Javascript Object Storage Order - javascript

This is my Array
let setOne = [""];
Now, I created a function that takes the element from the array i.e setOne, store that element in one Object as a property name and give that property-name a value of true and prints the object data.
Function is
function checkTheSameBetter(setOne) {
let ObjectShop = {};
for (let indexSetOne = 0; indexSetOne < setOne.length; indexSetOne++) {
ObjectShop[setOne[indexSetOne]] = true;
}
console.log(ObjectShop);
}
The Output which I get is
{ '': true }
No Problem so far
Here comes the main part
when I add another value to an array i.e setOne, consider "1".
let setOne = ["",1];
And then when I execute the function checkTheSameBetter. I get output
{'1': true, '': true }
So my question is, "how did that '1' get stored in the first
position?"
The output I expected was in this order
{'': true, '1': true}
Here is the sandbox Link
https://codesandbox.io/s/cranky-cori-qx116?file=/src/index.js
can anyone please tell me what's happening here?
If you need any clarification I will give it.
Thank You

JS Objects have traditionally been 'unordered' (until ES5). Since ES6, there is a predictable order to the Object properties iteration. It, however, isn't the 'insertion' order. The order of keys will be as follows:
First, all non-negative integer keys less than 232, in ascending order. (eg. '1', '79', etc. basically all valid array indices. Caveat: '05' wouldn't be considered integer key, since the integer parsed from it will yield a different string representation).
Then, all String keys, in the original order of insertion. (Numeric strings not falling within bounds of step one will be considered here.)
Then, all Symbol keys, in the original order of insertion.
Looking at the rules above, it makes sense that '1', being an integer key, appeared before '' (a string).
Please note that this only applies to ES2015 and later. To avoid confusion, and eye rolls from colleagues habituated of viewing objects as unordered, please don't rely on enumeration order of Object properties. If the enumeration order is relevant, you can always use Map which guarantees that insertion order will be maintained.

ES6 defines an order in which own properties of an object are enumerated. Following are the rules according to which own properties of an object are enumerated:
String properties whose names are non-negative numbers are listed first, from smallest to largest. This means that properties of array and array-like objects will be enumerated in order.
After that, all properties with string names are listed in the order they were added in the object. This also includes properties that look like non-negative numbers or floating point numbers.
At last, properties whose names are Symbols are listed in the order they were added in the object.
Following functions list the properties in the above described order, subject to their own constraints.
Object.keys()
Object.getOwnPropertyNames()
Object.getOwnPropertySymbols()
Reflect.ownKeys()
One thing to keep in mind is that enumeration order for for in loop is not as tightly specified as it is for above mentioned enumeration functions but it typically enumerates own properties in the order described above.
As for in loop also enumerates properties in the prototype chain, once own properties have been enumerated, it will then move up the prototype chain, enumerating properties of each prototype object in the same order as described above. Although if a property has already been enumerated, any property with the same name won't be enumerated again. Property won't be enumerated even if a non-enumerable property with the same name has already been considered.
const obj = {};
obj[2] = 2;
obj['-1'] = -1;
obj['1'] = 1;
obj['as'] = 'as';
obj['10'] = 10;
obj['b'] = 'b';
console.log(Reflect.ownKeys(obj));
console.log(Object.getOwnPropertyNames(obj));
for (const key in obj) {
console.log(key);
}
.as-console-wrapper { max-height: 100% !important; top: 0; }

Related

Why does the isArray() Javascript method in this example returns true, if the array has been redefined as a standard object?

I'm trying to learn Javascript - here's my issue:
In the w3schools.com javascript array examples, they show the sequent example:
var person = [];
person["firstName"] = "John";
person["lastName"] = "Doe";
person["age"] = 46;
document.getElementById("demo").innerHTML =
person[0] + " " + person.length;
An array "person" has been defined, but then they proceed to add some elements whit a "named" index. Then tries to print the HTML document the 0th element and the number of elements of the array, like you would do with a standard array.
The description says:
If you use a named index when accessing an array, JavaScript will
redefine the array to a standard object, and some array methods and
properties will produce undefined or incorrect results.
In fact, person[0] and person.length return respectively "undefined" and "0". Even is person was initially defined as an array, by inserting new named indexes elements, the array should be redefined as an object. But when i try do use the Array.isArray() method for checking it, it returns true:
var person = [];
person["firstName"] = "John";
person["lastName"] = "Doe";
person["age"] = 46;
document.getElementById("demo").innerHTML =
person[0] + " " + person.length;
document.getElementById('test').innerHTML = Array.isArray(person);// returns true
So, why? if, as specified by the tutorial, this has been effectively redefined as a standard object, and the ECMAScript 5 has added the .isArray() method for checking if something is an array and nothing else, shouldn't this return false insted of true?
I'm sure i missed something. If i define person like this:
person = {};
then it returns false, as expected. What is happening here? I just wanted to understand arrays a little bit more, this confuses me. Is this just a broken array, but still an array?
Here's the example (without the Array.isarray() bit, just the default): https://www.w3schools.com/js/tryit.asp?filename=tryjs_array_associative_2
First of all I want to note that the example you took from the w3schools page on arrays, is from the "Associative Arrays" section, which has this important introduction:
Many programming languages support arrays with named indexes.
Arrays with named indexes are called associative arrays (or hashes).
JavaScript does not support arrays with named indexes.
In JavaScript, arrays always use numbered indexes.
This puts the example into context, because it really makes no sense to define a variable as an array and then use string keys. But this was an example to illustrate the point.
Does an Array become an Object?
That JavaScript still considers the variable to be an array is as expected. It becomes an array at the moment of assignment of [], and that does not change by adding properties to that object. Yes, arrays are objects. They just have additional capabilities.
The array did not lose any of its array-like capabilities, but those features just don't work on those string properties, ... only on numerical ones (more precisely, the non-negative integer ones).
You loosely quoted the following statement from w3schools:
If you use named indexes, JavaScript will redefine the array to a standard object.
That is wrong information and leads to your misunderstanding. There is no redefinition happening. When you add properties to any object, then the object does not change "type". It remains an instance of what it was before... An array remains an array, a date object remains a date, a regex object remains a regex, even if you assign other properties to it. But non-numerical properties do not "count" for an array: the length will remain unchanged when you add such properties. The length only reveals something about the numerical properties of the object.
This quote is yet another illustration of what the JavaScript community thinks about w3schools.com, i.e. that it is not the most reliable reference, even though it has its value for learning the language.
Example of adding useful properties to arrays
Having said the above, there are cases where you may intentionally want to make use of such properties on arrays. Let's for example think of an array of words that is sorted:
const arr = ["apple", "banana", "grapefruit", "orange", "pear"];
Now let's add something to this array that denotes that it is currently sorted:
arr.isSorted = true;
We could imagine a function that would allow one to add a value to this array, but which also verifies if the array is still sorted:
function addFruit(arr, fruit) {
if (arr.length && fruit < arr[arr.length-1]) {
arr.sorted = false;
}
arr.push(fruit);
}
Then after having added several values, it would maybe be interesting to verify whether the array needs sorting:
if (!arr.sorted) arr.sort();
So this extra property helps to avoid executing an unnecessary sort. But for the rest the array has all the functionality as if it did not have that extra property.
An object that is set up as an array and then filled as an object becomes a member of both classes. Methods of the Array class will apply to its 'array-ness':
Array.isArray(person);
returns true. Methods of the Object class will apply to its 'object-ness':
typeof(person);
returns object. When it could be either one, the 'array-ness' will prevail, because the variable was first defined as an array:
console.log(person);
will put Array [ ] on the console, because it runs the Array class's logging method. It is displayed as an empty array, since it has no numbered elements, but you could add some:
person[2]=66;
and then console.log would log Array [ <2 empty slots>, 66 ].
I think the polyfill implementation of isArray() will clear your doubt by some extent.
#Polyfill

Storing regex in an array is not working in Javascript

How is regex stored in javascript. Is not stored like the usual way other var types like string is stored.
var regexOne = /^(regex).*$/gm;
var regexTwo = /^(regex).*$/gm;
var regexThree = /^(regex).*$/gm;
var regexFour = /^(regex).*$/gm;
var searchQuery = [regexOne, regexTwo, regexThree, regexFour];
for(query in searchQuery){
console.dir(query.toString());
}
The above code prints:
'0'
'1'
'2'
'3'
How can i get this working.
When you iterate an Array with for..in loop, the loop variable with have just the current index as string, not the actual value. Quoting MDN documentation on Array iteration and for...in,
The for..in statement iterates over the enumerable properties of an object, in arbitrary order.
....
....
Note: for..in should not be used to iterate over an Array where index order is important.
Array indexes are just enumerable properties with integer names and are otherwise identical to general Object properties. There is no guarantee that for...in will return the indexes in any particular order and it will return all enumerable properties, including those with non–integer names and those that are inherited.
Because the order of iteration is implementation dependent, iterating over an array may not visit elements in a consistent order. Therefore it is better to use a for loop with a numeric index (or Array.forEach or the for...of loop) when iterating over arrays where the order of access is important.
The bold text above says it all. So, you should iterate arrays with one of the following options
normal for loop
for(var i = 0; i < searchQuery.length; i += 1) {
console.dir(searchQuery[i]);
}
Array.prototype.forEach function
searchQuery.forEach(function(currentRegEx) {
console.dir(currentRegEx);
});
for...of, loop (Note: This will work only in environments which implement ECMAScript 6)
for(var currentRegEx of searchQuery) {
console.dir(currentRegEx);
}
for-in, in JavaScript, loops through the enumerable property names of an object. It's not for looping through array entries or array indexes (although with safeguards it can be used for the latter, which is why you're seeing 0, 1, etc. — those property names are array indexes).
For details about looping through arrays, see this answer, which has a thorough list of options and explanations of each of them.
Side note 1:
Your code is falling prey to The Horror of Implicit Globals because you never declare the query variable. (The for-in construct doesn't declare it for you.)
Side note 2:
Unless you need the regexOne and such variables, you can create your array of regexes more concisely:
var searchQuery = [
/^(regex).*$/gm,
/^(regex).*$/gm,
/^(regex).*$/gm,
/^(regex).*$/gm
];

javascript access the counter of a for in loop

How can I access the counter of a for..in loop?
I have an array and an object. I want to iterate over the object properties while doing the same with the array, without explicitly declaring a counter.
var colors = ['red','yellow','purple','blue'];
var flowers = {'rose':'','sunflower':'','violet':'','hydrangea':''};
for (prop in flowers) {
flowers[prop] = colors[i];
}
Follow up question. If not possible, how would I create my own for loop with the functionality I require. Here's how it's working currently but I find I'm doing this often and want to create something reusable.
var colors = ['red','yellow','purple','blue'];
var flowers = {'rose':'','sunflower':'','violet':'','hydrangea':''};
var i = 0;
for (prop in flowers) {
flowers[prop] = colors[i];
i++;
}
(ECMAScript 2015 changes things, see update at end of answer.)
I have an array and an object. I want to iterate over the object properties while doing the same with the array, without explicitly declaring a counter.
I don't believe you can. Moreover, it's important to understand the that properties in the object have no order. You seem to be assuming you'll get "rose", then "sunflower", etc. That is simply not guaranteed. Many engines visit object property names in the order in which the properties were added to the object, and the order in which literal properties in an object initializer are added to the object is now (as of ES5 a couple of years back) specified, but visiting them in any particular order in for-in is not specified behavior (similarly, Object.keys is not sorted in any particular way), and a perfectly correct engine can visit them in any order it wants.
As such, with just the array and object you've shown, you have no reliable way to map those properties to the array entries.
As of ECMAScript 2015 (ES6), object properties have order now:
Let keys be a new empty List.
For each own property key P of O that is an integer index, in ascending numeric index order
Add P as the last element of keys.
For each own property key P of O that is a String but is not an integer index, in property creation order
Add P as the last element of keys.
For each own property key P of O that is a Symbol, in property creation order
Add P as the last element of keys.
Return keys.
Okay, so we know that they'll be visited in "creation" order, but in what order are they created by an object initializer? Good news: Object initializers are processed in source code order, so that's deterministic. Your rose comes before your sunflower, etc.
This means that while you still can't do what you want without explicitly declaring and maintaining an index variable, you can relate that array and that object reliably:
// Works as of ES6
var colors = ['red','yellow','purple','blue'];
var flowers = {'rose':'','sunflower':'','violet':'','hydrangea':''};
let i = 0;
for (prop in flowers) {
flowers[prop] = colors[i++];
}
I'm not suggesting doing it, but it's possible now, on compliant engines.

Can I assume the order of response from Object.keys same?

{"/book":1,"/order":2,"deliver":3}
In the UI of my app, When I click on /book, I know from the map, what step to go to.
At times I just want to go to the next step by incrementing the number but making sure URL also changes.
How do I do a reverse mapping from step to key.
I came across Object.keys introduced in ECMAScript 5.
Is the order of element in the returned list of keys always same ?
["/book","/order","deliver"]
If yes then why so ? Dictionaries are unordered right ?
The ECMAScript 5.1 specification states that
When the keys function is called with argument O, the following steps
are taken:
If the Type(O) is not Object, throw a TypeError exception.
Let n be the number of own enumerable properties of O
Let array be the result of creating a new Object as if by the expression new Array(n) where Array is the standard built-in
constructor with that name.
Let index be 0.
For each own enumerable property of O whose name String is P:
(a) Call the [[DefineOwnProperty]] internal method of array with arguments ToString(index), the PropertyDescriptor {[[Value]]: P,
[[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and
false.
(b) Increment index by 1.
Return array.
If an implementation defines a specific order of enumeration for the
for-in statement, that same enumeration order must be used in step 5
of this algorithm.
The Mozilla Development Network has this to say about the for-in loop:
A for...in loop iterates over the properties of an object in an arbitrary order (see the delete operator for more on why one cannot depend on the seeming orderliness of iteration, at least in a cross-browser setting).
And the reference to the delete operator leads to this:
Although ECMAScript makes iteration order of objects implementation-dependent, it may appear that all major browsers support an iteration order based on the earliest added property coming first (at least for properties not on the prototype). However, in the case of Internet Explorer, when one uses delete on a property, some confusing behavior results, preventing other browsers from using simple objects like object literals as ordered associative arrays. In Explorer, while the property value is indeed set to undefined, if one later adds back a property with the same name, the property will be iterated in its old position--not at the end of the iteration sequence as one might expect after having deleted the property and then added it back.
So if you want to simulate an ordered associative array in a cross-browser environment, you are forced to either use two separate arrays (one for the keys and the other for the values), or build an array of single-property objects, etc.
I think the conclusion to draw from this is that, within a single browser, the order will be arbitrary but consistent but if you compare multiple browsers then the order may differ across those browsers (especially if you are deleting and re-adding properties).
Edit:
If you want to sort the keys based on the associated value then you can do something like this:
var map = { b: 2, a: 1, c: 3 };
var keys = Object.keys( map );
console.log( keys ); // [ 'b', 'a', 'c' ]
var sorted_keys = keys.slice(0); // sliced so that we can see the difference in order
sorted_keys.sort( function( a, b ){ return map[a] - map[b]; } );
console.log( sorted_keys ); // [ 'a', 'b', 'c' ]
It is up to the implementation. From the ES5 spec on Object.keys:
If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration order must be used in step 5 of this algorithm.
The "step 5" mentioned there does not specify an order:
5. For each own enumerable property of O whose name String is P...

Array index as property

How can you prove that an array’s indices are just the enumerable properties? I know, it shows up during a for in loop, but what I mean is: how can I prove that an array’s index is a property? And also an enumerable property?
Are they identical to general Object properties?
You can prove it’s an enumerable property pretty easily. As you said, it shows up in a for in loop. That’s the definition of “enumerable”. If you want another way, though:
var a = ['hello'];
Object.getOwnPropertyDescriptor(a, '0')
// {value: 1, writable: true, enumerable: true, configurable: true}
And yes, they’re like any other object property, except for that they change an array’s length if one past the end is created. That’s the only different thing about arrays.
var a = [];
a[0] = 5;
a.length // 1
Assuming I've understood your question correctly, yes, array indices are effectively the same as object properties. When you set the property of an object, the internal [[DefineOwnProperty]] function runs. The specification gives a modified version of that function that is used when dealing with Array objects.
After various checks (to ensure the property identifier is a valid array index for example), it does the following:
5. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and Throw as arguments
Which is exactly what happens for "normal" objects.

Categories

Resources