (similar to how one would define a class in Java/C#). Is this possible to do with javascript?
You can use the "preventExtensions" method.
var obj = { foo: 'a' };
Object.preventExtensions(obj);
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
In the following way, you can freeze the instances of the objects, but leave open to inheriting classes to add their own properties:
function Animal(name, action) {
this.name = name;
this.action = action;
if (this.constructor === Animal) {
Object.freeze(this);
}
}
var dog = new Animal('rover', 'bark')
dog.run = function(){console.log('I\'m running!')} // throws type error
function Dog(name, action, bark) {
Animal.call(this, name, action)
this.bark = bark // Animal not frozen since constructor is different
Object.freeze(this)
}
var puppy = new Dog('sparky', 'run', 'woof')
puppy.isTrained = false; // throws type error
See here: http://www.2ality.com/2013/06/freezing-instances.html
You can use Object.seal(obj):
const obj = Object.seal({
a: 1,
b: "hello"
})
obj.c = "world" // silently fails

Parse JSON String into a Particular Object Prototype in JavaScript

I know how to parse a JSON String and turn it into a JavaScript Object.
You can use JSON.parse() in modern browsers (and IE9+).
That's great, but how can I take that JavaScript Object and turn it into a particular JavaScript Object (i.e. with a certain prototype)?
For example, suppose you have:
function Foo()
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
var fooJSON = JSON.parse({"a":4, "b": 3});
//Something to convert fooJSON into a Foo Object
//....... (this is what I am missing)
alert(fooJSON.test() ); //Prints 12
Again, I am not wondering how to convert a JSON string into a generic JavaScript Object. I want to know how to convert a JSON string into a "Foo" Object. That is, my Object should now have a function 'test' and properties 'a' and 'b'.
UPDATE
After doing some research, I thought of this...
Object.cast = function cast(rawObj, constructor)
{
var obj = new constructor();
for(var i in rawObj)
obj[i] = rawObj[i];
return obj;
}
var fooJSON = Object.cast({"a":4, "b": 3}, Foo);
Will that work?
UPDATE May, 2017: The "modern" way of doing this, is via Object.assign, but this function is not available in IE 11 or older Android browsers.
The current answers contain a lot of hand-rolled or library code. This is not necessary.
Use JSON.parse('{"a":1}') to create a plain object.
Use one of the standardized functions to set the prototype:
Object.assign(new Foo, { a: 1 })
Object.setPrototypeOf({ a: 1 }, Foo.prototype)
See an example below (this example uses the native JSON object). My changes are commented in CAPITALS:
function Foo(obj) // CONSTRUCTOR CAN BE OVERLOADED WITH AN OBJECT
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
// IF AN OBJECT WAS PASSED THEN INITIALISE PROPERTIES FROM THAT OBJECT
for (var prop in obj) this[prop] = obj[prop];
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
// INITIALISE A NEW FOO AND PASS THE PARSED JSON OBJECT TO IT
var fooJSON = new Foo(JSON.parse('{"a":4,"b":3}'));
alert(fooJSON.test() ); //Prints 12
Do you want to add JSON serialization/deserialization functionality, right? Then look at this:
You want to achieve this:
toJson() is a normal method.
fromJson() is a static method.
Implementation:
var Book = function (title, author, isbn, price, stock){
this.title = title;
this.author = author;
this.isbn = isbn;
this.price = price;
this.stock = stock;
this.toJson = function (){
return ("{" +
"\"title\":\"" + this.title + "\"," +
"\"author\":\"" + this.author + "\"," +
"\"isbn\":\"" + this.isbn + "\"," +
"\"price\":" + this.price + "," +
"\"stock\":" + this.stock +
"}");
};
};
Book.fromJson = function (json){
var obj = JSON.parse (json);
return new Book (obj.title, obj.author, obj.isbn, obj.price, obj.stock);
};
Usage:
var book = new Book ("t", "a", "i", 10, 10);
var json = book.toJson ();
alert (json); //prints: {"title":"t","author":"a","isbn":"i","price":10,"stock":10}
var book = Book.fromJson (json);
alert (book.title); //prints: t
Note: If you want you can change all property definitions like this.title, this.author, etc by var title, var author, etc. and add getters to them to accomplish the UML definition.
A blog post that I found useful:
Understanding JavaScript Prototypes
You can mess with the __proto__ property of the Object.
var fooJSON = jQuery.parseJSON({"a":4, "b": 3});
fooJSON.__proto__ = Foo.prototype;
This allows fooJSON to inherit the Foo prototype.
I don't think this works in IE, though... at least from what I've read.
Am I missing something in the question or why else nobody mentioned reviver parameter of JSON.parse since 2011?
Here is simplistic code for solution that works:
https://jsfiddle.net/Ldr2utrr/
function Foo()
{
this.a = 3;
this.b = 2;
this.test = function() {return this.a*this.b;};
}
var fooObj = new Foo();
alert(fooObj.test() ); //Prints 6
var fooJSON = JSON.parse(`{"a":4, "b": 3}`, function(key,value){
if(key!=="") return value; //logic of course should be more complex for handling nested objects etc.
let res = new Foo();
res.a = value.a;
res.b = value.b;
return res;
});
// Here you already get Foo object back
alert(fooJSON.test() ); //Prints 12
PS: Your question is confusing: >>That's great, but how can I take that JavaScript Object and turn it into a particular JavaScript Object (i.e. with a certain prototype)?
contradicts to the title, where you ask about JSON parsing, but the quoted paragraph asks about JS runtime object prototype replacement.
The currently accepted answer wasn't working for me. You need to use Object.assign() properly:
class Person {
constructor(name, age){
this.name = name;
this.age = age;
}
greet(){
return `hello my name is ${ this.name } and i am ${ this.age } years old`;
}
}
You create objects of this class normally:
let matt = new Person('matt', 12);
console.log(matt.greet()); // prints "hello my name is matt and i am 12 years old"
If you have a json string you need to parse into the Person class, do it like so:
let str = '{"name": "john", "age": 15}';
let john = JSON.parse(str); // parses string into normal Object type
console.log(john.greet()); // error!!
john = Object.assign(Person.prototype, john); // now john is a Person type
console.log(john.greet()); // now this works
An alternate approach could be using Object.create. As first argument, you pass the prototype, and for the second one you pass a map of property names to descriptors:
function SomeConstructor() {
};
SomeConstructor.prototype = {
doStuff: function() {
console.log("Some stuff");
}
};
var jsonText = '{ "text": "hello wrold" }';
var deserialized = JSON.parse(jsonText);
// This will build a property to descriptor map
// required for #2 argument of Object.create
var descriptors = Object.keys(deserialized)
.reduce(function(result, property) {
result[property] = Object.getOwnPropertyDescriptor(deserialized, property);
}, {});
var obj = Object.create(SomeConstructor.prototype, descriptors);
I like adding an optional argument to the constructor and calling Object.assign(this, obj), then handling any properties that are objects or arrays of objects themselves:
constructor(obj) {
if (obj != null) {
Object.assign(this, obj);
if (this.ingredients != null) {
this.ingredients = this.ingredients.map(x => new Ingredient(x));
}
}
}
For the sake of completeness, here's a simple one-liner I ended up with (I had no need checking for non-Foo-properties):
var Foo = function(){ this.bar = 1; };
// angular version
var foo = angular.extend(new Foo(), angular.fromJson('{ "bar" : 2 }'));
// jquery version
var foo = jQuery.extend(new Foo(), jQuery.parseJSON('{ "bar" : 3 }'));
I created a package called json-dry. It supports (circular) references and also class instances.
You have to define 2 new methods in your class (toDry on the prototype and unDry as a static method), register the class (Dry.registerClass), and off you go.
While, this is not technically what you want, if you know before hand the type of object you want to handle you can use the call/apply methods of the prototype of your known object.
you can change this
alert(fooJSON.test() ); //Prints 12
to this
alert(Foo.prototype.test.call(fooJSON); //Prints 12
I've combined the solutions that I was able to find and compiled it into a generic one that can automatically parse a custom object and all it's fields recursively so you can use prototype methods after deserialization.
One assumption is that you defined a special filed that indicates it's type in every object you want to apply it's type automatically (this.__type in the example).
function Msg(data) {
//... your init code
this.data = data //can be another object or an array of objects of custom types.
//If those objects defines `this.__type', their types will be assigned automatically as well
this.__type = "Msg"; // <- store the object's type to assign it automatically
}
Msg.prototype = {
createErrorMsg: function(errorMsg){
return new Msg(0, null, errorMsg)
},
isSuccess: function(){
return this.errorMsg == null;
}
}
usage:
var responseMsg = //json string of Msg object received;
responseMsg = assignType(responseMsg);
if(responseMsg.isSuccess()){ // isSuccess() is now available
//furhter logic
//...
}
Type assignment function (it work recursively to assign types to any nested objects; it also iterates through arrays to find any suitable objects):
function assignType(object){
if(object && typeof(object) === 'object' && window[object.__type]) {
object = assignTypeRecursion(object.__type, object);
}
return object;
}
function assignTypeRecursion(type, object){
for (var key in object) {
if (object.hasOwnProperty(key)) {
var obj = object[key];
if(Array.isArray(obj)){
for(var i = 0; i < obj.length; ++i){
var arrItem = obj[i];
if(arrItem && typeof(arrItem) === 'object' && window[arrItem.__type]) {
obj[i] = assignTypeRecursion(arrItem.__type, arrItem);
}
}
} else if(obj && typeof(obj) === 'object' && window[obj.__type]) {
object[key] = assignTypeRecursion(obj.__type, obj);
}
}
}
return Object.assign(new window[type](), object);
}
A very simple way to get the desired effect is to add an type attribute while generating the json string, and use this string while parsing the string to generate the object:
serialize = function(pObject) {
return JSON.stringify(pObject, (key, value) => {
if (typeof(value) == "object") {
value._type = value.constructor.name;
}
return value;
});
}
deSerialize = function(pJsonString) {
return JSON.parse(pJsonString, (key, value) => {
if (typeof(value) == "object" && value._type) {
value = Object.assign(eval('new ' + value._type + '()'), value);
delete value._type;
}
return value;
});
}
Here a little example of use:
class TextBuffer {
constructor() {
this.text = "";
}
getText = function() {
return this.text;
}
setText = function(pText) {
this.text = pText;
}
}
let textBuffer = new TextBuffer();
textBuffer.setText("Hallo");
console.log(textBuffer.getText()); // "Hallo"
let newTextBuffer = deSerialize(serialize(textBuffer));
console.log(newTextBuffer.getText()); // "Hallo"
Here is a solution using typescript and decorators.
Objects keep their methods after deserialization
Empty objects and their children are default-initialized
How to use it:
#SerializableClass
class SomeClass {
serializedPrimitive: string;
#SerializableProp(OtherSerializedClass)
complexSerialized = new OtherSerializedClass();
}
#SerializableClass
class OtherSerializedClass {
anotherPrimitive: number;
someFunction(): void {
}
}
const obj = new SomeClass();
const json = Serializable.serializeObject(obj);
let deserialized = new SomeClass();
Serializable.deserializeObject(deserialized, JSON.parse(json));
deserialized.complexSerialized.someFunction(); // this works!
How it works
Serialization:
Store the type name in the prototype (__typeName)
Use JSON.stringify with a replacer method that adds __typeName to the JSON.
Deserialization:
Store all serializable types in Serializable.__serializableObjects
Store a list of complex typed properties in every object (__serializedProps)
Initialize an object theObject via the type name and __serializableObjects.
Go through theObject.__serializedProps and traverse over it recursively (start at last step with every serialized property). Assign the results to the according property.
Use Object.assign to assign all remaining primitive properties.
The code:
// #Class decorator for serializable objects
export function SerializableClass(targetClass): void {
targetClass.prototype.__typeName = targetClass.name;
Serializable.__serializableObjects[targetClass.name] = targetClass;
}
// #Property decorator for serializable properties
export function SerializableProp(objectType: any) {
return (target: {} | any, name?: PropertyKey): any => {
if (!target.constructor.prototype?.__serializedProps)
target.constructor.prototype.__serializedProps = {};
target.constructor.prototype.__serializedProps[name] = objectType.name;
};
}
export default class Serializable {
public static __serializableObjects: any = {};
private constructor() {
// don't inherit from me!
}
static serializeObject(typedObject: object) {
return JSON.stringify(typedObject, (key, value) => {
if (value) {
const proto = Object.getPrototypeOf(value);
if (proto?.__typeName)
value.__typeName = proto.__typeName;
}
return value;
}
);
}
static deserializeObject(typedObject: object, jsonObject: object): object {
const typeName = typedObject.__typeName;
return Object.assign(typedObject, this.assignTypeRecursion(typeName, jsonObject));
}
private static assignTypeRecursion(typeName, object): object {
const theObject = new Serializable.__serializableObjects[typeName]();
Object.assign(theObject, object);
const props = Object.getPrototypeOf(theObject).__serializedProps;
for (const property in props) {
const type = props[property];
try {
if (type == Array.name) {
const obj = object[property];
if (Array.isArray(obj)) {
for (let i = 0; i < obj.length; ++i) {
const arrItem = obj[i];
obj[i] = Serializable.assignTypeRecursion(arrItem.__typeName, arrItem);
}
} else
object[property] = [];
} else
object[property] = Serializable.assignTypeRecursion(type, object[property]);
} catch (e) {
console.error(`${e.message}: ${type}`);
}
}
return theObject;
}
}
Comments
Since I am a total js/ts newby (< 10 days), I am more than happy to receive any input/comments/suggestions. Here are some of my thoughts so far:
It could be cleaner: Unfortunately I did not find a way to get rid of the redundant parameter of #SerializableProp.
It could be more memory friendly: After you call serializeObject() every object stores __typeName which could massively blow up memory footprint. Fortunately __serializedProps is only stored once per class.
It could be more CPU friendly: It's the most inefficient code I've ever written. But well, it's just for web apps, so who cares ;-) Maybe one should at least get rid of the recursion.
Almost no error handling: well that's a task for another day
class A {
constructor (a) {
this.a = a
}
method1 () {
console.log('hi')
}
}
var b = new A(1)
b.method1() // hi
var c = JSON.stringify(b)
var d = JSON.parse(c)
console.log(d.a) // 1
try {
d.method1() // not a function
} catch {
console.log('not a function')
}
var e = Object.setPrototypeOf(d, A.prototype)
e.method1() // hi
Olivers answers is very clear, but if you are looking for a solution in angular js, I have written a nice module called Angular-jsClass which does this ease, having objects defined in litaral notation is always bad when you are aiming to a big project but saying that developers face problem which exactly BMiner said, how to serialize a json to prototype or constructor notation objects
var jone = new Student();
jone.populate(jsonString); // populate Student class with Json string
console.log(jone.getName()); // Student Object is ready to use
https://github.com/imalhasaranga/Angular-JSClass

Categories

Resources