JavaScript - Computed properties - deep confusion - javascript

Seems I am quite confused by computed properties in JavaScript.
When I define an object and I put [d] as a key (as a property key/name) what does this [d] actually do? Seems that for some values d it calculates s = d.toString() and uses that value s as the property key.
But for other values d (e.g. when d is a symbol) it uses really the symbol's value as the key.
So this dual behavior of [d] (as a syntax construct) seems confusing. Could someone explain in depth how this works?
Are there other special cases btw? Or is it just when d is a Symbol when we have that special behavior?
Back to the basics: what things can be keys/names of properties of an object? Is it just strings or just strings and symbols or is there also something additional... ?
Example:
var symbol = Symbol("test");
function Animal(name){
this.name = name;
}
Animal.prototype = {};
Animal.prototype.constructor = Animal;
function Dog(breed){
this.breed = breed;
this.name = "Dog";
this.s = symbol;
}
Dog.prototype = new Animal();
Dog.prototype.constructor = Dog;
console.log("001");
var d = new Dog("Sharo");
for (let x in d){
console.log(x, ":", d[x]);
}
console.log("002");
d = new Object();
for (let x in d){
console.log(x, ":", d[x]);
}
console.log("003");
d = new Number(5);
for (let x in d){
console.log(x, ":", d[x]);
}
var d1 = {};
var d2 = {};
var d = new Dog("Sharo");
var m = {[d1] : 5, [d2] : 10, [d] : 20, z : 100, symbol: 2000, [symbol] : 5000};
console.log("============================");
console.log(m);
for (let x in m){
console.log(x, ":", m[x]);
}
console.log("============================");

Since no one seems interested in answering this question I will answer it myself based on the comments which I got above, and due to which I am not confused anymore.
Note that this answer here is ES6 based. I mean... who knows what else the JavaScript future will hold :)
When I define an object and I put [d] as a key (as a property key/name) what does this [d] actually do? Seems that for some objects d it calculates s = d.toString() and uses that value s as the property key. But for other objects d (e.g. when d is a Symbol) it uses really the Symbol's value as the key.
Yes, that's correct. When d is a Symbol its value is used directly. When d is anything but Symbol its value is coerced to a string and that string is used as the property name/key. The coercion is more like String(d) rather than d.toString().
So this dual behavior of [d] (as a syntax construct) seems confusing. Could someone explain in depth how this works?
Already explained above.
Are there other special cases btw? Or is it just when d is a Symbol when we have that special behavior?
There are no other "special cases". As of ES6 only strings and symbols can be property keys.
Back to the basics: what things can be keys/names of properties of an object? Is it just strings or just strings and symbols or is there also something additional... ?
As already said, as of ES6 only strings and symbols can be property keys.
References:
(1)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
"Property names are string or Symbol. Any other value, including a number, is coerced to a string."
(2)
https://www.ecma-international.org/ecma-262/6.0/#sec-topropertykey

In a comment on another answer you said you thought property keys were always strings. They were, until ES2015. :-)
So this dual behavior of [d] (as a syntax construct) seems confusing. Could someone explain in depth how this works?
As of ES2015, Symbols were added to the language, and object property keys became able to be either strings or Symbols. So when you do:
const obj = {
[d]: "foo"
};
...the computed property key ([d]: "foo") part of that works like this:
Let value be the result of evaluating the expression "foo"
Let keyValue be the result of evaluating the expression d
If keyValue is a Symbol, let key = keyValue; otherwise, let key = String(keyValue)
Set the property key on obj to the value value
I've left out a couple of details in there for clarity. You can see that in the ToPropertyKey abstract operation in the specification, which is used whenever a value is used as a property key (in an object literal as above, or when accessing an object property via brackets notation, etc.).
Are there other special cases btw? Or is it just when d is a Symbol when we have that special behavior?
Back to the basics: what things can be keys/names of properties of an object? Is it just strings or just strings and symbols or is there also something additional... ?
Just Symbol and string. :-) It's not so much that Symbol is a special case, it's just that where it used to be that property keys were always strings, now they can be strings or Symbols.
(Fun fact: In the spec, they define "property key" as the string or Symbol that identifies a property, and "property name" as a property key that's a string. But don't rely on it, the spec itself is a bit inconsistent, and the Object.keys method — which returns an array of property names, not property keys — existed before that terminology was added in ES2015. And then they added a keys method to arrays that returns an iterator of numbers [the indexes in the array]. Fun fun fun... :-) )
All ES5 and earlier operations that returned or looped over property names were specified in ES2015 to ignore Symbol-keyed properties. So for-in, Object.keys, Object.getOwnPropertyNames all only look at the string-keyed properties. ES2015 added Reflect.ownKeys (which includes both strings and Symbols) and Object.getOwnPropertySymbols (which includes only own, Symbol-keyed properties).
Side note:
Seems that for some objects d it calculates s = d.toString() and uses that value s as the property key...
Not just objects, and it's more like String(d) (although if d is an object it comes to the same thing). Anything that isn't string or Symbol is converted to string.
...But for other objects d (e.g. when d is a Symbol) it uses really the Symbol's value as the key.
Symbols aren't objects, Symbol is a primitive type. But yes, if the property key is a Symbol, it's used directly, not converted to string.

I thought I'd test out a minor point from TJ's answer:
[I]t's more like String(d) (although if d is an object it comes to the same thing)
sessionStorage.setItem("secret", "sssh!");
const evilObject = {
toString() {
console.log("I stole a secret: " + sessionStorage.getItem("secret"));
return "InnocentPropertyName";
}
};
const obj = {
[evilObject]: "Hello! I'm the property's value."
}
console.log(obj.InnocentPropertyName)
If you check the console after this you end up with:
I stole a secret: sssh!
Hello! I'm the property's value.
Conclusion: If toString() is defined on a non-string object, and you pass it to the computed property square bracket operator, then toString() will be called when setting up that property. Furthermore, said toString() may have side-effects, and potentially evil ones at that, as demonstrated.
Key security aside: If you are creating properties using this operator, make sure you trust whatever you put into it. That applies even if you think what you're putting in is a string. If you got that "string" from elsewhere, can you be really sure it's a string? If you expect a string, then sanitize it: do a dynamic test for the string type before using it.

Related

Extra Object in prototype chain of Number object [duplicate]

I read this a lot in many JavaScript introductions. I just don't understand it. I always think of objects as something with methods and properties.
Arrays I understand, since it has key value pair.
How about "Strings" or "Numbers" or "functions" ?
These things above listed seem to be like functions to me. This means you input something, you get something out. You don't really get the access properties or anything. There's no dot notation used in arrays or this list of "objects".
Does anyone code some examples of each of these with dot notations which its methods and properties are being accessed? I suspect that definition of object is probably limited since I did start learning about JavaScript...
No, not everything is an object in JavaScript. Many things that you interact with regularly (strings, numbers, booleans) are primitives, not objects. Unlike objects, primitive values are immutable. The situation is complicated by the fact that these primitives do have object wrappers (String, Number and Boolean); these objects have methods and properties while the primitives do not, but the primitives appear to have methods because JavaScript silently creates a wrapper object when code attempts to access any property of a primitive.
For example, consider the following code:
var s = "foo";
var sub = s.substring(1, 2); // sub is now the string "o"
Behind the scenes, s.substring(1, 2) behaves as if it is performing the following (approximate) steps:
Create a wrapper String object from s, equivalent to using new String(s)
Call the substring() method with the appropriate parameters on the String object returned by step 1
Dispose of the String object
Return the string (primitive) from step 2.
A consequence of this is that while it looks as though you can assign properties to primitives, it is pointless because you cannot retrieve them:
var s = "foo";
s.bar = "cheese";
alert(s.bar); // undefined
This happens because the property is effectively defined on a String object that is immediately discarded.
Numbers and Booleans also behave this way. Functions, however, are fully-fledged objects, and inherit from Object (actually Object.prototype, but that's another topic). Functions therefore can do anything objects can, including having properties:
function foo() {}
foo.bar = "tea";
alert(foo.bar); // tea
That’s right: in JavaScript, almost everything is an object. But these objects are bit different from what we see in Java, C++ or other conventional languages. An object in JS is simply a hashmap with key–value pairs. A key is always a string or a symbol, and a value can be anything including strings, integers, booleans, functions, other objects etc. So I can create a new object like this:
var obj = {}; // This is not the only way to create an object in JS
and add new key–value pairs into it:
obj['message'] = 'Hello'; // You can always attach new properties to an object externally
or
obj.message = 'Hello';
Similarly, if I want to add a new function to this object:
obj['showMessage'] = function(){
alert(this['message']);
}
or
obj.showMessage = function() {
alert(this.message);
}
Now, whenever I call this function, it will show a pop-up with a message:
obj.showMessage();
Arrays are simply those objects which are capable of containing lists of values:
var arr = [32, 33, 34, 35]; // One way of creating arrays in JS
Although you can always use any object to store values, but arrays allow you to store them without associating a key with each of them. So you can access an item using its index:
alert(arr[1]); // This would show 33
An array object, just like any other object in JS, has its properties, such as:
alert(arr.length); // This would show 4
For in-depth detail, I would highly recommend John Resig’s Pro JavaScript Techniques.
The sentence "In JavaScript, ALMOST everything is an object" is correct, because the MAIN code-units (objects, functions, arrays) are JavaScript-objects.
JavaScript code uses 9 different-units plus 1 (multiple):
- 01. array
- 02. boolean
- 03. function
- 04. null
- 05. number
- 06. object
- 07. regexp
- 08. string
- 09. undefined
- 10. multiple
BUT JavaScript-objects:
- are NOT same creatures as the 'objects' in other object-oriented-languages.
- they are a collection of name-value-pairs.
- all have a function of creation (its constructor).
- all INHERIT the members of the prototype-object of its constructor and this is its prototype.
- all functions are objects BUT NOT all objects are functions.
- functions have scope, objects NOT (a design flaw in my opinion).
- Object, Function, Array, String, ... with first CAPITAL are functions!!!
- it is more important the differences of JS objects and functions, than its commonnesses.
- the name 'instance' in JS has different meaning with the name 'instance' in knowledge-theory where an instance inherits the attributes of its generic-concept. In JS denotes only its constructor. JavaScript got the name 'instance' from 'class-based-inheritance' ool (java) where it is an appropriate name because those objects inherit the attributes of classes.
A better name for the JS-keyword 'instanceof' is 'objectof'.
JS-functions ARE JS-objects because:
1) they can have members like JS-objects:
> function f(){}
undefined
> f.s = "a string"
"a string"
> f.s
"a string"
2) they have a constructor-function, like all JS-objects, the Function function:
> (function f(){}) instanceof Function
true
3) as all JS-objects, their prototype-object is the same with its constructor prototype:
> (function f(){}).__proto__ === Function.prototype
true
> ({}).__proto__ === Object.prototype
true
> (new Object).__proto__ === Object.prototype
true
4) of course, JS-functions as SPECIFIC JS-objects have and extra attributes, like all functions in programming-languages, that JS-objects do not have like you can call (execute) them with input and output information.
EVERYTHING is NOT an object, because, for example, we can NOT add members to a literal string:
> var s = "string"
undefined
> s.s2 = "s2string"
"s2string"
> s.s2
undefined
Based on developer.mozilla.org and also ECMAScript specification the answer is no. Technically not everything is object.
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
In JavaScript, a primitive (primitive value, primitive data type) is data that is not an object and has no methods. There are 7 primitive data types: string, number, bigint, boolean, null, undefined, symbol
A primitive is not an object and has no methods and It is also immutable. Except for null and undefined, all the other primitive have a wrap object around them to provide you some functions that you can use. For example String for the string primitive.
https://developer.mozilla.org/en-US/docs/Glossary/Primitive#Primitive_wrapper_objects_in_JavaScript
So here in the following code when you call toUpperCase() on a primitive data name JavaScript will automatically wrap the string primitive and call toUpperCase function of String object
var name = 'Tom';
console.log(name);
name.toUpperCase();
console.log(name);
In contexts where a method is to be invoked on a primitive string or a property lookup occurs, JavaScript will automatically wrap the string primitive and call the method or perform the property lookup.
Also note that JavaScript distinguishes between String objects and primitive string values.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Distinction_between_string_primitives_and_String_objects
var nameP = 'Tom';
var nameO = new String(nameP);
typeof nameP // "string"
typeof nameO // "object"
Not everything is an object in javaScript. JavaScript has primitives and objects.
There are six primitives-null,undefined,string,number,boolean and symbol.
It might seem like everything is acting as an object because of the properties and function that can be accessed.for example-
var stringvar="this string";
typeof stringvar; // "string"
stringvar.length; //11
now since "stringvar" is a string type ,which is a primitive type,it should not be able to accesss property length.It can do so because of something called Boxing.Boxing is the process where any primitive type is converted to an Object type and the reverse is called Unboxing.These object types or Object wrappers are created with the view that there are some common operations that one might need to perform with the primitive values.They contain useful methods and properties and are prototype linked to the primitives.
As far as the Objects are concerned,key value pairs can be added to every object,even to the arrays.
var arr=[1,2,3];
arr.name="my array";
arr; //[1,2,3,name:'my array']
this does not mean that the fourth element of the array is "name:'my array'"."name" is a property that can be called with dot notation(arr.name) or brackets notation(arr["name"]).
I would say "Everything in Javascript is not an object (because of primitives) but everything in javascript leads back to an object (because of wrappers and Object constructor)"

How arrays and objects are mutable and string, numbers and all the primitive data types are immutable? [duplicate]

I am trying to understand what a Javascript immutable variable means. If I can do:
var x = "astring";
x = "str";
console.log(x); //logs str` , then why it is immutable?
The only answer I can think (from the little bit of C I know) is that var x is a pointer to a memory block with the value "astring", and after the 2nd statement it points to another block with the value "str". Is that the case?
And a bonus question: I was confused by the value types of Javascript. Are all variables objects under the hood? Even number and strings?
Values are immutable; variables are not; they hold a reference to their (primitive) values.
The three primitive types string, number and boolean have corresponding types whose instances are objects: String, Number, Boolean.
They are sometimes called wrapper types.
The following values are primitive:
Strings: "hello"
Numbers: 6, 3.14 (all numbers in JavaScript are floating point)
Booleans: true, false
null: usually explicitly assigned
undefined: usually the default (automatically assigned) value
All other values are objects, including wrappers for primitives.
So:
Objects are mutable by default
Objects have unique identities and are compared by reference
Variables hold references to objects
Primitives are immutable
Primitives are compared by value, they don’t have individual identities
You might find The Secret Life of JavaScript Primitives a good explanation.
Also, in ES6 there is a new const keyword, that creates a read-only named constant that cannot change value through assignment or be re-declared while the script is running.
Hope this helps!
First, in C "A string is an array of characters with last elem = '\0' ". They are mutable.
If you declare and initialize a string in C like this:
char str[] = "Foo";
What you are basically doing is reserving 4 bytes ( probably 8bit-byte, don't mind this probably if it hurts you ). The word str serves as a pointer to the first elem of this array. So, if you do like this:
str[0] or *(str) = 'G'
then it will mutate the value at that address instead of creating new array. You can verify it by printing out the address of str. In both cases it will be same.
Now in case of JavaScript string is a primitive type. All operations on string are done by value instead of by reference. So, doing this will produce true.
var str1 = "foo";
var str2 = "foo";
str1 === str2; => true
The initialization of string asks for a buffer to fit "foo" and binds the name str1 to it. What makes them immutable is that you can't change that buffer. So, you can't do this:
str1[0] = 'G'
Executing this command will produce no warning or error in non-strict mode but, it will not change the str1. You can verify it by
console.log(str1) => "foo"
But if you do like this:
str1 = "goo"
what you are actually doing is that you are asking for a new buffer to fit "goo" and bind identifier str1 to it. No change in that old buffer containing "foo".
So, what happens to "foo"?
Java Script has an automatic garbage collector. When it sees some chunk of memory that no longer can be referenced by any identifier or ... then it consider that memory free.
Same happens to number,booleans.
Now, about wrapper objects!
Whenever you try to access a property on string like this:
str1.length;
What JavaScript does it creates a new object using String class and invoke the methods on string. As soon as the function call returns, the object is destroyed.
The below code explains it further:
var str = "nature";
str.does = "nurtures"; //defining a new property;
console.log(str.does) => undefined
because the object has been destroyed.
Try this!
var str = new String("Nature");
str.does = "nurtures";
console.log(str) => ??
this str is really an object...
Conclusion: In C , in a single scope the variable name serves as a pointer. So, int, float, string all are mutable. But in Java Script a primitive type variable name serves as value not as reference
References: C++ primer plus, Java Script The Definitive Guide, C by Stephen Kochan
You are correct. Strings (and numbers) are immutable in java script (and many other languages). The variables are references to them. When you "change the value of a variable" you are changing the string (or whatever) that the variable references, not the value itself.
I think many new programmers believe immutability to mean that primitive values cannot be changed by reassignment.
var str = "testing";
var str = "testing,testing";
console.log(str); // testing, testing
var fruits = ["apple", "banana", "orange"];
fruits[0] = "mango";
console.log(fruits); //["mango", "banana", "orange"]
The values associated with both mutable and immutable types can be changed through reassignment as the above examples with strings and arrays show.
But then, these data types have associated functions(methods) that are used to manipulate the values belonging to each data type. This is where mutability/immutability is seen. Since arrays are mutable, any manipulation by an array method affects the array directly. For example,
var fruits = ["mango","banana", "orange"];
fruits.pop();
console.log(fruits) //["mango", "banana"]
The array.pop() method deleted "orange" from the original fruits array.
But with strings for example,
var name = "Donald Trump";
name.replace("Donald", "President");
console.log(name)//Donald Trump
the original string remains intact!
Immutability disallowed any altering of the original string by the string method. Instead, the method produces a new string if the method operation is assigned to a variable like so:
var name = "Donald Trump";
var newName = name.replace("Donald", "President");
console.log(newName);//President Trump
Let's understand here, first,
let firstString = "Tap";
console.log(firstString); //Output: Tap
firstString[0] = "N";
console.log(firstString) //Output: Tap
This is where we can see the immutable effect!
Immutability in this definition is historic. It's attached to what could be done in OTHER programming languages.
I think that is the first thing to understand. And to programmers who have only used JavaScript the question may seem nonsensical or needlessly pedantic. Describing primitives as immutable is like describing ice cream as not being able to jump. Why would I think it could? It is only in relation to other historic programming languages that the lack of mutability is apparent when dealing with primitive types.

A Function that can be an Object in JavaScript? [duplicate]

I read this a lot in many JavaScript introductions. I just don't understand it. I always think of objects as something with methods and properties.
Arrays I understand, since it has key value pair.
How about "Strings" or "Numbers" or "functions" ?
These things above listed seem to be like functions to me. This means you input something, you get something out. You don't really get the access properties or anything. There's no dot notation used in arrays or this list of "objects".
Does anyone code some examples of each of these with dot notations which its methods and properties are being accessed? I suspect that definition of object is probably limited since I did start learning about JavaScript...
No, not everything is an object in JavaScript. Many things that you interact with regularly (strings, numbers, booleans) are primitives, not objects. Unlike objects, primitive values are immutable. The situation is complicated by the fact that these primitives do have object wrappers (String, Number and Boolean); these objects have methods and properties while the primitives do not, but the primitives appear to have methods because JavaScript silently creates a wrapper object when code attempts to access any property of a primitive.
For example, consider the following code:
var s = "foo";
var sub = s.substring(1, 2); // sub is now the string "o"
Behind the scenes, s.substring(1, 2) behaves as if it is performing the following (approximate) steps:
Create a wrapper String object from s, equivalent to using new String(s)
Call the substring() method with the appropriate parameters on the String object returned by step 1
Dispose of the String object
Return the string (primitive) from step 2.
A consequence of this is that while it looks as though you can assign properties to primitives, it is pointless because you cannot retrieve them:
var s = "foo";
s.bar = "cheese";
alert(s.bar); // undefined
This happens because the property is effectively defined on a String object that is immediately discarded.
Numbers and Booleans also behave this way. Functions, however, are fully-fledged objects, and inherit from Object (actually Object.prototype, but that's another topic). Functions therefore can do anything objects can, including having properties:
function foo() {}
foo.bar = "tea";
alert(foo.bar); // tea
That’s right: in JavaScript, almost everything is an object. But these objects are bit different from what we see in Java, C++ or other conventional languages. An object in JS is simply a hashmap with key–value pairs. A key is always a string or a symbol, and a value can be anything including strings, integers, booleans, functions, other objects etc. So I can create a new object like this:
var obj = {}; // This is not the only way to create an object in JS
and add new key–value pairs into it:
obj['message'] = 'Hello'; // You can always attach new properties to an object externally
or
obj.message = 'Hello';
Similarly, if I want to add a new function to this object:
obj['showMessage'] = function(){
alert(this['message']);
}
or
obj.showMessage = function() {
alert(this.message);
}
Now, whenever I call this function, it will show a pop-up with a message:
obj.showMessage();
Arrays are simply those objects which are capable of containing lists of values:
var arr = [32, 33, 34, 35]; // One way of creating arrays in JS
Although you can always use any object to store values, but arrays allow you to store them without associating a key with each of them. So you can access an item using its index:
alert(arr[1]); // This would show 33
An array object, just like any other object in JS, has its properties, such as:
alert(arr.length); // This would show 4
For in-depth detail, I would highly recommend John Resig’s Pro JavaScript Techniques.
The sentence "In JavaScript, ALMOST everything is an object" is correct, because the MAIN code-units (objects, functions, arrays) are JavaScript-objects.
JavaScript code uses 9 different-units plus 1 (multiple):
- 01. array
- 02. boolean
- 03. function
- 04. null
- 05. number
- 06. object
- 07. regexp
- 08. string
- 09. undefined
- 10. multiple
BUT JavaScript-objects:
- are NOT same creatures as the 'objects' in other object-oriented-languages.
- they are a collection of name-value-pairs.
- all have a function of creation (its constructor).
- all INHERIT the members of the prototype-object of its constructor and this is its prototype.
- all functions are objects BUT NOT all objects are functions.
- functions have scope, objects NOT (a design flaw in my opinion).
- Object, Function, Array, String, ... with first CAPITAL are functions!!!
- it is more important the differences of JS objects and functions, than its commonnesses.
- the name 'instance' in JS has different meaning with the name 'instance' in knowledge-theory where an instance inherits the attributes of its generic-concept. In JS denotes only its constructor. JavaScript got the name 'instance' from 'class-based-inheritance' ool (java) where it is an appropriate name because those objects inherit the attributes of classes.
A better name for the JS-keyword 'instanceof' is 'objectof'.
JS-functions ARE JS-objects because:
1) they can have members like JS-objects:
> function f(){}
undefined
> f.s = "a string"
"a string"
> f.s
"a string"
2) they have a constructor-function, like all JS-objects, the Function function:
> (function f(){}) instanceof Function
true
3) as all JS-objects, their prototype-object is the same with its constructor prototype:
> (function f(){}).__proto__ === Function.prototype
true
> ({}).__proto__ === Object.prototype
true
> (new Object).__proto__ === Object.prototype
true
4) of course, JS-functions as SPECIFIC JS-objects have and extra attributes, like all functions in programming-languages, that JS-objects do not have like you can call (execute) them with input and output information.
EVERYTHING is NOT an object, because, for example, we can NOT add members to a literal string:
> var s = "string"
undefined
> s.s2 = "s2string"
"s2string"
> s.s2
undefined
Based on developer.mozilla.org and also ECMAScript specification the answer is no. Technically not everything is object.
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
In JavaScript, a primitive (primitive value, primitive data type) is data that is not an object and has no methods. There are 7 primitive data types: string, number, bigint, boolean, null, undefined, symbol
A primitive is not an object and has no methods and It is also immutable. Except for null and undefined, all the other primitive have a wrap object around them to provide you some functions that you can use. For example String for the string primitive.
https://developer.mozilla.org/en-US/docs/Glossary/Primitive#Primitive_wrapper_objects_in_JavaScript
So here in the following code when you call toUpperCase() on a primitive data name JavaScript will automatically wrap the string primitive and call toUpperCase function of String object
var name = 'Tom';
console.log(name);
name.toUpperCase();
console.log(name);
In contexts where a method is to be invoked on a primitive string or a property lookup occurs, JavaScript will automatically wrap the string primitive and call the method or perform the property lookup.
Also note that JavaScript distinguishes between String objects and primitive string values.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Distinction_between_string_primitives_and_String_objects
var nameP = 'Tom';
var nameO = new String(nameP);
typeof nameP // "string"
typeof nameO // "object"
Not everything is an object in javaScript. JavaScript has primitives and objects.
There are six primitives-null,undefined,string,number,boolean and symbol.
It might seem like everything is acting as an object because of the properties and function that can be accessed.for example-
var stringvar="this string";
typeof stringvar; // "string"
stringvar.length; //11
now since "stringvar" is a string type ,which is a primitive type,it should not be able to accesss property length.It can do so because of something called Boxing.Boxing is the process where any primitive type is converted to an Object type and the reverse is called Unboxing.These object types or Object wrappers are created with the view that there are some common operations that one might need to perform with the primitive values.They contain useful methods and properties and are prototype linked to the primitives.
As far as the Objects are concerned,key value pairs can be added to every object,even to the arrays.
var arr=[1,2,3];
arr.name="my array";
arr; //[1,2,3,name:'my array']
this does not mean that the fourth element of the array is "name:'my array'"."name" is a property that can be called with dot notation(arr.name) or brackets notation(arr["name"]).
I would say "Everything in Javascript is not an object (because of primitives) but everything in javascript leads back to an object (because of wrappers and Object constructor)"

Understanding Javascript immutable variable

I am trying to understand what a Javascript immutable variable means. If I can do:
var x = "astring";
x = "str";
console.log(x); //logs str` , then why it is immutable?
The only answer I can think (from the little bit of C I know) is that var x is a pointer to a memory block with the value "astring", and after the 2nd statement it points to another block with the value "str". Is that the case?
And a bonus question: I was confused by the value types of Javascript. Are all variables objects under the hood? Even number and strings?
Values are immutable; variables are not; they hold a reference to their (primitive) values.
The three primitive types string, number and boolean have corresponding types whose instances are objects: String, Number, Boolean.
They are sometimes called wrapper types.
The following values are primitive:
Strings: "hello"
Numbers: 6, 3.14 (all numbers in JavaScript are floating point)
Booleans: true, false
null: usually explicitly assigned
undefined: usually the default (automatically assigned) value
All other values are objects, including wrappers for primitives.
So:
Objects are mutable by default
Objects have unique identities and are compared by reference
Variables hold references to objects
Primitives are immutable
Primitives are compared by value, they don’t have individual identities
You might find The Secret Life of JavaScript Primitives a good explanation.
Also, in ES6 there is a new const keyword, that creates a read-only named constant that cannot change value through assignment or be re-declared while the script is running.
Hope this helps!
First, in C "A string is an array of characters with last elem = '\0' ". They are mutable.
If you declare and initialize a string in C like this:
char str[] = "Foo";
What you are basically doing is reserving 4 bytes ( probably 8bit-byte, don't mind this probably if it hurts you ). The word str serves as a pointer to the first elem of this array. So, if you do like this:
str[0] or *(str) = 'G'
then it will mutate the value at that address instead of creating new array. You can verify it by printing out the address of str. In both cases it will be same.
Now in case of JavaScript string is a primitive type. All operations on string are done by value instead of by reference. So, doing this will produce true.
var str1 = "foo";
var str2 = "foo";
str1 === str2; => true
The initialization of string asks for a buffer to fit "foo" and binds the name str1 to it. What makes them immutable is that you can't change that buffer. So, you can't do this:
str1[0] = 'G'
Executing this command will produce no warning or error in non-strict mode but, it will not change the str1. You can verify it by
console.log(str1) => "foo"
But if you do like this:
str1 = "goo"
what you are actually doing is that you are asking for a new buffer to fit "goo" and bind identifier str1 to it. No change in that old buffer containing "foo".
So, what happens to "foo"?
Java Script has an automatic garbage collector. When it sees some chunk of memory that no longer can be referenced by any identifier or ... then it consider that memory free.
Same happens to number,booleans.
Now, about wrapper objects!
Whenever you try to access a property on string like this:
str1.length;
What JavaScript does it creates a new object using String class and invoke the methods on string. As soon as the function call returns, the object is destroyed.
The below code explains it further:
var str = "nature";
str.does = "nurtures"; //defining a new property;
console.log(str.does) => undefined
because the object has been destroyed.
Try this!
var str = new String("Nature");
str.does = "nurtures";
console.log(str) => ??
this str is really an object...
Conclusion: In C , in a single scope the variable name serves as a pointer. So, int, float, string all are mutable. But in Java Script a primitive type variable name serves as value not as reference
References: C++ primer plus, Java Script The Definitive Guide, C by Stephen Kochan
You are correct. Strings (and numbers) are immutable in java script (and many other languages). The variables are references to them. When you "change the value of a variable" you are changing the string (or whatever) that the variable references, not the value itself.
I think many new programmers believe immutability to mean that primitive values cannot be changed by reassignment.
var str = "testing";
var str = "testing,testing";
console.log(str); // testing, testing
var fruits = ["apple", "banana", "orange"];
fruits[0] = "mango";
console.log(fruits); //["mango", "banana", "orange"]
The values associated with both mutable and immutable types can be changed through reassignment as the above examples with strings and arrays show.
But then, these data types have associated functions(methods) that are used to manipulate the values belonging to each data type. This is where mutability/immutability is seen. Since arrays are mutable, any manipulation by an array method affects the array directly. For example,
var fruits = ["mango","banana", "orange"];
fruits.pop();
console.log(fruits) //["mango", "banana"]
The array.pop() method deleted "orange" from the original fruits array.
But with strings for example,
var name = "Donald Trump";
name.replace("Donald", "President");
console.log(name)//Donald Trump
the original string remains intact!
Immutability disallowed any altering of the original string by the string method. Instead, the method produces a new string if the method operation is assigned to a variable like so:
var name = "Donald Trump";
var newName = name.replace("Donald", "President");
console.log(newName);//President Trump
Let's understand here, first,
let firstString = "Tap";
console.log(firstString); //Output: Tap
firstString[0] = "N";
console.log(firstString) //Output: Tap
This is where we can see the immutable effect!
Immutability in this definition is historic. It's attached to what could be done in OTHER programming languages.
I think that is the first thing to understand. And to programmers who have only used JavaScript the question may seem nonsensical or needlessly pedantic. Describing primitives as immutable is like describing ice cream as not being able to jump. Why would I think it could? It is only in relation to other historic programming languages that the lack of mutability is apparent when dealing with primitive types.

what is the equivalent JavaScript function for VBScript CreateObject()

What is the JavaScript equivalent function for CreateObject("Scripting.Dictionary")?
I have to convert following two statements from VBScript to JavaScript, anyone can help me to find a solution.
Set oInvoicesToCreate = CreateObject("Scripting.Dictionary")
If Not oInvoicesToCreate.Exists(cInvoiceID) Then
oInvoicesToCreate(CStr(cInvoiceID)) = ""
End If
var oInvoicesToCreate = {};
if(oInvoicesToCreate[cInvoiceID] === undefined){
oInvoicesToCreate[cInvoiceID] = "";
}
You probably don't want to check the hasOwnProperty method because you'll want to check if anything in the prototype chain has that property as well and not overwrite it. checking with the []s will let you know if any property on any prototype items have the property as well.
As bluetoft says in this answer, in Javascript you can use a plain object instead. However, there are a few differences between them that you should be aware of:
First, a Dictionary's keys can be any type:
var dict = new ActiveXObject('Scripting.Dictionary');
dict(5) = 'Athens';
console.log(dict('5')); //prints undefined
whereas any value used for a Javascript object's key will be converted to a string first:
var obj = {};
obj[5] = 'Athens';
console.log(obj['5']); // prints 'Athens'
From MDN:
Please note that all keys in the square bracket notation are converted to String type, since objects in JavaScript can only have String type as key type. For example, in the above code, when the key obj is added to the myObj, JavaScript will call the obj.toString() method, and use this result string as the new key.
Second, it is possible to set a Dictionary to treat differently cased keys as the same key, using the CompareMode property:
var dict = new ActiveXObject('Scripting.Dictionary');
dict.CompareMode = 1;
dict('a') = 'Athens';
console.log(dict('A')); // prints 'Athens'
Javascript key access via [] doesn't support this, and if you want to treat differently-cased keys as the same, you'll have to convert the potential key to lowercase or uppercase before each read or write.
For your specific scenario, neither of these differences matter, because the keys are numeric strings (1) which have no case (2).

Categories

Resources