xor: N things with variable probabilities - javascript

Forgive me; I'm a coder and not a mathematician, so I'm asking this to my own stack. I'm trying to reduce an array of probabilities (0-1), let's say [.1,.3,.5] to find:
The likelihood of all of them happening (simple multiplication, let's call this function AND: probs.reduce((m,p)=>p*m,1)),
1.1 This can be written
any one of them happening (one minus none of them happening 1 - probs.reduce((m,p)=>m*(1-p),1), call it OR), and
2.1 This can be written
XOR ONLY one, no more and no less, of them happening. At first I thought this was simple because if there are only two inputs, the chance of only one happening should be OR minus AND. But as I'm banging my head on this as an array of more than two values, normal XOR logic seems to disintegrate.
3.1 This can be written (verbosely)
Do I need to get the "OR" and then subtractively multiply all possible AND scenarios iteratively? Or is there a non-iterative formula to find out the total probability of exactly one probability in a list longer than two?
0,0,0 should be 0 in my case. 0,.4.0 should yield a .4 of only one happening. 1,.4,0 should yield 0.6. I know that .5,.5 should yield 0.25 chance of only one happening. But I'm really not sure how to calculate the chance of only one .5,.5,.5 without counting on my fingers. My mind is saying I have to loop through each probability, and subtract from it the chance of any others (OR the rest of the array), then OR the final results... but this is speculative. That seems very weird and inefficient. I can't believe this would be an NP-Hard problem, but it's a corner of things I'm not familiar with...
Please answer in visual, logical or programmatic terms, not pure Math if possible...
** Edit here: I don't need to clarify the exact probability of a particular element in the array being exclusive to the others; I'm trying to find the general probability of any of them being exclusive. **
** Edit. This is what I've got now. I'm excluding all other possibilities for each individual one. Is this the fastest way?... *
function And(probs) {
return (probs.reduce((m,p)=>p*m,1));
}
function Or(probs) {
return (1 - probs.reduce((m,p)=>m*(1-p),1));
}
function Xor(probs) {
let _exclusiveProbabilities = [];
for (let k=0; k < probs.length; k++) {
let _others = [];
for (let j = 0; j < probs.length; j++) {
if (j != k) {
_others.push(probs[j]);
console.log(k,'pushed',probs[j]);
}
}
const _anyOtherProb = Or(_others);
_exclusiveProbabilities.push(probs[k] * (1 - _anyOtherProb));
}
return (Or(_exclusiveProbabilities));
}
** edit. Nope, that's great for two but doesn't work for three. **

Let's say you have three probabilities, which we'll call A, B, and C.
The probability of A being the only event that happened is A * (1-B) * (1-C). In other words, in this scenario A happened, but B did not happen and C did not happen.
But, of course it is possible that B was the only successful event, or that C was the successful event. We will need to sum together the probabilities of all of these situations.
So, we are going to need to loop through all of the events, and compute the probability that only that event happened (and all the others failed), and then compute the sum.
For the case of three events, this would be:
( A * (1-B) * (1-C) ) + ( (1-A) * B * (1-C) ) + ( (1-A) * (1-B) * C )
If there are N total events, then there will be a total of N^2 (N squared) total terms in this expression.

Related

Time complexity of splitting strings and sorting [duplicate]

I have gone through Google and Stack Overflow search, but nowhere I was able to find a clear and straightforward explanation for how to calculate time complexity.
What do I know already?
Say for code as simple as the one below:
char h = 'y'; // This will be executed 1 time
int abc = 0; // This will be executed 1 time
Say for a loop like the one below:
for (int i = 0; i < N; i++) {
Console.Write('Hello, World!!');
}
int i=0; This will be executed only once.
The time is actually calculated to i=0 and not the declaration.
i < N; This will be executed N+1 times
i++ This will be executed N times
So the number of operations required by this loop are {1+(N+1)+N} = 2N+2. (But this still may be wrong, as I am not confident about my understanding.)
OK, so these small basic calculations I think I know, but in most cases I have seen the time complexity as O(N), O(n^2), O(log n), O(n!), and many others.
How to find time complexity of an algorithm
You add up how many machine instructions it will execute as a function of the size of its input, and then simplify the expression to the largest (when N is very large) term and can include any simplifying constant factor.
For example, lets see how we simplify 2N + 2 machine instructions to describe this as just O(N).
Why do we remove the two 2s ?
We are interested in the performance of the algorithm as N becomes large.
Consider the two terms 2N and 2.
What is the relative influence of these two terms as N becomes large? Suppose N is a million.
Then the first term is 2 million and the second term is only 2.
For this reason, we drop all but the largest terms for large N.
So, now we have gone from 2N + 2 to 2N.
Traditionally, we are only interested in performance up to constant factors.
This means that we don't really care if there is some constant multiple of difference in performance when N is large. The unit of 2N is not well-defined in the first place anyway. So we can multiply or divide by a constant factor to get to the simplest expression.
So 2N becomes just N.
This is an excellent article: Time complexity of algorithm
The below answer is copied from above (in case the excellent link goes bust)
The most common metric for calculating time complexity is Big O notation. This removes all constant factors so that the running time can be estimated in relation to N as N approaches infinity. In general you can think of it like this:
statement;
Is constant. The running time of the statement will not change in relation to N.
for ( i = 0; i < N; i++ )
statement;
Is linear. The running time of the loop is directly proportional to N. When N doubles, so does the running time.
for ( i = 0; i < N; i++ ) {
for ( j = 0; j < N; j++ )
statement;
}
Is quadratic. The running time of the two loops is proportional to the square of N. When N doubles, the running time increases by N * N.
while ( low <= high ) {
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
Is logarithmic. The running time of the algorithm is proportional to the number of times N can be divided by 2. This is because the algorithm divides the working area in half with each iteration.
void quicksort (int list[], int left, int right)
{
int pivot = partition (list, left, right);
quicksort(list, left, pivot - 1);
quicksort(list, pivot + 1, right);
}
Is N * log (N). The running time consists of N loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and logarithmic.
In general, doing something with every item in one dimension is linear, doing something with every item in two dimensions is quadratic, and dividing the working area in half is logarithmic. There are other Big O measures such as cubic, exponential, and square root, but they're not nearly as common. Big O notation is described as O ( <type> ) where <type> is the measure. The quicksort algorithm would be described as O (N * log(N )).
Note that none of this has taken into account best, average, and worst case measures. Each would have its own Big O notation. Also note that this is a VERY simplistic explanation. Big O is the most common, but it's also more complex that I've shown. There are also other notations such as big omega, little o, and big theta. You probably won't encounter them outside of an algorithm analysis course. ;)
Taken from here - Introduction to Time Complexity of an Algorithm
1. Introduction
In computer science, the time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing the input.
2. Big O notation
The time complexity of an algorithm is commonly expressed using big O notation, which excludes coefficients and lower order terms. When expressed this way, the time complexity is said to be described asymptotically, i.e., as the input size goes to infinity.
For example, if the time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic time complexity is O(n3). More on that later.
A few more examples:
1 = O(n)
n = O(n2)
log(n) = O(n)
2 n + 1 = O(n)
3. O(1) constant time:
An algorithm is said to run in constant time if it requires the same amount of time regardless of the input size.
Examples:
array: accessing any element
fixed-size stack: push and pop methods
fixed-size queue: enqueue and dequeue methods
4. O(n) linear time
An algorithm is said to run in linear time if its time execution is directly proportional to the input size, i.e. time grows linearly as input size increases.
Consider the following examples. Below I am linearly searching for an element, and this has a time complexity of O(n).
int find = 66;
var numbers = new int[] { 33, 435, 36, 37, 43, 45, 66, 656, 2232 };
for (int i = 0; i < numbers.Length - 1; i++)
{
if(find == numbers[i])
{
return;
}
}
More Examples:
Array: Linear Search, Traversing, Find minimum etc
ArrayList: contains method
Queue: contains method
5. O(log n) logarithmic time:
An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of the input size.
Example: Binary Search
Recall the "twenty questions" game - the task is to guess the value of a hidden number in an interval. Each time you make a guess, you are told whether your guess is too high or too low. Twenty questions game implies a strategy that uses your guess number to halve the interval size. This is an example of the general problem-solving method known as binary search.
6. O(n2) quadratic time
An algorithm is said to run in quadratic time if its time execution is proportional to the square of the input size.
Examples:
Bubble Sort
Selection Sort
Insertion Sort
7. Some useful links
Big-O Misconceptions
Determining The Complexity Of Algorithm
Big O Cheat Sheet
Several examples of loop.
O(n) time complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount. For example following functions have O(n) time complexity.
// Here c is a positive integer constant
for (int i = 1; i <= n; i += c) {
// some O(1) expressions
}
for (int i = n; i > 0; i -= c) {
// some O(1) expressions
}
O(nc) time complexity of nested loops is equal to the number of times the innermost statement is executed. For example, the following sample loops have O(n2) time complexity
for (int i = 1; i <=n; i += c) {
for (int j = 1; j <=n; j += c) {
// some O(1) expressions
}
}
for (int i = n; i > 0; i += c) {
for (int j = i+1; j <=n; j += c) {
// some O(1) expressions
}
For example, selection sort and insertion sort have O(n2) time complexity.
O(log n) time complexity of a loop is considered as O(log n) if the loop variables is divided / multiplied by a constant amount.
for (int i = 1; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > 0; i /= c) {
// some O(1) expressions
}
For example, [binary search][3] has _O(log n)_ time complexity.
O(log log n) time complexity of a loop is considered as O(log log n) if the loop variables is reduced / increased exponentially by a constant amount.
// Here c is a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {
// some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// some O(1) expressions
}
One example of time complexity analysis
int fun(int n)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j < n; j += i)
{
// Some O(1) task
}
}
}
Analysis:
For i = 1, the inner loop is executed n times.
For i = 2, the inner loop is executed approximately n/2 times.
For i = 3, the inner loop is executed approximately n/3 times.
For i = 4, the inner loop is executed approximately n/4 times.
…………………………………………………….
For i = n, the inner loop is executed approximately n/n times.
So the total time complexity of the above algorithm is (n + n/2 + n/3 + … + n/n), which becomes n * (1/1 + 1/2 + 1/3 + … + 1/n)
The important thing about series (1/1 + 1/2 + 1/3 + … + 1/n) is around to O(log n). So the time complexity of the above code is O(n·log n).
References:
1
2
3
Time complexity with examples
1 - Basic operations (arithmetic, comparisons, accessing array’s elements, assignment): The running time is always constant O(1)
Example:
read(x) // O(1)
a = 10; // O(1)
a = 1,000,000,000,000,000,000 // O(1)
2 - If then else statement: Only taking the maximum running time from two or more possible statements.
Example:
age = read(x) // (1+1) = 2
if age < 17 then begin // 1
status = "Not allowed!"; // 1
end else begin
status = "Welcome! Please come in"; // 1
visitors = visitors + 1; // 1+1 = 2
end;
So, the complexity of the above pseudo code is T(n) = 2 + 1 + max(1, 1+2) = 6. Thus, its big oh is still constant T(n) = O(1).
3 - Looping (for, while, repeat): Running time for this statement is the number of loops multiplied by the number of operations inside that looping.
Example:
total = 0; // 1
for i = 1 to n do begin // (1+1)*n = 2n
total = total + i; // (1+1)*n = 2n
end;
writeln(total); // 1
So, its complexity is T(n) = 1+4n+1 = 4n + 2. Thus, T(n) = O(n).
4 - Nested loop (looping inside looping): Since there is at least one looping inside the main looping, running time of this statement used O(n^2) or O(n^3).
Example:
for i = 1 to n do begin // (1+1)*n = 2n
for j = 1 to n do begin // (1+1)n*n = 2n^2
x = x + 1; // (1+1)n*n = 2n^2
print(x); // (n*n) = n^2
end;
end;
Common running time
There are some common running times when analyzing an algorithm:
O(1) – Constant time
Constant time means the running time is constant, it’s not affected by the input size.
O(n) – Linear time
When an algorithm accepts n input size, it would perform n operations as well.
O(log n) – Logarithmic time
Algorithm that has running time O(log n) is slight faster than O(n). Commonly, algorithm divides the problem into sub problems with the same size. Example: binary search algorithm, binary conversion algorithm.
O(n log n) – Linearithmic time
This running time is often found in "divide & conquer algorithms" which divide the problem into sub problems recursively and then merge them in n time. Example: Merge Sort algorithm.
O(n2) – Quadratic time
Look Bubble Sort algorithm!
O(n3) – Cubic time
It has the same principle with O(n2).
O(2n) – Exponential time
It is very slow as input get larger, if n = 1,000,000, T(n) would be 21,000,000. Brute Force algorithm has this running time.
O(n!) – Factorial time
The slowest!!! Example: Travelling salesman problem (TSP)
It is taken from this article. It is very well explained and you should give it a read.
When you're analyzing code, you have to analyse it line by line, counting every operation/recognizing time complexity. In the end, you have to sum it to get whole picture.
For example, you can have one simple loop with linear complexity, but later in that same program you can have a triple loop that has cubic complexity, so your program will have cubic complexity. Function order of growth comes into play right here.
Let's look at what are possibilities for time complexity of an algorithm, you can see order of growth I mentioned above:
Constant time has an order of growth 1, for example: a = b + c.
Logarithmic time has an order of growth log N. It usually occurs when you're dividing something in half (binary search, trees, and even loops), or multiplying something in same way.
Linear. The order of growth is N, for example
int p = 0;
for (int i = 1; i < N; i++)
p = p + 2;
Linearithmic. The order of growth is n·log N. It usually occurs in divide-and-conquer algorithms.
Cubic. The order of growth is N3. A classic example is a triple loop where you check all triplets:
int x = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
x = x + 2
Exponential. The order of growth is 2N. It usually occurs when you do exhaustive search, for example, check subsets of some set.
Loosely speaking, time complexity is a way of summarising how the number of operations or run-time of an algorithm grows as the input size increases.
Like most things in life, a cocktail party can help us understand.
O(N)
When you arrive at the party, you have to shake everyone's hand (do an operation on every item). As the number of attendees N increases, the time/work it will take you to shake everyone's hand increases as O(N).
Why O(N) and not cN?
There's variation in the amount of time it takes to shake hands with people. You could average this out and capture it in a constant c. But the fundamental operation here --- shaking hands with everyone --- would always be proportional to O(N), no matter what c was. When debating whether we should go to a cocktail party, we're often more interested in the fact that we'll have to meet everyone than in the minute details of what those meetings look like.
O(N^2)
The host of the cocktail party wants you to play a silly game where everyone meets everyone else. Therefore, you must meet N-1 other people and, because the next person has already met you, they must meet N-2 people, and so on. The sum of this series is x^2/2+x/2. As the number of attendees grows, the x^2 term gets big fast, so we just drop everything else.
O(N^3)
You have to meet everyone else and, during each meeting, you must talk about everyone else in the room.
O(1)
The host wants to announce something. They ding a wineglass and speak loudly. Everyone hears them. It turns out it doesn't matter how many attendees there are, this operation always takes the same amount of time.
O(log N)
The host has laid everyone out at the table in alphabetical order. Where is Dan? You reason that he must be somewhere between Adam and Mandy (certainly not between Mandy and Zach!). Given that, is he between George and Mandy? No. He must be between Adam and Fred, and between Cindy and Fred. And so on... we can efficiently locate Dan by looking at half the set and then half of that set. Ultimately, we look at O(log_2 N) individuals.
O(N log N)
You could find where to sit down at the table using the algorithm above. If a large number of people came to the table, one at a time, and all did this, that would take O(N log N) time. This turns out to be how long it takes to sort any collection of items when they must be compared.
Best/Worst Case
You arrive at the party and need to find Inigo - how long will it take? It depends on when you arrive. If everyone is milling around you've hit the worst-case: it will take O(N) time. However, if everyone is sitting down at the table, it will take only O(log N) time. Or maybe you can leverage the host's wineglass-shouting power and it will take only O(1) time.
Assuming the host is unavailable, we can say that the Inigo-finding algorithm has a lower-bound of O(log N) and an upper-bound of O(N), depending on the state of the party when you arrive.
Space & Communication
The same ideas can be applied to understanding how algorithms use space or communication.
Knuth has written a nice paper about the former entitled "The Complexity of Songs".
Theorem 2: There exist arbitrarily long songs of complexity O(1).
PROOF: (due to Casey and the Sunshine Band). Consider the songs Sk defined by (15), but with
V_k = 'That's the way,' U 'I like it, ' U
U = 'uh huh,' 'uh huh'
for all k.
For the mathematically-minded people: The master theorem is another useful thing to know when studying complexity.
O(n) is big O notation used for writing time complexity of an algorithm. When you add up the number of executions in an algorithm, you'll get an expression in result like 2N+2. In this expression, N is the dominating term (the term having largest effect on expression if its value increases or decreases). Now O(N) is the time complexity while N is dominating term.
Example
For i = 1 to n;
j = 0;
while(j <= n);
j = j + 1;
Here the total number of executions for the inner loop are n+1 and the total number of executions for the outer loop are n(n+1)/2, so the total number of executions for the whole algorithm are n + 1 + n(n+1/2) = (n2 + 3n)/2.
Here n^2 is the dominating term so the time complexity for this algorithm is O(n2).
Other answers concentrate on the big-O-notation and practical examples. I want to answer the question by emphasizing the theoretical view. The explanation below is necessarily lacking in details; an excellent source to learn computational complexity theory is Introduction to the Theory of Computation by Michael Sipser.
Turing Machines
The most widespread model to investigate any question about computation is a Turing machine. A Turing machine has a one dimensional tape consisting of symbols which is used as a memory device. It has a tapehead which is used to write and read from the tape. It has a transition table determining the machine's behaviour, which is a fixed hardware component that is decided when the machine is created. A Turing machine works at discrete time steps doing the following:
It reads the symbol under the tapehead.
Depending on the symbol and its internal state, which can only take finitely many values, it reads three values s, σ, and X from its transition table, where s is an internal state, σ is a symbol, and X is either Right or Left.
It changes its internal state to s.
It changes the symbol it has read to σ.
It moves the tapehead one step according to the direction in X.
Turing machines are powerful models of computation. They can do everything that your digital computer can do. They were introduced before the advent of digital modern computers by the father of theoretical computer science and mathematician: Alan Turing.
Time Complexity
It is hard to define the time complexity of a single problem like "Does white have a winning strategy in chess?" because there is a machine which runs for a single step giving the correct answer: Either the machine which says directly 'No' or directly 'Yes'. To make it work we instead define the time complexity of a family of problems L each of which has a size, usually the length of the problem description. Then we take a Turing machine M which correctly solves every problem in that family. When M is given a problem of this family of size n, it solves it in finitely many steps. Let us call f(n) the longest possible time it takes M to solve problems of size n. Then we say that the time complexity of L is O(f(n)), which means that there is a Turing machine which will solve an instance of it of size n in at most C.f(n) time where C is a constant independent of n.
Isn't it dependent on the machines? Can digital computers do it faster?
Yes! Some problems can be solved faster by other models of computation, for example two tape Turing machines solve some problems faster than those with a single tape. This is why theoreticians prefer to use robust complexity classes such as NL, P, NP, PSPACE, EXPTIME, etc. For example, P is the class of decision problems whose time complexity is O(p(n)) where p is a polynomial. The class P do not change even if you add ten thousand tapes to your Turing machine, or use other types of theoretical models such as random access machines.
A Difference in Theory and Practice
It is usually assumed that the time complexity of integer addition is O(1). This assumption makes sense in practice because computers use a fixed number of bits to store numbers for many applications. There is no reason to assume such a thing in theory, so time complexity of addition is O(k) where k is the number of bits needed to express the integer.
Finding The Time Complexity of a Class of Problems
The straightforward way to show the time complexity of a problem is O(f(n)) is to construct a Turing machine which solves it in O(f(n)) time. Creating Turing machines for complex problems is not trivial; one needs some familiarity with them. A transition table for a Turing machine is rarely given, and it is described in high level. It becomes easier to see how long it will take a machine to halt as one gets themselves familiar with them.
Showing that a problem is not O(f(n)) time complexity is another story... Even though there are some results like the time hierarchy theorem, there are many open problems here. For example whether problems in NP are in P, i.e. solvable in polynomial time, is one of the seven millennium prize problems in mathematics, whose solver will be awarded 1 million dollars.

I used the slice method in this JS code and my code is slow, is there a way to make this code faster?

Here is a kata from Codewars:
'If you have completed the Tribonacci sequence kata, you would know by now that mister Fibonacci has at least a bigger brother. If not, give it a quick look to get how things work.
Well, time to expand the family a little more: think of a Quadribonacci starting with a signature of 4 elements and each following element is the sum of the 4 previous, a Pentabonacci (well Cinquebonacci would probably sound a bit more Italian, but it would also sound really awful) with a signature of 5 elements and each following element is the sum of the 5 previous, and so on.
Well, guess what? You have to build an Xbonacci function that takes a signature of X elements - and remember each next element is the sum of the last X elements - and returns the first n elements of the so seeded sequence.'
and this is my solution:
function Xbonacci(signature,n){
let i=0;
let k = n - signature.length;
while(k--){
let sumNums = 0;
signature.slice(i , signature.length ).map((num)=>{
return sumNums += num;
})
signature.push(sumNums);
i++
}
return signature;
}
but it's not passing the test because of optimization problems. I don't know how to optimize this code. is there any solution to make this code faster?

Algorithm to get progressively closer to a number without ever reaching it

I need to have a number that gets updated progressively closer to the max (or min) value, without ever reaching it. I also would like each update to have a smooth transition, like a curve or something (I have never studied math or computer science so I don't know the correct terminology)
Here's what I got so far but it obviously doesn't work:
let numberToUpdate = 5 // this number will vary after each update
const numberToUpdateMin = 1
const numberToUpdateMax = 10
let someValueA = 100 // this number will change randomly between updates
let someValueB = 50 // this number will change randomly between updates
function updateNumber() {
let differenceBetweenValues = someValueA - someValueB
if (differenceBetweenValues > 0) {
// make numberToUpdate closer to numberToUpdateMax (without ever reaching it)
numberToUpdate += (numberToUpdateMax - numberToUpdate) * (someValueA / someValueB) // this doesn't work at all
}
else if (differenceBetweenValues < 0) {
// make numberToUpdate closer to numberToUpdateMin (without ever reaching it)
numberToUpdate -= (numberToUpdate - numberToUpdateMin) * (someValueB / someValueA) // this doesn't work at all
}
}
any help would be greatly appreciated, I have no clue what I'm doing or what terms I should be googling to arrive to a suitable result.
Edit: It doesn't have to work with infinitely small/big numbers, it could have a cap.
Here is a simple example of an asymptotic function:
function generateAsymptotic(step) {
return step / (step + 1);
}
As step gets bigger, generateAsymptotic will get closer and closer to 1, but never be 1.
On a computer, this is impossible, because the number of distinct values representable is finite, so in the end you will reach the forbidden number.

Great common divisor with loops

I think my logic is wrong but I can't understand where I am making a mistake. I am trying to find the great common divisor, and code will determine what to do if a is bigger than b or b is bigger than a.
I tried many loops, if, while but in the end I deleted all to clear my sight. I made flowchart however it is not coming along with my code.
var a = 64;
var b = 12;
var newA;
while(a > b && newA != 0){
newA = a - b;
if(newA === 0){
outputObj.innerHTML = outputObj.innerHTML + "GCD is " + b;
}
}
while(a < b && newA != 0){
newA = b - a;
}
if(newA === 0){
outputObj.innerHTML = outputObj.innerHTML + "GCD is " + a;
}
}
If a is 64 and b is 12 the GCD is 4, if a is 35 and b is 42 the GCD is 7
You have a few different problems here. This looks like homework, so I'll try to point you in the right direction for a couple of the problems rather than e.g. telling you exactly what your code should say.
In your loops, you never update the value of either a or b.
Pretending that that's fixed, your code will either subtract a from b several times or subtract b from a lots of times. Doing that computes the remainder on dividing one number by the other, not the greatest common divisor.
I'm betting that you've been given a description of an algorithm for computing the greatest common divisor. Read through it again, comparing what it does against what your code does.
Here's a powerful method for finding problems in this sort of code: try to run it in your head, pretending that you're the computer. Go through, step by step, doing what the computer will do. With your code above, it might begin like this:
OK, I've got variables called a and b, whose values are 64 and 12. And a variable called newA, whose value hasn't been specified yet.
Now I need to check whether a is bigger than b -- yup, it is -- and then whether newA is zero.
Wait, I haven't given newA a value at this point. (You've found a bug here. Let's pretend it's fixed and move on.)
Now I set newA to be a-b, which is 52.
Now I check whether newA is zero, which it isn't so I don't need to do the stuff inside the if block there.
OK, so we've done one iteration of the while loop. Back to the start of the loop.
Now I need to check whether a is bigger than b -- yup, it is -- and then whether newA is zero.
Wait a minute, I'm checking the exact same thing as last time: nothing's changed. How's this loop going to end? (You've found another bug here.)
And so on.

How to split an array into two subsets and keep sum of sub-values of array as equal as possible

I really need an master of algorithm here! So the thing is I got for example an array like this:
[
[870, 23]
[970, 78]
[110, 50]
]
and I want to split it up, so that it looks like this:
// first array
[
[970, 78]
]
// second array
[
[870, 23]
[110, 50]
]
so now, why do I want it too look like this?
Because I want to keep the sum of sub values as equal as possible. So 970 is about 870 + 110 and 78 is about 23 + 50.
So in this case it's very easy because if you would just split them and only look at the first sub-value it will already be correct but I want to check both and keep them as equal as possible, so that it'll also work with an array which got 100 sub-arrays! So if anyone can tell me the algorithm with which I can program this it would be really great!
Scales:
~1000 elements (sublists) in the array
Elements are integers up to 10^9
I am looking for a "close enough solution" - it does not have to be the exact optimal solution.
First, as already established - the problem is NP-Hard, with a reduction form Partition Problem.
Reduction:
Given an instance of partition problem, create lists of size 1 each. The result will be this problem exactly.
Conclusion from the above:
This problem is NP-Hard, and there is no known polynomial solution.
Second, Any exponential and pseudo polynomial solutions will take just too long to work, due to the scale of the problem.
Third, It leaves us with heuristics and approximation algorithms.
I suggest the following approach:
Normalize the scales of the sublists, so all the elements will be in the same scale (say, all will be normalzied to range [-1,1] or all will be normalized to standard normal distribution).
Create a new list, in which, each element will be the sum of the matching sublist in the normalized list.
Use some approximation or heuristical solution that was developed for the subset-sum / partition problem.
The result will not be optimal, but optimal is really unattanable here.
From what I gather from the discussion under the original post, you're not searching for a single splitting point, but rather you want to distribute all pairs among two sets, such that the sums in each of the two sets are approximately equal.
Since a close enough solution is acceptable, maybe you could try an approach based on simulated annealing?
(see http://en.wikipedia.org/wiki/Simulated_annealing)
In short, the idea is that you start out by randomly assigning each pair to either the Left or the Right set.
Next, you generate a new state by either
a) moving a randomly selected pair from the Left to the Right set,
b) moving a randomly selected pair
from the Right to the Left set, or
c) doing both.
Next, determine if this new state is better or worse than the current state. If it is better, use it.
If it is worse, take it only if it is accepted by the acceptance probability function, which is a function
that initially allows worse states to be used, but favours them less and less as time moves on (or the "temperature decreases", in SA terms).
After a large number of iterations (say 100.000), you should have a pretty good result.
Optionally, rerun this algorithm multiple times because it may get stuck in local optima (although the acceptance probability function attempts to counter this).
Advantages of this approach are that it's simple to implement, and you can decide for yourself how long
you want it to continue searching for a better solution.
I'm assuming that we're just looking for a place in the middle of the array to split it into its first and second part.
It seems like a linear algorithm could do this. Something like this in JavaScript.
arrayLength = 2;
tolerance = 10;
// Initialize the two sums.
firstSum = [];
secondSum = [];
for (j = 0; j < arrayLength; j++)
{
firstSum[j] = 0;
secondSum[j] = 0;
for (i = 0; i < arrays.length; i++)
{
secondSum += arrays[i][j];
}
}
// Try splitting at every place in "arrays".
// Try to get the sums as close as possible.
for (i = 0; i < arrays.length; i++)
{
goodEnough = true;
for (j = 0; j < arrayLength; j++)
{
if (Math.abs(firstSum[j] - secondSum[j]) > tolerance)
goodEnough = false;
}
if (goodEnough)
{
alert("split before index " + i);
break;
}
// Update the sums for the new position.
for (j = 0; j < arrayLength; j++)
{
firstSum[j] += arrays[i][j];
secondSum[j] -= arrays[i][j];
}
}
Thanks for all the answers, the bruteforce attack was a good idea and NP-Hard is related to this too, but it turns out that this is a multiple knapsack problem and can be solved using this pdf document.

Categories

Resources