I'm building an app and in one of my functions I need to generate random & unique 4 digit codes. Obviously there is a finite range from 0000 to 9999 but each day the entire list will be wiped and each day I will not need more than the available amount of codes which means it's possible to have unique codes for each day. Realistically I will probably only need a few hundred codes a day.
The way I've coded it for now is the simple brute force way which would be to generate a random 4 digit number, check if the number exists in an array and if it does, generate another number while if it doesn't, return the generated number.
Since it's 4 digits, the runtime isn't anything too crazy and I'm mostly generating a few hundred codes a day so there won't be some scenario where I've generated 9999 codes and I keep randomly generating numbers to find the last remaining one.
It would also be fine to have letters in there as well instead of just numbers if it would make the problem easier.
Other than my brute force method, what would be a more efficient way of doing this?
Thank you!
Since you have a constrained number of values that will easily fit in memory, the simplest way I know of is to create a list of the possible values and select one randomly, then remove it from the list so it can't be selected again. This will never have a collision with a previously used number:
function initValues(numValues) {
const values = new Array(numValues);
// fill the array with each value
for (let i = 0; i < values.length; i++) {
values[i] = i;
}
return values;
}
function getValue(array) {
if (!array.length) {
throw new Error("array is empty, no more random values");
}
const i = Math.floor(Math.random() * array.length);
const returnVal = array[i];
array.splice(i, 1);
return returnVal;
}
// sample code to use it
const rands = initValues(10000);
console.log(getValue(rands));
console.log(getValue(rands));
console.log(getValue(rands));
console.log(getValue(rands));
This works by doing the following:
Generate an array of all possible values.
When you need a value, select one from the array with a random index.
After selecting the value, remove it from the array.
Return the selected value.
Items are never repeated because they are removed from the array when used.
There are no collisions with used values because you're always just selecting a random value from the remaining unused values.
This relies on the fact that an array of integers is pretty well optimized in Javascript so doing a .splice() on a 10,000 element array is still pretty fast (as it can probably just be memmove instructions).
FYI, this could be made more memory efficient by using a typed array since your numbers can be represented in 16-bit values (instead of the default 64 bits for doubles). But, you'd have to implement your own version of .splice() and keep track of the length yourself since typed arrays don't have these capabilities built in.
For even larger problems like this where memory usage becomes a problem, I've used a BitArray to keep track of previous usage of values.
Here's a class implementation of the same functionality:
class Randoms {
constructor(numValues) {
this.values = new Array(numValues);
for (let i = 0; i < this.values.length; i++) {
this.values[i] = i;
}
}
getRandomValue() {
if (!this.values.length) {
throw new Error("no more random values");
}
const i = Math.floor(Math.random() * this.values.length);
const returnVal = this.values[i];
this.values.splice(i, 1);
return returnVal;
}
}
const rands = new Randoms(10000);
console.log(rands.getRandomValue());
console.log(rands.getRandomValue());
console.log(rands.getRandomValue());
console.log(rands.getRandomValue());
Knuth's multiplicative method looks to work pretty well: it'll map numbers 0 to 9999 to a random-looking other number 0 to 9999, with no overlap:
const hash = i => i*2654435761 % (10000);
const s = new Set();
for (let i = 0; i < 10000; i++) {
const n = hash(i);
if (s.has(n)) { console.log(i, n); break; }
s.add(n);
}
To implement it, simply keep track of an index that gets incremented each time a new one is generated:
const hash = i => i*2654435761 % (10000);
let i = 1;
console.log(
hash(i++),
hash(i++),
hash(i++),
hash(i++),
hash(i++),
);
These results aren't actually random, but they probably do the job well enough for most purposes.
Disclaimer:
This is copy-paste from my answer to another question here. The code was in turn ported from yet another question here.
Utilities:
function isPrime(n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (let i = 5; i * i <= n; i = i + 6) {
if (n % i == 0 || n % (i + 2) == 0) return false;
}
return true;
}
function findNextPrime(n) {
if (n <= 1) return 2;
let prime = n;
while (true) {
prime++;
if (isPrime(prime)) return prime;
}
}
function getIndexGeneratorParams(spaceSize) {
const N = spaceSize;
const Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
const firstIndex = Math.floor(Math.random() * spaceSize);
return [firstIndex, N, Q]
}
function getNextIndex(prevIndex, N, Q) {
return (prevIndex + Q) % N
}
Usage
// Each day you bootstrap to get a tuple of these parameters and persist them throughout the day.
const [firstIndex, N, Q] = getIndexGeneratorParams(10000)
// need to keep track of previous index generated.
// it’s a seed to generate next one.
let prevIndex = firstIndex
// calling this function gives you the unique code
function getHashCode() {
prevIndex = getNextIndex(prevIndex, N, Q)
return prevIndex.toString().padStart(4, "0")
}
console.log(getHashCode());
Explanation
For simplicity let’s say you want generate non-repeat numbers from 0 to 35 in random order. We get pseudo-randomness by polling a "full cycle iterator"†. The idea is simple:
have the indexes 0..35 layout in a circle, denote upperbound as N=36
decide a step size, denoted as Q (Q=23 in this case) given by this formula‡
Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
randomly decide a starting point, e.g. number 5
start generating seemingly random nextIndex from prevIndex, by
nextIndex = (prevIndex + Q) % N
So if we put 5 in we get (5 + 23) % 36 == 28. Put 28 in we get (28 + 23) % 36 == 15.
This process will go through every number in circle (jump back and forth among points on the circle), it will pick each number only once, without repeating. When we get back to our starting point 5, we know we've reach the end.
†: I'm not sure about this term, just quoting from this answer
‡: This formula only gives a nice step size that will make things look more "random", the only requirement for Q is it must be coprime to N
This problem is so small I think a simple solution is best. Build an ordered array of the 10k possible values & permute it at the start of each day. Give the k'th value to the k'th request that day.
It avoids the possible problem with your solution of having multiple collisions.
Related
I just took a coding test online and this one question really bothered me. My solution was correct but was rejected for being unoptimized. The question is as following:
Write a function combineTheGivenNumber taking two arguments:
numArray: number[]
num: a number
The function should check all the concatenation pairs that can result in making a number equal to num and return their count.
E.g. if numArray = [1, 212, 12, 12] & num = 1212 then we will have return value of 3 from combineTheGivenNumber
The pairs are as following:
numArray[0]+numArray[1]
numArray[2]+numArray[3]
numArray[3]+numArray[2]
The function I wrote for this purpose is as following:
function combineTheGivenNumber(numArray, num) {
//convert all numbers to strings for easy concatenation
numArray = numArray.map(e => e+'');
//also convert the `hay` to string for easy comparison
num = num+'';
let pairCounts = 0;
// itereate over the array to get pairs
numArray.forEach((e,i) => {
numArray.forEach((f,j) => {
if(i!==j && num === (e+f)) {
pairCounts++;
}
});
});
return pairCounts;
}
console.log('Test 1: ', combineTheGivenNumber([1,212,12,12],1212));
console.log('Test 2: ', combineTheGivenNumber([4,21,42,1],421));
From my experience, I know conversion of number to string is slow in JS, but I am not sure whether my approach is wrong/lack of knowledge or does the tester is ignorant of this fact. Can anyone suggest further optimization of the code snipped?
Elimination of string to number to string will be a significant speed boost but I am not sure how to check for concatenated numbers otherwise.
Elimination of string to number to string will be a significant speed boost
No, it won't.
Firstly, you're not converting strings to numbers anywhere, but more importantly the exercise asks for concatenation so working with strings is exactly what you should do. No idea why they're even passing numbers. You're doing fine already by doing the conversion only once for each number input, not every time your form a pair. And last but not least, avoiding the conversion will not be a significant improvement.
To get a significant improvement, you should use a better algorithm. #derpirscher is correct in his comment: "[It's] the nested loop checking every possible combination which hits the time limit. For instance for your example, when the outer loop points at 212 you don't need to do any checks, because regardless, whatever you concatenate to 212, it can never result in 1212".
So use
let pairCounts = 0;
numArray.forEach((e,i) => {
if (num.startsWith(e)) {
//^^^^^^^^^^^^^^^^^^^^^^
numArray.forEach((f,j) => {
if (i !== j && num === e+f) {
pairCounts++;
}
});
}
});
You might do the same with suffixes, but it becomes more complicated to rule out concatenation to oneself there.
Optimising further, you can even achieve a linear complexity solution by putting the strings in a lookup structure, then when finding a viable prefix just checking whether the missing part is an available suffix:
function combineTheGivenNumber(numArray, num) {
const strings = new Map();
for (const num of numArray) {
const str = String(num);
strings.set(str, 1 + (strings.get(str) ?? 0));
}
const whole = String(num);
let pairCounts = 0;
for (const [prefix, pCount] of strings) {
if (!whole.startsWith(prefix))
continue;
const suffix = whole.slice(prefix.length);
if (strings.has(suffix)) {
let sCount = strings.get(suffix);
if (suffix == prefix) sCount--; // no self-concatenation
pairCounts += pCount*sCount;
}
}
return pairCounts;
}
(the proper handling of duplicates is a bit difficile)
I like your approach of going to strings early. I can suggest a couple of simple optimizations.
You only need the numbers that are valid "first parts" and those that are valid "second parts"
You can use the javascript .startsWith and .endsWith to test for those conditions. All other strings can be thrown away.
The lengths of the strings must add up to the length of the desired answer
Suppose your target string is 8 digits long. If you have 2 valid 3-digit "first parts", then you only need to know how many valid 5-digit "second parts" you have. Suppose you have 9 of them. Those first parts can only combine with those second parts, and give you 2 * 9 = 18 valid pairs.
You don't actually need to keep the strings!
It struck me that if you know you have 2 valid 3-digit "first parts", you don't need to keep those actual strings. Knowing that they are valid 2-digit first parts is all you need to know.
So let's build an array containing:
How many valid 1-digit first parts do we have?,
How many valid 2-digit first parts do we have?,
How many valid 3-digit first parts do we have?,
etc.
And similarly an array containing the number of valid 1-digit second parts, etc.
X first parts and Y second parts can be combined in X * Y ways
Except if the parts are the same length, in which case we are reusing the same list, and so it is just X * (Y-1).
So not only do we not need to keep the strings, but we only need to do the multiplication of the appropriate elements of the arrays.
5 1-char first parts & 7 3-char second parts = 5 * 7 = 35 pairs
6 2-char first part & 4 2-char second parts = 6 * (4-1) = 18 pairs
etc
So this becomes extremely easy. One pass over the strings, tallying the "first part" and "second part" matches of each length. This can be done with an if and a ++ of the relevant array element.
Then one pass over the lengths, which will be very quick as the array of lengths will be very much shorter than the array of actual strings.
function combineTheGivenNumber(numArray, num) {
const sElements = numArray.map(e => "" + e);
const sTarget = "" + num;
const targetLength = sTarget.length
const startsByLen = (new Array(targetLength)).fill(0);
const endsByLen = (new Array(targetLength)).fill(0);
sElements.forEach(sElement => {
if (sTarget.startsWith(sElement)) {
startsByLen[sElement.length]++
}
if (sTarget.endsWith(sElement)) {
endsByLen[sElement.length]++
}
})
// We can now throw away the strings. We have two separate arrays:
// startsByLen[1] is the count of strings (without attempting to remove duplicates) which are the first character of the required answer
// startsByLen[2] similarly the count of strings which are the first 2 characters of the required answer
// etc.
// and endsByLen[1] is the count of strings which are the last character ...
// and endsByLen[2] is the count of strings which are the last 2 characters, etc.
let pairCounts = 0;
for (let firstElementLength = 1; firstElementLength < targetLength; firstElementLength++) {
const secondElementLength = targetLength - firstElementLength;
if (firstElementLength === secondElementLength) {
pairCounts += startsByLen[firstElementLength] * (endsByLen[secondElementLength] - 1)
} else {
pairCounts += startsByLen[firstElementLength] * endsByLen[secondElementLength]
}
}
return pairCounts;
}
console.log('Test 1: ', combineTheGivenNumber([1, 212, 12, 12], 1212));
console.log('Test 2: ', combineTheGivenNumber([4, 21, 42, 1], 421));
Depending on a setup, the integer slicing can be marginally faster
Although in the end it falls short
Also, when tested on higher N values, the previous answer exploded in jsfiddle. Possibly a memory error.
As far as I have tested with both random and hand-crafted values, my solution holds. It is based on an observation, that if X, Y concantenated == Z, then following must be true:
Z - Y == X * 10^(floor(log10(Y)) + 1)
an example of this:
1212 - 12 = 1200
12 * 10^(floor((log10(12)) + 1) = 12 * 10^(1+1) = 12 * 100 = 1200
Now in theory, this should be faster then manipulating strings. And in many other languages it most likely would be. However in Javascript as I just learned, the situation is a bit more complicated. Javascript does some weird things with casting that I haven't figured out yet. In short - when I tried storing the numbers(and their counts) in a map, the code got significantly slower making any possible gains from this logarithm shenanigans evaporate. Furthermore, storing them in a custom-crafted data structure isn't guaranteed to be faster since you have to build it etc. Also it would be quite a lot of work.
As it stands this log comparison is ~ 8 times faster in a case without(or with just a few) matches since the quadratic factor is yet to kick in. As long as the possible postfix count isn't too high, it will outperform the linear solution. Unfortunately it is still quadratic in nature with the breaking point depending on a total number of strings as well as their length.
So if you are searching for a needle in a haystack - for example you are looking for a few pairs in a huge heap of numbers, this can help. In the other case of searching for many matches, this won't help. Similarly, if the input array was sorted, you could use binary search to push the breaking point further up.
In the end, unless you manage to figure out how to store ints in a map(or some custom implementation of it) in a way that doesn't completely kill the performance, the linear solution of the previous answer will be faster. It can still be useful even with the performance hit if your computation is going to be memory heavy. Storing numbers takes less space then storing strings.
var log10 = Math.log(10)
function log10floored(num) {
return Math.floor(Math.log(num) / log10)
}
function combineTheGivenNumber(numArray, num) {
count = 0
for (var i=0; i!=numArray.length; i++) {
let portion = num - numArray[i]
let removedPart = Math.pow(10, log10floored(numArray[i]))
if (portion % (removedPart * 10) == 0) {
for (var j=0; j!=numArray.length; j++) {
if (j != i && portion / (removedPart * 10) == numArray[j] ) {
count += 1
}
}
}
}
return count
}
//The previous solution, that I used for timing, comparison and check purposes
function combineTheGivenNumber2(numArray, num) {
const strings = new Map();
for (const num of numArray) {
const str = String(num);
strings.set(str, 1 + (strings.get(str) ?? 0));
}
const whole = String(num);
let pairCounts = 0;
for (const [prefix, pCount] of strings) {
if (!whole.startsWith(prefix))
continue;
const suffix = whole.slice(prefix.length);
if (strings.has(suffix)) {
let sCount = strings.get(suffix);
if (suffix == prefix) sCount--; // no self-concatenation
pairCounts += pCount*sCount;
}
}
return pairCounts;
}
var myArray = []
for (let i =0; i!= 10000000; i++) {
myArray.push(Math.floor(Math.random() * 1000000))
}
var a = new Date()
t1 = a.getTime()
console.log('Test 1: ', combineTheGivenNumber(myArray,15285656));
var b = new Date()
t2 = b.getTime()
console.log('Test 2: ', combineTheGivenNumber2(myArray,15285656));
var c = new Date()
t3 = c.getTime()
console.log('Test1 time: ', t2 - t1)
console.log('test2 time: ', t3 - t2)
Small update
As long as you are willing to take a performance hit with the setup and settle for the ~2 times performance, using a simple "hashing" table can help.(Hashing tables are nice and tidy, this is a simple modulo lookup table. The principle is similar though.)
Technically this isn't linear, practicaly it is enough for the most cases - unless you are extremely unlucky and all your numbers fall in the same bucket.
function combineTheGivenNumber(numArray, num) {
count = 0
let size = 1000000
numTable = new Array(size)
for (var i=0; i!=numArray.length; i++) {
let idx = numArray[i] % size
if (numTable[idx] == undefined) {
numTable[idx] = [numArray[i]]
} else {
numTable[idx].push(numArray[i])
}
}
for (var i=0; i!=numArray.length; i++) {
let portion = num - numArray[i]
let removedPart = Math.pow(10, log10floored(numArray[i]))
if (portion % (removedPart * 10) == 0) {
if (numTable[portion / (removedPart * 10) % size] != undefined) {
let a = numTable[portion / (removedPart * 10) % size]
for (var j=0; j!=a.length; j++) {
if (j != i && portion / (removedPart * 10) == a[j] ) {
count += 1
}
}
}
}
}
return count
}
Here's a simplified, and partially optimised approach with 2 loops:
// let's optimise 'combineTheGivenNumber', where
// a=array of numbers AND n=number to match
const ctgn = (a, n) => {
// convert our given number to a string using `toString` for clarity
// this isn't entirely necessary but means we can use strict equality later
const ns = n.toString();
// reduce is an efficient mechanism to return a value based on an array, giving us
// _=[accumulator], na=[array number] and i=[index]
return a.reduce((_, na, i) => {
// convert our 'array number' to an 'array number string' for later concatenation
const nas = na.toString();
// iterate back over our array of numbers ... we're using an optimised/reverse loop
for (let ii = a.length - 1; ii >= 0; ii--) {
// skip the current array number
if (i === ii) continue;
// string + number === string, which lets us strictly compare our 'number to match'
// if there's a match we increment the accumulator
if (a[ii] + nas === ns) ++_;
}
// we're done
return _;
}, 0);
}
I am wondering if there is a general formula of some sort that can take a single incrementing integer, and run it through a modulus sort of thing to shift it to a random place, so as you increment the counter, its output value jumps around and appears random, yet no value is ever hit twice. Assuming some limit on the set of numbers like 16-bit integers (65536 integers), or 32-bit integers, etc.. Perhaps there is a way to spiral numbers down somehow, I don't know. The sequence would be predictable, but to a layman it would appear random without thinking much of it.
For example, you can multiply a number by 2 to make it not appear directly incremented. But that's not very sophisticated. You could perhaps start the number at the middle of the set (like 30103 for 16-bit integers), then multiply by 2 and rotate the numbers using a modulus, and this would appear even less incremented. But you could still see a pattern.
I'm wondering what sorts of patterns or equations you could run an incremented number through (in a bounded set of integers) so that the output appears the least predictable as possible, and at the same time it never hits the same number twice. This way you could make IDs appear randomly generated to the layman without having to store all the IDs in a database in random order in advance. The formula would generate them from a single stored integer. What is possible in this regard, and what is the equation? How far can it theoretically go?
Maybe you could make the set odd, and skip every 20th number, and somehow prove that it will eventually revolve through the whole set without repeats. I can't figure this out though.
Update: This seems to be in the field of pseudorandom number generation, like this, but I'm not sure if they fit the added constraint of never repeating the number.
Here is what I found and implemented, but it's giving some duplicates :/.
const fetch = (x, o) => {
if (x >= o) {
return x
} else {
const v = (x * x) % o
return (x <= o / 2) ? v : o - v
}
}
const fetch32 = (x) => fetch(x, 4294967291)
const fetch16 = (x) => fetch(x, 65519)
const fetch8 = (x) => fetch(x, 251)
// the last number can be anything.
const build32 = (x, o) => fetch32((fetch32(x) + o) ^ 1542469173)
const build16 = (x, o) => fetch16((fetch16(x) + o) ^ 42703)
const build8 = (x, o) => fetch8((fetch8(x) + o) ^ 101)
let i = 0
let n = Math.pow(2, 32)
while (i < n) {
let j = 0
let r = {}
while (j < n) {
let x = build32(j, i)
if (r[x]) throw `${i}:${j}:${x}`
r[x] = true
j++
}
i++
}
The other linked question in the comment doesn't show a JavaScript implementation that adheres the the uniqueness constraint.
If you are looking for a sequence, where one value is produced from knowing what the previous value was, then what you are looking for could be a Linear congruential generator, with a modulus of a power of 2. There are a few parameters involved:
m: the modulus, which in your case is 28, 216, or 232.
a: the multiplier. To ensure that all values are produced before the first duplicate is generated, this must be a multiple of 4 plus 1 (assuming m is a power of 2).
c: the increment. It must be odd.
You can play with these numbers to arrive at a series that you are satisfied with in terms of "randomness".
The above referenced Wikipedia article lists some parameter choices that are used in some pseudo random generators. I have just selected a=97 and c some odd number half way the range.
Here is some code to prove the uniqueness:
/*
Assuming that m is a power of 2:
- c must be odd
- a % 4 must be 1
*/
function createFetch(m, a, c) { // Returns a function
return x => (a * x + c) % m;
}
const m = 2**16;
const fetch16 = createFetch(m, 97, (m>>1)-1);
const r = new Set;
let x = 1;
for (let i = 0; i < m; i++) {
x = fetch16(x);
if (i < 10) console.log(x);
if (r.has(x)) throw `${i}:${x}`
r.add(x);
}
console.log("...");
console.log(`generated ${r.size} unique numbers`);
NB/ this is a good use case for a generator, which in JavaScript looks like this:
function * fetch(m, a, c, x=1) {
while (true) {
x = (a * x + c) % m;
yield x;
}
}
const m = 2**16;
const fetch16 = fetch(m, 97, (m>>1)-1);
const r = new Set;
for (let i = 0; i < m; i++) {
x = fetch16.next().value;
if (i < 10) console.log(x);
if (r.has(x)) throw `${i}:${x}`
r.add(x);
}
console.log("...");
console.log(`generated ${r.size} unique numbers`);
Any block cipher whose block size is n bits is a permutation of {0,1,2, ..., 2n-1}. Thus, if E is such a block cipher and k is a valid key for E, then Ek(0), Ek(1), ..., Ek(2n-1) are all distinct. If the block cipher is good then the values appear "random" to the naked eye. If you change the key k you get a different permutation.
This is actually mentioned in the link you provided.
Consider this answer as well.
var bottomLimit = 1
var topLimit = 10
var arr = []
for (var i = bottomLimit; i < topLimit; i++) {
arr.push(i)
}
arr = shuffle(arr);
console.log(arr);
//https://stackoverflow.com/questions/2450954/how-to-randomize-shuffle-a-javascript-array#answer-2450976
function shuffle(array) {
var currentIndex = array.length,
temporaryValue, randomIndex;
while (0 !== currentIndex) {
randomIndex = Math.floor(Math.random() * currentIndex);
currentIndex -= 1;
temporaryValue = array[currentIndex];
array[currentIndex] = array[randomIndex];
array[randomIndex] = temporaryValue;
}
return array;
}
Well,you can generate random no. inside the range of two no.
public static int getRandomVal(int min, int max) {
Random random = new Random();
return random.nextInt((max - min) + 1) + min;
}
public static void getRandomNumbers(int size, int min,
int max) {
ArrayList<Integer> numbers = new ArrayList<Integer>();
while (numbers.size() < size) {
int random = getRandomVal(min, max);
if (!numbers.contains(random)) {
numbers.add(random);
System.out.println(" "+random);
}
}
}
now to generate 10 different no. between 50 and 100 you can use
getRandomNumbers(10, 50,100);
This approach is very easy I am creating an array and just checking the random value if it is already present or not. If it is not present I am pushing it to the array and outputting it.
Get yourself a seeded random number generator.
Seed with 1, return next random number. Seed with 2, return next random number. Seed with 3, return next random number...
If you seed with an integer then the next random number will be repeatable and pseudo random.
A friend of mine takes a sequence of numbers from 1 to n (where n > 0)
Within that sequence, he chooses two numbers, a and b
He says that the product of a and b should be equal to the sum of all numbers in the sequence, excluding a and b
Given a number n, could you tell me the numbers he excluded from the sequence?
Have found the solution to this Kata from Code Wars but it times out (After 12 seconds) in the editor when I run it; any ideas as too how I should further optimize the nested for loop and or remove it?
function removeNb(n) {
var nArray = [];
var sum = 0;
var answersArray = [];
for (let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
var length = nArray.length;
for (let i = Math.round(n / 2); i < length; i++) {
for (let y = Math.round(n / 2); y < length; y++) {
if (i != y) {
if (i * y === sum - i - y) {
answersArray.push([i, y]);
break;
}
}
}
}
return answersArray;
}
console.log(removeNb(102));
.as-console-wrapper { max-height: 100% !important; top: 0; }
I think there is no reason for calculating the sum after you fill the array, you can do that while filling it.
function removeNb(n) {
let nArray = [];
let sum = 0;
for(let i = 1; i <= n; i++) {
nArray.push(i);
sum += i;
}
}
And since there could be only two numbers a and b as the inputs for the formula a * b = sum - a - b, there could be only one possible value for each of them. So, there's no need to continue the loop when you find them.
if(i*y === sum - i - y) {
answersArray.push([i,y]);
break;
}
I recommend looking at the problem in another way.
You are trying to find two numbers a and b using this formula a * b = sum - a - b.
Why not reduce the formula like this:
a * b + a = sum - b
a ( b + 1 ) = sum - b
a = (sum - b) / ( b + 1 )
Then you only need one for loop that produces the value of b, check if (sum - b) is divisible by ( b + 1 ) and if the division produces a number that is less than n.
for(let i = 1; i <= n; i++) {
let eq1 = sum - i;
let eq2 = i + 1;
if (eq1 % eq2 === 0) {
let a = eq1 / eq2;
if (a < n && a != i) {
return [[a, b], [b, a]];
}
}
}
You can solve this in linear time with two pointers method (page 77 in the book).
In order to gain intuition towards a solution, let's start thinking about this part of your code:
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
...
You already figured out this is the part of your code that is slow. You are trying every combination of i and y, but what if you didn't have to try every single combination?
Let's take a small example to illustrate why you don't have to try every combination.
Suppose n == 10 so we have 1 2 3 4 5 6 7 8 9 10 where sum = 55.
Suppose the first combination we tried was 1*10.
Does it make sense to try 1*9 next? Of course not, since we know that 1*10 < 55-10-1 we know we have to increase our product, not decrease it.
So let's try 2*10. Well, 20 < 55-10-2 so we still have to increase.
3*10==30 < 55-3-10==42
4*10==40 < 55-4-10==41
But then 5*10==50 > 55-5-10==40. Now we know we have to decrease our product. We could either decrease 5 or we could decrease 10, but we already know that there is no solution if we decrease 5 (since we tried that in the previous step). So the only choice is to decrease 10.
5*9==45 > 55-5-9==41. Same thing again: we have to decrease 9.
5*8==40 < 55-5-8==42. And now we have to increase again...
You can think about the above example as having 2 pointers which are initialized to the beginning and end of the sequence. At every step we either
move the left pointer towards right
or move the right pointer towards left
In the beginning the difference between pointers is n-1. At every step the difference between pointers decreases by one. We can stop when the pointers cross each other (and say that no solution can be obtained if one was not found so far). So clearly we can not do more than n computations before arriving at a solution. This is what it means to say that the solution is linear with respect to n; no matter how large n grows, we never do more than n computations. Contrast this to your original solution, where we actually end up doing n^2 computations as n grows large.
Hassan is correct, here is a full solution:
function removeNb (n) {
var a = 1;
var d = 1;
// Calculate the sum of the numbers 1-n without anything removed
var S = 0.5 * n * (2*a + (d *(n-1)));
// For each possible value of b, calculate a if it exists.
var results = [];
for (let numB = a; numB <= n; numB++) {
let eq1 = S - numB;
let eq2 = numB + 1;
if (eq1 % eq2 === 0) {
let numA = eq1 / eq2;
if (numA < n && numA != numB) {
results.push([numA, numB]);
results.push([numB, numA]);
}
}
}
return results;
}
In case it's of interest, CY Aries pointed this out:
ab + a + b = n(n + 1)/2
add 1 to both sides
ab + a + b + 1 = (n^2 + n + 2) / 2
(a + 1)(b + 1) = (n^2 + n + 2) / 2
so we're looking for factors of (n^2 + n + 2) / 2 and have some indication about the least size of the factor. This doesn't necessarily imply a great improvement in complexity for the actual search but still it's kind of cool.
This is part comment, part answer.
In engineering terms, the original function posted is using "brute force" to solve the problem, iterating every (or more than needed) possible combinations. The number of iterations is n is large - if you did all possible it would be
n * (n-1) = bazillio n
Less is More
So lets look at things that can be optimized, first some minor things, I'm a little confused about the first for loop and nArray:
// OP's code
for(let i = 1; i <= n; i++) {
nArray.push(n - (n - i));
sum += i;
}
??? You don't really use nArray for anything? Length is just n .. am I so sleep deprived I'm missing something? And while you can sum a consecutive sequence of integers 1-n by using a for loop, there is a direct and easy way that avoids a loop:
sum = ( n + 1 ) * n * 0.5 ;
THE LOOPS
// OP's loops, not optimized
for(let i = Math.round(n/2); i < length; i++) {
for(let y = Math.round(n/2); y < length; y++) {
if(i != y) {
if(i*y === sum - i - y) {
Optimization Considerations:
I see you're on the right track in a way, cutting the starting i, y values in half since the factors . But you're iterating both of them in the same direction : UP. And also, the lower numbers look like they can go a little below half of n (perhaps not because the sequence start at 1, I haven't confirmed that, but it seems the case).
Plus we want to avoid division every time we start an instantiation of the loop (i.e set the variable once, and also we're going to change it). And finally, with the IF statements, i and y will never be equal to each other the way we're going to create the loops, so that's a conditional that can vanish.
But the more important thing is the direction of transversing the loops. The smaller factor low is probably going to be close to the lowest loop value (about half of n) and the larger factor hi is probably going to be near the value of n. If we has some solid math theory that said something like "hi will never be less than 0.75n" then we could make a couple mods to take advantage of that knowledge.
The way the loops are show below, they break and iterate before the hi and low loops meet.
Moreover, it doesn't matter which loop picks the lower or higher number, so we can use this to shorten the inner loop as number pairs are tested, making the loop smaller each time. We don't want to waste time checking the same pair of numbers more than once! The lower factor's loop will start a little below half of n and go up, and the higher factor's loop will start at n and go down.
// Code Fragment, more optimized:
let nHi = n;
let low = Math.trunc( n * 0.49 );
let sum = ( n + 1 ) * n * 0.5 ;
// While Loop for the outside (incrementing) loop
while( low < nHi ) {
// FOR loop for the inside decrementing loop
for(let hi = nHi; hi > low; hi--) {
// If we're higher than the sum, we exit, decrement.
if( hi * low + hi + low > sum ) {
continue;
}
// If we're equal, then we're DONE and we write to array.
else if( hi * low + hi + low === sum) {
answersArray.push([hi, low]);
low = nHi; // Note this is if we want to end once finding one pair
break; // If you want to find ALL pairs for large numbers then replace these low = nHi; with low++;
}
// And if not, we increment the low counter and restart the hi loop from the top.
else {
low++;
break;
}
} // close for
} // close while
Tutorial:
So we set the few variables. Note that low is set slightly less than half of n, as larger numbers look like they could be a few points less. Also, we don't round, we truncate, which is essentially "always rounding down", and is slightly better for performance, (though it dosenit matter in this instance with just the single assignment).
The while loop starts at the lowest value and increments, potentially all the way up to n-1. The hi FOR loop starts at n (copied to nHi), and then decrements until the factor are found OR it intercepts at low + 1.
The conditionals:
First IF: If we're higher than the sum, we exit, decrement, and continue at a lower value for the hi factor.
ELSE IF: If we are EQUAL, then we're done, and break for lunch. We set low = nHi so that when we break out of the FOR loop, we will also exit the WHILE loop.
ELSE: If we get here it's because we're less than the sum, so we need to increment the while loop and reset the hi FOR loop to start again from n (nHi).
I'm trying to create my own decimal to binary converter with the method of decrementing the inputted variable (decimal value), by dividing it by 2 and storing the remainder (like 2nd grade math remainder), which is always either 0 or 1. Each of the remainder values i thin should be stored in an array and I think maybe put in backwards so that the most significant digit is first in the array (this is because when decrementing the remainer values are filled in left to right). Soooo yea i dont really know how to store the remainder values in an array using a function
Thanks in advance and if something is confusing then feel free to ask because im not even sure if this is the best method of doing this its just what i came up with
function decimalToBinary(num) {
var bin = 0;
while (num > 0) {
bin = num % 2 + bin;
num >>= 1; // basically /= 2 without remainder if any
}
alert("That decimal in binary is " + bin);
}
Your code is almost correct. The main problem is that bin starts out as 0; when you add a digit, they are added numerically, so your code ends up just counting the binary 1s: in this manner, 10 is initial 0, and +1+0+1+0, resulting in 2. You want to handle it as a string: ""+1+0+1+0 results in 1010. So, the only needed change is:
var bin = "";
If you want to solve it using arrays, with minimal changes to your code, it would be:
function decimalToBinary(num) {
var bin = [];
while (num > 0) {
bin.unshift(num % 2);
num >>= 1; // basically /= 2 without remainder if any
}
alert("That decimal in binary is " + bin.join(''));
}
Here, I use .unshift to add an element to the head of the array (and renumbering the remaining elements); .join() to collect them all into a string.
Or this:
function decimalToBinary(num) {
var bin = [];
while (num > 0) {
bin[bin.length] = num % 2;
num >>= 1; // basically /= 2 without remainder if any
}
alert("That decimal in binary is " + bin.reverse().join(''));
}
This is not as good, but illustrates some more things you can do with arrays: taking their length, setting an arbitrary element, and flipping them around.
I have written a custom Decimal to Binary method:
function toBinary (input) {
let options = [1];
let max = 0;
let i = 1;
while(i) {
max = Math.pow(2, i);
if (max > input) break;
options.push(max);
i++;
}
let j = options.length;
let result = new Array(j);
result.fill("0");
while(j >= 0) {
if (options[j] <= input) {
result[j] = "1"
input = input - options[j];
}
j--;
}
return [...result].reverse().join("");
}
//Test the toBin method with built-in toString(2)
toBinary(100) === (100).toString(2) // true
toBinary(1) === (1).toString(2) // true
toBinary(128) === (128).toString(2) // true
I ran into the challenge where I need a function that returns a random number within a given range from 0 - X. Not only that, but I require the number returned to be unique; not duplicating numbers that have already been returned on previous calls to the function.
Optionally, when this is done (e.g. the range has been 'exhausted'), just return a random number within the range.
How would one go about doing this?
This should do it:
function makeRandomRange(x) {
var used = new Array(x),
exhausted = false;
return function getRandom() {
var random = Math.floor(Math.random() * x);
if (exhausted) {
return random;
} else {
for (var i=0; i<x; i++) {
random = (random + 1) % x;
if (random in used)
continue;
used[random] = true;
return random;
}
// no free place found
exhausted = true;
used = null; // free memory
return random;
}
};
}
Usage:
var generate = makeRandomRange(20);
var x1 = generate(),
x2 = generate(),
...
Although it works, it has no good performance when the x-th random is generated - it searches the whole list for a free place. This algorithm, a step-by-step Fisher–Yates shuffle, from the question Unique (non-repeating) random numbers in O(1)?, will perform better:
function makeRandomRange(x) {
var range = new Array(x),
pointer = x;
return function getRandom() {
pointer = (pointer-1+x) % x;
var random = Math.floor(Math.random() * pointer);
var num = (random in range) ? range[random] : random;
range[random] = (pointer in range) ? range[pointer] : pointer;
return range[pointer] = num;
};
}
(Demo at jsfiddle.net)
Extended version which does only generate one "group" of unique numbers:
function makeRandomRange(x) {
var range = new Array(x),
pointer = x;
return function getRandom() {
if (range) {
pointer--;
var random = Math.floor(Math.random() * pointer);
var num = (random in range) ? range[random] : random;
range[random] = (pointer in range) ? range[pointer] : pointer;
range[pointer] = num;
if (pointer <= 0) { // first x numbers had been unique
range = null; // free memory;
}
return num;
} else {
return Math.floor(Math.random() * x);
}
};
}
(Demo)
You got some great programming answer. Here's one with a more theoretical flavor to complete your panorama :-)
Your problem is called "sampling" or "subset sampling" and there are several ways you could do this. Let N be the range you are sampling frame (i.e., N=X+1) and M be the size of your sample (the number of elements you want to pick).
if N is much larger than M, you'll want to use an algorithm such as the one suggested by Bentley and Floyd in his column "Programming Pearls: a sample of brilliance" (temporarily available without ACM's lock screen here), I really recommend this as they explicitly give code and discuss in terms of hash tables, etc.; there a few neat tricks in there
if N is within the same range as M, then you might want to use the Fisher-Yates shuffle but stop after only M steps (instead of N)
if you don't really know then the algorithm on page 647 of Devroye's book on random generation is pretty fast.
I wrote this function. It keeps its own array with a history of generated numbers, preventing initial duplicates, continuing to output a random number if all numbers in the range have been outputted once:
// Generates a unique number from a range
// keeps track of generated numbers in a history array
// if all numbers in the range have been returned once, keep outputting random numbers within the range
var UniqueRandom = { NumHistory: new Array(), generate: function(maxNum) {
var current = Math.round(Math.random()*(maxNum-1));
if (maxNum > 1 && this.NumHistory.length > 0) {
if (this.NumHistory.length != maxNum) {
while($.inArray(current, this.NumHistory) != -1) { current = Math.round(Math.random()*(maxNum-1)); }
this.NumHistory.push(current);
return current;
} else {
//unique numbers done, continue outputting random numbers, or we could reset the history array (NumHistory = [];)
return current;
}
} else {
//first time only
this.NumHistory.push(current);
return current;
}
}
};
Here's a working Fiddle
I hope this is of use to someone!
Edit: as pointed out by Pointy below, it might get slow with a large range (here is a
fiddle, going over a range from 0-1000, which seems to run fine). However; I didn't require a very large range, so perhaps this function is indeed not suited if you look to generate and keep track of an enormous range.
You may try generating the number using the current date and time value which would make it unique. To make it within the range, you may have to use some mathematical function.