2 random values from array project - javascript

Okey ive got to make a program that counts togheter 2 random values.
In the program there is supposed to be a list (1-9) in a function. From this list im supposed to get 2 random values (im recommended to use array.splice()).
After the 2 random values have been choosen the program is supposed to calculate them (addition) into a total value randomvalue1 + randomvalue2 = totalvalue;
THE CATCH!
While executing the 2 randomvalues cant be of the same value (5+5, 3+3, 2+2, and so on is invalid)
THE SECOND CATCH!
the random values are not allowed to be executed 2 times in a row. what i mean is that the program should not allow for randomvalue1 to be equal to the same value two times (or more) in a row (this also applies for randomvalue2)
So far i got suggested this code but it doesnt check if the same values appear x amount of times in a row
function makeRandom(list) {
function getRandomIndex() {
return Math.floor(Math.random() * list.length);
}
let index1 = getRandomIndex(),
index2 = getRandomIndex();
while (index1 === index2) index2 = getRandomIndex();
return list[index1] + '+' + list[index2];
}
console.log(makeRandom([1, 2, 3, 4, 5, 6, 7, 8, 9]));

You could take the indeces and loop until you get a different index for getting the value from the array.
function makeRandom(list) {
function getRandomIndex() {
return Math.floor(Math.random() * list.length);
}
let index1 = getRandomIndex(),
index2 = getRandomIndex();
while (index1 === index2) index2 = getRandomIndex();
return list[index1] + '+' + list[index2];
}
console.log(makeRandom([1, 2, 3, 4, 5, 6, 7, 8, 9]));
Approach with excluding some indices
function makeRandom(list, exclude = []) {
function getRandomIndex() {
return Math.floor(Math.random() * list.length);
}
function getFreeIndex() {
let index;
if (exclude.length >= list.length) return;
do index = getRandomIndex();
while (exclude.includes(index))
exclude.push(index);
return index;
}
return getFreeIndex() + '+' + getFreeIndex();
}
console.log(makeRandom([1, 2, 3, 4, 5, 6, 7, 8, 9], [2, 3]));

Assumptions
You have an array of numbers as input
Every call to makeRandom should randomly select two numbers from your array and output the sum
Every subsequent call to makeRandom should not use any number (id) already used
list = [1,1,2,3,4,5];
// The number 1 could be used twice (but only in different calls to makeRandom)
// The numbers 2,3,4,5 can only be used once
list = [1,1];
// Shouldn't work because 1 == 1
JS Code
var list = [1,2,3,4,5,6,7,8,9]; // Your seed list
var usable = list.slice(0); // Copy of your seed list {which we will alter with makeRandom}
function makeRandom(){
// Check it's possible...
let counts = {}; // Create object to count unique numbers
for (var i = 0; i < usable.length; i++) {
counts[usable[i]] = 1 + (counts[usable[i]] || 0); // Iterate array and fill counts
}
if(Object.keys(counts).length < 2){ // Check there are at least two unique numbers
console.log("List is too short!"); // Log error if <2
return false; // Exit function if <2
}
// Get random numbers and output sum...
let id = Math.floor(Math.random() * usable.length) // Randomly select an id from usable numbers
let a = usable[id]; // Set first number
usable.splice(id, 1); // Remove 1st number from usable numbers
let b;
while(true){ // Loop until numbers are different
id = Math.floor(Math.random() * usable.length); // Randomly select an id from usable numbers
b = usable[id]; // Set second number
if(a !== b)break; // Check 1st number isn't the same as the second number
}
usable.splice(id, 1); // Remove 2nd number from usable numbers
// console.log(a + " + " + b + " = " + (a+b)); // Log for debugging if required
return a+b; // Return sum of 1st and 2nd numbers
}
Note: I've typed out the while loop in full for ease of understanding; it could be shortened using do...while(...):
let b;
do b = list[Math.floor(Math.random() * list.length)]; // Set second number
while(a==b) // Re-set second number if a == b OR if b was used in the last call to makeRandom
Example
var list = [1,2,3,4,5,6,7,8,9];
var usable = list.slice(0);
function makeRandom(){
let counts = {};
for (var i = 0; i < usable.length; i++) {
counts[usable[i]] = 1 + (counts[usable[i]] || 0);
}
if(Object.keys(counts).length < 2){
console.log("List is too short!");
return false;
}
let id = Math.floor(Math.random() * usable.length)
let a = usable[id];
usable.splice(id, 1);
let b;
while(true){
id = Math.floor(Math.random() * usable.length);
b = usable[id];
if(a !== b)break;
}
usable.splice(id, 1);
console.log(a + " + " + b + " = " + (a+b));
return a+b;
}
// Make several calls to function
makeRandom();
makeRandom();
makeRandom();
makeRandom();
makeRandom();
makeRandom();
// Change the seed lists
var list = [1,1,1,1,1,9];
var usable = list.slice(0);
// Make several calls to function
makeRandom();
makeRandom();
makeRandom();
Example Output
__Example 1__
list = [1,2,3,4,5,6,7,8,9]; // Example list used
// console.log return
> makeRandom(); // 4 + 2 = 6 6
> makeRandom(); // 1 + 8 = 9 9
> makeRandom(); // 9 + 3 = 12 12
> makeRandom(); // 6 + 7 = 13 13
> makeRandom(); // List is too short! false
> makeRandom(); // List is too short! false
__Example 2__
list = [1,1,1,1,1,9]; // Example list used
// console.log return
> makeRandom(); // 1 + 9 = 10 10
> makeRandom(); // List is too short! false
> makeRandom(); // List is too short! false
Alternative
Having had a look at the updates to your question...
I'm not clear on whether the numbers can only be used once or if they just can't be used back to back.
list = [1,2,3,4,5];
// Choose from // Chosen
> makeRandom(); // 1, 2, 3, 4, 5 // 1, 4
> makeRandom(); // 2, 3, 5 // 2, 3
> makeRandom(); // 1, 4, 5 // 1, 5
If that's the case then the following is likely more useful
var list = [1,2,3,4,5,6,7,8,9]; // Your seed list
var used = []; // Last used pair of numbers
function makeRandom(){
// Check it's possible...
let counts = {}; // Create object to count unique numbers
for (var i = 0; i < list.length; i++) {
counts[list[i]] = 1 + (counts[list[i]] || 0); // Iterate array and fill counts
}
if(Object.keys(counts).length < 4){ // Check there are at least four unique numbers: any less and we'll end up in an infinite loop on the second call of makeRandom
console.log("List is too short!"); // Log error if <2
return false; // Exit function if <2
}
// Get random numbers and output sum...
let a;
do a = list[Math.floor(Math.random() * list.length)]; // Set first number
while(used.includes(a)) // Reset first number if a was used in the last call to makeRandom
let b;
do b = list[Math.floor(Math.random() * list.length)]; // Set second number
while(a==b || used.includes(b)) // Re-set second number if a == b OR if b was used in the last call to makeRandom
used = [a, b]; // Set last used numbers
console.log(a + " + " + b + " = " + (a+b)); // Log for debugging if required
return a+b; // Return sum of 1st and 2nd numbers
}
// Make several calls to function
makeRandom();
makeRandom();
makeRandom();
makeRandom();
makeRandom();
makeRandom();
// Change the seed lists
var list = [1,2,3,4];
// Make several calls to function
// Notice with only 4 numbers once the first pair is selected (e.g. 1 & 3) the pattern cycles 1,3 -> 2,4 -> 1,3 -> 2,4
makeRandom();
makeRandom();
makeRandom();

Updated Answer
An edit to the questions made clear some additional requirements, and that means the the original solution (below) doesn't do what's requested. This version seems to be useful.
We introduce a function that will randomly choose from a fixed array, but at no time pick any of the n-most recently used items. So if we call this with n of 4 and arr of [1, 2, 3, 4, 5, 6, 7, 8, 9], we will get back a function that will randomly select one of the values, and on the next call will randomly select another, and on the third call still another, and the fourth yet one more. There will be no duplicates among these four. The fifth one might be the same as the first or could be any of the other values not in that list. And the sixth call might be the same as the second (or if it's not been reused in the fifth round, the same value as the first), and so on.
const noRepeatRandom = (n, arr) => {
// TODO: error if n >= arr.length
let available = [...arr]
let used = []
return () => {
const nextIdx = Math .floor (Math .random() * available .length)
const next = available [nextIdx]
used .push (next)
available .splice (nextIdx, 1)
if (used .length >= n) {
available .push (used .shift())
}
return next
}
}
const myRandom = noRepeatRandom (4, [1, 2, 3,4, 5, 6, 7, 8, 9])
// display the results of a bunch of calls to `myRandom()`
console .log (...Array.from({length: 30}, myRandom))
We keep track of two lists: the ones not recently used and the ones we can't reuse right now (available and used.) Initially we just fill up used, but once it reaches n, we start taking the oldest element off the used list and adding it to available.
Note that there should be error checking for n and the length of the array. If n >= arr.length, this should just fail. I'll leave that as an exercise. Also note that if n == arr.length - 1, you will get an endlessly repeating cycle of the same arr.length items, as each time there will only be one option to choose from.
Original Answer
This version does not match the clarified requirements. It's still a useful technique, but it doesn't solve the problem.
I would do a partial shuffling of the array. The code below is a recursive version of the Fisher-Yates shuffle, modified to stop after n elements are chosen. It does not modify your input array.
We then build pickTwo on top of this by partially applying the 2 to our (curried) function.
const partialShuffle = (n) => (xs, i = Math.floor (Math .random () * xs .length)) =>
n <= 0 || n > xs .length || xs .length == 0
? []
: [xs[i], ... partialShuffle (n - 1) ([... xs .slice (0, i), ... xs .slice (i + 1)])]
const pickTwo = partialShuffle (2)
const arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
for (let i = 0; i < 5; i ++) {
console.log(...pickTwo(arr))
}
console.log('Original not modified:', ...arr)
.as-console-wrapper {max-height: 100% !important; top: 0}

Related

JavaScript: Generate a unique 'x' numbers base on the range & set given [duplicate]

How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}​
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)

Codewars division Kata using Javascript is producing results that are not divisble by 6

I am trying to solve this Kata from Codewars: https://www.codewars.com/kata/simple-fun-number-258-is-divisible-by-6/train/javascript
The idea is that a number (expressed as a string) with one digit replaced with *, such as "1047*66", will be inserted into a function. You must return an array in which the values are the original number with the * replaced with any digit that will produce a number divisive by 6. So given "1*0", the correct resulting array should be [120, 150, 180].
I have some code that is producing some correct results but erroring for others, and I can't figure out why. Here's the code:
function isDivisibleBy6(s) {
var results = [];
for(i=0;i<10;i++) {
var string = i.toString(); // Convert i to string, ready to be inserted into s
var array = Array.from(s); // Make an array from s
var index = array.indexOf("*"); // Find where * is in the array of s
array[index] = string; // Replace * with the string of i
var number = array.join(""); // Join all indexes of the s array back together. Now we should have
// a single number expressed as a string, with * replaced with i
parseInt(number, 10); // Convert the string to an integer
if((number % 6) == 0) {
results.push(number);
} // If the integer is divisible by 6, add the integer into the results array
}
return(results);
};
This code works with the above example and generally with all smaller numbers. But it is producing errors for larger numbers. For example, when s is "29070521868839*57", the output should be []. However, I am getting ['29070521868839257', '29070521868839557', '29070521868839857']. I can't figure out where this would be going wrong. Is anyone able to help?
The problem is that these numbers are larger than the Number.MAX_SAFE_INTEGER - the point when JavaScript numbers break down in terms of reliability:
var num = 29070521868839257;
console.log(num > Number.MAX_SAFE_INTEGER);
console.log(num % 6);
console.log(num)
The last log shows that the num actually has a different value than what we gave it. This is because 29070521868839257 simply cannot be represented by a JavaScript number, hence you get the closest possible value that can be represented and that's 29070521868839256.
So, after some point in numbers, all mathematical operations become unreliable as the very numbers are imprecise.
What you can do instead is ignore treating this whole as a number - treat it as a string and only apply the principles of divisibility. This makes the task vastly easier.
For a number to be divisible by 6 it has to cover two criteria:
it has to be divisible by 2.
to verify this, you can just get the very smallest digit and check if it's divisible by 2. For example in 29070521868839257 if we take 7, and check 7 % 2, we get 1 which means that it's odd. We don't need to consider the whole number.
it has to be divisible by 3.
to verify this, you can sum each of the digits and see if that sum is divisible by 3. If we sum all the digits in 29070521868839257 we get 2 + 9 + 0 + 7 + 0 + 5 + 2 + 1 + 8 + 6 + 8 + 8 + 3 + 9 + 2 + 5 + 7 = 82 which is not divisible by 3. If in doubt, we can sum the digits again, since the rule can be applied to any number with more than two digits: 8 + 2 = 10 and 1 + 0 = 1. That is still not divisible by 3.
So, if we apply these we can get something like:
function isDivisibleBy6(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
};
function isDivisibleBy2(s) {
var lastDigit = Number(s.slice(-1));
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return (sum % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839257"));
console.log(isDivisibleBy6("29070521868839256"));
These can even be recursively defined true to the nature of these rules:
function isDivisibleBy6(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
};
function isDivisibleBy2(s) {
if (s.length === 0) {
return false;
}
if (s.length > 1) {
return isDivisibleBy2(s.slice(-1));
}
var lastDigit = Number(s);
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
if (s.length === 0) {
return false;
}
if (s.length > 1) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return isDivisibleBy3(String(sum));
}
var num = Number(s);
return (num % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839257"));
console.log(isDivisibleBy6("29070521868839256"));
This is purely to demonstrate the rules of division and how they can be applied to strings. You have to create numbers that will be divisible by 6 and to do that, you have to replace an asterisk. The easiest way to do it is like you did - generate all possibilities (e.g., 1*0 will be 100, 110, 120, 130, 140, 150, 160, 170, 180, 190) and then filter out whatever is not divisible by 6:
function isDivisibleBy6(s) {
var allDigits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
var allPossibleNumbers = allDigits.map(function(digit) {
return s.replace("*", digit);
});
var numbersDibisibleBySix = allPossibleNumbers.filter(function(s) {
return isDivisibleBy2(s) && isDivisibleBy3(s);
})
return numbersDibisibleBySix;
};
function isDivisibleBy2(s) {
var lastDigit = Number(s.slice(-1));
return (lastDigit % 2) === 0;
}
function isDivisibleBy3(s) {
var digits = s.split("")
.map(Number);
var sum = digits.reduce(function(a, b) {
return a + b
});
return (sum % 3) === 0;
}
console.log(isDivisibleBy6("29070521868839*57"));
console.log(isDivisibleBy6("29070521868839*56"));
As a last note, this can be written more concisely by removing intermediate values and using arrow functions:
function isDivisibleBy6(s) {
return [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
.map(digit => s.replace("*", digit))
.filter(s => isDivisibleBy2(s) && isDivisibleBy3(s));
};
const isDivisibleBy2 = s => Number(s.slice(-1)) % 2 === 0;
const isDivisibleBy3 = s => s.split("")
.map(Number)
.reduce((a, b) => a + b) % 3 === 0
console.log(isDivisibleBy6("29070521868839*57"));
console.log(isDivisibleBy6("29070521868839*56"));
Sum of all digits is divisible by three and the last digit is divisible by two.
An approach:
Get the index of the star.
Get left and right string beside of the star.
Return early if the last digit is not divisible by two.
Take the sum of all digits.
Finally create an array with missing digits:
Start loop from either zero (sum has no rest with three) or take the delta of three and the rest (because you want a number which is divisible by three).
Go while value is smaller then ten.
Increase the value either by 3 or by 6, if the index of the star is the last character.
Take left, value and right part for pushing to the result set.
Return result.
function get6(s) {
var index = s.indexOf('*'),
left = s.slice(0, index),
right = s.slice(index + 1),
result = [],
sum = 0,
i, step;
if (s[s.length - 1] % 2) return [];
for (i = 0; i < s.length; i++) if (i !== index) sum += +s[i];
i = sum % 3 && 3 - sum % 3;
step = s.length - 1 === index ? 6 : 3;
for (; i < 10; i += step) result.push(left + i + right);
return result;
}
console.log(get6("*")); // ["0", "6"]
console.log(get6("10*")); // ["102", "108"]
console.log(get6("1*0")); // ["120", "150", "180"]
console.log(get6("*1")); // []
console.log(get6("1234567890123456789012345678*0")); // ["123456789012345678901234567800","123456789012345678901234567830","123456789012345678901234567860","123456789012345678901234567890"]
.as-console-wrapper { max-height: 100% !important; top: 0; }
The problem is with:
parseInt(number, 10);
You can check and see that when number is large enough, this result converted back to string is not equal to the original value of number, due to the limit on floating point precision.
This challenge can be solved without having to convert the given string to number. Instead use a property of numbers that are multiples of 6. They are multiples of 3 and even. Multiples of 3 have the property that the sum of the digits (in decimal representation) are also multiples of 3.
So start by checking that the last digit is not 1, 3, 5, 7, or 9, because in that case there is no solution.
Otherwise, sum up the digits (ignore the asterisk). Determine which value you still need to add to that sum to get to a multiple of 3. This will be 0, 1 or 2. If the asterisk is not at the far right, produce solutions with this digit, and 3, 6, 9 added to it (until you get double digits).
If the asterisk is at the far right, you can do the same, but you must make sure that you exclude odd digits in that position.
If you are desperate, here is a solution. But I hope you can make it work yourself.
function isDivisibleBy6(s) {
// If last digit is odd, it can never be divisable by 6
if ("13579".includes(s[s.length-1])) return [];
let [left, right] = s.split("*");
// Calculate the sum of the digits (ignore the asterisk)
let sum = 0;
for (let ch of s) sum += +ch || 0;
// What value remains to be added to make the digit-sum a multiple of 3?
sum = (3 - sum%3) % 3;
// When asterisk in last position, then solution digit are 6 apart, otherwise 3
let mod = right.length ? 3 : 6;
if (mod === 6 && sum % 2) sum += 3; // Don't allow odd digit at last position
// Build the solutions, by injecting the found digit values
let result = [];
for (; sum < 10; sum += mod) result.push(left + sum + right);
return result;
}
// Demo
console.log(isDivisibleBy6("1234567890123456789012345678*0"));
BigInt
There is also another way to get around the floating point precision problem: use BigInt instead of floating point. However, BigInt is not supported on CodeWars, at least not in that specific Kata, where the available version of Node goes up to 8.1.3, while BigInt was introduced only in Node 10.
function isDivisibleBy6(s) {
let [left, right] = s.split("*");
let result = [];
for (let i = 0; i < 10; i++) {
let k = BigInt(left + i + right);
if (k % 6n === 0n) result.push(k.toString());
}
return result;
}
// Demo
console.log(isDivisibleBy6("1234567890123456789012345678*0"));
This would anyway feel like "cheating" (if it were accepted), as it's clearly not the purpose of the Kata.
As mentioned, the values you are using are above the maximum integer value and therefore unsafe, please see the docmentation about this over here Number.MAX_SAFE_INTEGER. You can use BigInt(string) to use larger values.
Thanks for all the responses. I have now created successful code!
function isDivisibleBy6(s) {
var results = [];
for(i=0;i<10;i++) {
var string = i.toString();
var array = Array.from(s);
var index = array.indexOf("*");
array[index] = string;
var div2 = 0;
var div3 = 0;
if(parseInt((array[array.length-1]),10) % 2 == 0) {
div2 = 1;
}
var numarray = array.map((x) => parseInt(x));
if(numarray.reduce(function myFunc(acc, value) {return acc+value}) % 3 == 0) {
div3 = 1;
}
if(div2 == 1 && div3 == 1) {
results.push(array.join(""));
}
}
return(results);
};
I know this could be factored down quite a bit by merging the if expressions together, but I like to see things split out so that when I look back over previous solutions my thought process is clearer.
Thanks again for all the help!

Javascript: Check array of numbers for number of missing numbers needed to make the array consecutive

Working on some Javascript challenges on Code Signal and I'm having an issue solving this:
Ratiorg got statues of different sizes as a present from CodeMaster for his birthday, each statue having an non-negative integer size. Since he likes to make things perfect, he wants to arrange them from smallest to largest so that each statue will be bigger than the previous one exactly by 1. He may need some additional statues to be able to accomplish that. Help him figure out the minimum number of additional statues needed.
Example
For statues = [6, 2, 3, 8], the output should be
makeArrayConsecutive2(statues) = 3.
Ratiorg needs statues of sizes 4, 5 and 7.
My approach:
Sort the array smallest to largest
Create counter variable to store number of missing numbers
Iterate through array
Subtract [i + 1] element from [i] element
If it equals 1, numbers are consecutive, if not the numbers are not consecutive (increment counter variable)
Return counter variable
Here is my code:
function makeArrayConsecutive2(statues) {
// Sorts array numerically smallest to largest
statues.sort((a, b) => a - b);
let counter = 0;
// If array only contains one number return 0
if(statues.length === 1) {
return 0;
}
/* Iterate through array, subtract the current element from the next element, if it
equals 1 the numbers are consecutive, if it doesn't equal one increment the counter
variable */
for(let i = 0; i <= statues.length -1; i++) {
if(statues[i] !== statues.length -1 && statues[i + 1] - statues[i] != 1) {
counter++;
}
console.log(statues[i]);
console.log('counter : ' + counter);
}
return counter;
}
When statues contains [5, 4, 6] the output is this:
4
counter : 0
5
counter : 0
6
counter : 1
I think the problem is when array is on the last element, in this case 6, it's attempting to look at statues[i + 1] when that element doesn't exist. I added statues[i] !== statues.length -1 to my if statement to address that but it doesn't appear to be working. What's wrong with my code and why is the final element incrementing the counter variable?
I'd approach it by building the target array which goes from the min+1 to the max-1 of the input by ones, excluding members of the input.....
function missingConseq(input) {
let min = Math.min.apply(null, input)
let max = Math.max.apply(null, input)
let result = []
for (i = min+1; i < max; i++) {
if (!input.includes(i)) result.push(i)
}
return result
}
let array = [6, 2, 3, 8]
console.log(missingConseq(array))

Finding all possible combined (plus and minus) sums of n arguments?

I'm trying to build a function that takes a variable number of arguments.
The function takes n inputs and calculates all possible sums of addition and subtraction e.g. if the args are 1,2,3
1 + 2 + 3
1 - 2 - 3
1 + 2 - 3
1 - 2 + 3
Finally, the function outputs the sum that is closest to zero. In this case, that answer would just be 0.
I'm having a lot of problems figuring out how to loop n arguments to use all possible combinations of the + and - operators.
I've managed to build a function that either adds all or subtracts all variables, but I'm stuck on how to approach the various +'s and -'s, especially when considering multiple possible variables.
var sub = 0;
var add = 0;
function sumAll() {
var i;
for (i = 0; i < arguments.length; i++) {
sub -= arguments[i];
}
for (i = 0; i < arguments.length; i++) {
add += arguments[i];
}
return add;
return sub;
};
console.log(add, sub); // just to test the outputs
I'd like to calculate all possible arrangements of + and - for any given number of inputs (always integers, both positive and negative). Suggestions on comparing sums to zero are welcome, though I haven't attempted it yet and would rather try before asking on that part. Thanks.
I'd iterate through the possible bits of a number. Eg, if there are 3 arguments, then there are 3 bits, and the highest number representable by those bits is 2 ** 3 - 1, or 7 (when all 3 bits are set, 111, or 1+2+4). Then, iterate from 0 to 7 and check whether each bit index is set or not.
Eg, on the first iteration, when the number is 0, the bits are 000, which corresponds to +++ - add all 3 arguments up.
On the second iteration, when the number is 1, the bits are 001, which corresponds to -++, so subtract the first argument, and add the other two arguments.
The third iteration would have 2, or 010, or +-+.
The third iteration would have 3, or 011, or +--.
The third iteration would have 4, or 100, or -++.
Continue the pattern until the end, while keeping track of the total closest to zero so far.
You can also return immediately if a subtotal of 0 is found, if you want.
const sumAll = (...args) => {
const limit = 2 ** args.length - 1; // eg, 2 ** 3 - 1 = 7
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
// eg '000', or '001', or '010', or '011', or '100', etc
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = 0;
console.log('i:', i, 'bitStr:', bitStr);
args.forEach((arg, bitPos) => {
if (bitStr[args.length - 1 - bitPos] === '0') {
console.log('+', arg);
subtotal += arg;
} else {
console.log('-', arg);
subtotal -= arg;
}
});
console.log('subtotal', subtotal);
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
You can "simplify" by replacing the [args.length - 1 - bitPos] with [bitPos] for the same result, but it'll look a bit more confusing - eg 3 (011, or +--), would become 110 (--+).
It's a lot shorter without all the logs that demonstrate that the code is working as desired:
const sumAll = (...args) => {
const limit = 2 ** args.length - 1;
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = 0;
args.forEach((arg, bitPos) => {
subtotal += (bitStr[bitPos] === '0' ? -1 : 1) * arg;
});
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
You can cut the number of operations in half by arbitrarily choosing a sign for the first digit. Eg. currently, with sumAll(9, 1), both an answer of 8 (9 - 1) and -8 (1 - 9) would be valid, because they're both equally close to 0. No matter the input, if +- produces a number closest to 0, then -+ does as well, only with the opposite sign. Similarly, if ++--- produces a number closest to 0, then --+++ does as well, with the opposite sign. By choosing a sign for the first digit, you might be forcing the calculated result to have just one sign, but that won't affect the algorithm's result's distance from 0.
It's not much of an improvement (eg, 10 arguments, 2 ** 10 - 1 -> 1023 iterations improves to 2 ** 9 - 1 -> 511 iterations), but it's something.
const sumAll = (...args) => {
let initialDigit = args.shift();
const limit = 2 ** args.length - 1;
let totalClosestToZeroSoFar = Infinity;
for (let i = 0; i < limit; i++) {
const bitStr = i.toString(2).padStart(args.length, '0');
let subtotal = initialDigit;
args.forEach((arg, bitPos) => {
subtotal += (bitStr[bitPos] === '0' ? -1 : 1) * arg;
});
if (Math.abs(subtotal) < Math.abs(totalClosestToZeroSoFar)) {
totalClosestToZeroSoFar = subtotal;
}
}
return totalClosestToZeroSoFar;
};
console.log('final', sumAll(1, 2, 3));
The variable argument requirement is unrelated to the algorithm, which seems to be the meat of the question. You can use the spread syntax instead of arguments if you wish.
As for the algorithm, if the parameter numbers can be positive or negative, a good place to start is a naive brute force O(2n) algorithm. For each possible operation location, we recurse on adding a plus sign at that location and recurse separately on adding a minus sign. On the way back up the call tree, pick whichever choice ultimately led to an equation that was closest to zero.
Here's the code:
const closeToZero = (...nums) =>
(function addExpr(nums, total, i=1) {
if (i < nums.length) {
const add = addExpr(nums, total + nums[i], i + 1);
const sub = addExpr(nums, total - nums[i], i + 1);
return Math.abs(add) < Math.abs(sub) ? add : sub;
}
return total;
})(nums, nums[0])
;
console.log(closeToZero(1, 17, 6, 10, 15)); // 1 - 17 - 6 + 10 + 15
Now, the question is whether this is performing extra work. Can we find overlapping subproblems? If so, we can memoize previous answers and look them up in a table. The problem is, in part, the negative numbers: it's not obvious how to determine if we're getting closer or further from the target based on a subproblem we've already solved for a given chunk of the array.
I'll leave this as an exercise for the reader and ponder it myself, but it seems likely that there's room for optimization. Here's a related question that might offer some insight in the meantime.
This is also known as a variation of the partition problem, whereby we are looking for a minimal difference between the two parts we have divided the arguments into (e.g., the difference between [1,2] and [3] is zero). Here's one way to enumerate all the differences we can create and pick the smallest:
function f(){
let diffs = new Set([Math.abs(arguments[0])])
for (let i=1; i<arguments.length; i++){
const diffs2 = new Set
for (let d of Array.from(diffs)){
diffs2.add(Math.abs(d + arguments[i]))
diffs2.add(Math.abs(d - arguments[i]))
}
diffs = diffs2
}
return Math.min(...Array.from(diffs))
}
console.log(f(5,3))
console.log(f(1,2,3))
console.log(f(1,2,3,5))
I like to join in on this riddle :)
the issue can be described as fn = fn - 1 + an * xn , where x is of X and a0,...,an is of {-1, 1}
For a single case: X * A = y
For all cases X (*) TA = Y , TA = [An!,...,A0]
Now we have n! different A
//consider n < 32
// name mapping TA: SIGN_STATE_GENERATOR, Y: RESULT_VECTOR, X: INPUT
const INPUT = [1,2,3,3,3,1]
const SIGN_STATE_GENERATOR = (function*(n){
if(n >= 32) throw Error("Its working on UInt32 - max length is 32 in this implementation")
let uint32State = -1 >>> 32-n;
while(uint32State){
yield uint32State--;
}
})(INPUT.length)
const RESULT_VECTOR = []
let SIGN_STATE = SIGN_STATE_GENERATOR.next().value
while (SIGN_STATE){
RESULT_VECTOR.push(
INPUT.reduce(
(a,b, index) =>
a + ((SIGN_STATE >> index) & 1 ? 1 : -1) * b,
0
)
)
SIGN_STATE = SIGN_STATE_GENERATOR.next().value
}
console.log(RESULT_VECTOR)
I spent time working on the ability so apply signs between each item in an array. This feels like the most natural approach to me.
const input1 = [1, 2, 3]
const input2 = [1, 2, 3, -4]
const input3 = [-3, 6, 0, -5, 9]
const input4 = [1, 17, 6, 10, 15]
const makeMatrix = (input, row = [{ sign: 1, number: input[0] }]) => {
if(row.length === input.length) return [ row ]
const number = input[row.length]
return [
...makeMatrix(input, row.concat({ sign: 1, number })),
...makeMatrix(input, row.concat({ sign: -1, number }))
]
}
const checkMatrix = matrix => matrix.reduce((best, row) => {
const current = {
calculation: row.map((item, i) => `${i > 0 ? item.sign === -1 ? "-" : "+" : ""}(${item.number})`).join(""),
value: row.reduce((sum, item) => sum += (item.number * item.sign), 0)
}
return best.value === undefined || Math.abs(best.value) > Math.abs(current.value) ? current : best
})
const processNumbers = input => {
console.log("Generating matrix for:", JSON.stringify(input))
const matrix = makeMatrix(input)
console.log("Testing the following matrix:", JSON.stringify(matrix))
const winner = checkMatrix(matrix)
console.log("Closest to zero was:", winner)
}
processNumbers(input1)
processNumbers(input2)
processNumbers(input3)
processNumbers(input4)

Multiplicative Persistence program in Javascript not working

I can't get my program to work. The problem is a kata from Codewars:
Write a function, persistence, that takes in a positive parameter num and returns its multiplicative persistence, which is the number of times you must multiply the digits in num until you reach a single digit.
Example:
persistence(39) === 3 // because 3*9 = 27, 2*7 = 14, 1*4=4
// and 4 has only one digit
persistence(999) === 4 // because 9*9*9 = 729, 7*2*9 = 126,
// 1*2*6 = 12, and finally 1*2 = 2
persistence(4) === 0 // because 4 is already a one-digit number
I've gone through answers to similar problems here already. This is my code:
var count = 0;
var product = 1;
function persistence(num) {
if (num.toString().length == 1) {
count+=0;
return count;
}
for (i of num.toString()) {
product *= Number(i);
}
count++;
var newProduct = product;
// reset product to 1 so that line ten does not
// start with the product from the last loop
product = 1;
persistence(newProduct);
}
I can't tell what the problem is. Initially I was getting a maximum call stack exceeded error. I researched that and realized I did this for my base case:
if (num.length == 1) {
count+=0;
return count;
}
instead of
if (num.toString().length == 1) {
count+=0;
return count;
}
My logic seems sound. What could the problem be?
Here's a much better way of solving your problem, complete with comments that I think gives a pretty clear explanation of what's going on.
function persistence(num) {
// Create a new function that you'll use inside your main function
function multiply(n) {
// Multiply the first number by next number in the array
// until the entire array has been iterated over
return n.reduce(function(a,b){return a*b;});
}
// Set the count to 0
var count =0;
// Use a while loop to iterate the same number of times
// as there are digits in num
while (num.toString().length > 1) {
// Splits the num into an array
num= num.toString().split("");
// Runs multiply on our num array and sets num to the returned
// value in preparation of the next loop.
// The multiply function will for 39 run 3 * 9 = 27,
// next iteration we've set num to 27 so multiply will be
// 2 * 7 = 14, then 1 * 4 = 4, and since num 4 now
// has a length <= 1 the loop stops.
num = multiply(num);
// Increase count by 1 each iteration, then run the next
// iteration in the loop with the new value for num being
// set to the result of the first multiplication.
count++;
}
return count; // return the value of count
}
console.log(persistence(39));// === 3 // because 3*9 = 27, 2*7 = 14, 1*4=4
// and 4 has only one digit
console.log(persistence(999));// === 4 // because 9*9*9 = 729, 7*2*9 = 126,
// 1*2*6 = 12, and finally 1*2 = 2
console.log(persistence(4));// === 0 // because 4 is already a one-digit number
https://jsfiddle.net/8xmpnzng/
Use "of" instead of "in". "in" looks for properties. "of" increments an array.
var count = 0;
var product = 1;
function persistence(num) {
if (num.toString().length == 1) {
count+=0;
return count;
}
for (i of num.toString()) {
product *= Number(i);
}
count++;
var newProduct = product;
// reset product to 1 so that line ten does not
// start with the product from the last loop
product = 1;
persistence(newProduct);
}
I'm pretty sure it's this block:
for (i in num.toString()) {
product *= Number(i);
}
That's a for...in loop, which is used to iterate over keys in an object. If you want to multiply each digit of the num string together, you could split the string into an array, and use the reduce method (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce):
//this coerces the number into a string
const numString = num + ''
//this is the function to pass as the first argument into the reduce method
const multiplyAll = (accumulator, currentVal) => accumulator * Number(currentVal)
let product = numString.split('').reduce(multiplyAll, 1)
It's generally best practice to avoid declaring global variables outside of a function's scope, but you can do a cool trick with your recursion where you declare your count as a parameter in your function like so:
function persistence(num, count = 0) {
And then when you call it again with recursion, you simply add 1 like so:
function persistence(product, count + 1) {
Simpler way of Persistence:
let countIteration = 1;
function persistence(num) {
let numStr = num.toString();
if(numStr.toString().length === 1) {
return 0;
}
let numArr = numStr.split("");
let persistRes = numArr.reduce((acc, curr) => acc = curr * acc);
if (persistRes.toString().length !== 1) {
countIteration += 1;
return persistence(persistRes);
}
else {
return countIteration;
}
}
console.log(persistence(39)); // === 3
console.log(persistence(15)); // === 1
console.log(persistence(999));// === 4

Categories

Resources