How to implement this C++ pattern in Javascript? - javascript

A method from an inherited class should return the object type from who has inherited. In C++ this behaviour is easy to accomplish. But I don't know how to do it in javascript. I know it is wrong but I wrote like this.
class A {
someMethod() {
return new A();
}
}
class B extends A {
}
var b = new B();
b.someMethod() // should return an object of type B not A
in C++ this is easy to do
template <typename c>
struct a
{
a() : _value(NULL) {}
a(std::string v) : _v(v) {}
static c* from_string(std::string &v)
{
return new c(v);
}
private:
std::string _v;
};
struct b : public a<b>
{
b() : b<a>() {}
b(std::string &v) : node<b>(a) {}
};
How should this be implemented using javascript?
edit
This is not how inherits a class, is a particular pattern of inheriting and creating objects. There are several examples like Buffer.from, Buffer.alloc from Node.Js. But I would like to reproduce this from a base class.
A guy showed me that my issue could be solved using the following script:
class A {
method() { return this.constructor(); }
}
class B {}
var b = new B();
var b1 = b.method();
What I really would like to do is something like following.
class A {
static from() { return new this.constructor() }
};
class B extends A {};
a = A.from();
b = B.from();
a instanceof A // should be true
b instanceof B // should be true.
edit 2
I found something.
I found in typescript the same C++ behaviour can be archived as follows:
class a {
static from<t extends a>(c: { new(): t }) : t {
return new c();
}
};
class b extends a {
}
let b1 = a.from(b);
b1 instanceof b
b1 instanceof a
console.log(b1);
the es6 equivalent is:
class a {
static from(c) {
return new c();
}
}
;
class b extends a {
}
let b1 = a.from(b);
b1 instanceof b;
b1 instanceof a;
console.log(b1);
//# sourceMappingURL=index.js.map

As I've commented: a template class in C++ is actually a metaclass. It is used for constructing other classes out of it.
So we can apply this observation to JavaScript. I've played around and here's the closest thing I could get. First define a "template":
function TemplateA(cls) {
class A {
static from() {
return new cls();
};
foo() {
return -1;
};
};
return A;
};
Now define custom "extends":
function Extends(base, derived) {
// Update statics
// (these should not be overwritten)
var common = {name: 1, prototype: 1, length: 1};
var statics = Object.getOwnPropertyNames(base)
.filter(el => !common[el]);
statics.forEach(el => {
derived[el] = base[el];
});
// Update instance methods
var instanceMethods = Object.getOwnPropertyNames(base.prototype);
instanceMethods.forEach(el => {
derived.prototype[el] = base.prototype[el];
});
};
and finally usage:
class B {
test() { return 1; }
};
> Extends(TemplateA(B), B);
> var b = B.from();
> b instanceof B;
true
> var x = new B();
> x.foo();
-1
> x.test();
1
It seems to do what you want. This has some drawbacks though. It is not really an inheritance (the prototype is just updated). In particular B is not a subclass of A<B> (actually no such class even exists after Extends). On the other hand JavaScript's inheritance/prototyping is quite unique and very different from C++ and so we can't expect everything to work.
Side notes:
Is it safe? Probably. However it does require lots of discipline from a dev. For example it is too easy to overwrite something you didn't want to.
Would I use it in prod environment? Unlikely. Whatever you are trying to accomplish most likely can be achieved in some other, standard way. Treat the solution as an academic fun.
Finally: who told you that C++ way is the best way? Your swimming skills are not really useful when you are climbing, right? So I strongly suggest you rethink your entire architecture and try to do things differently.

Related

Is it possible to instantiate a class without a `new` operator? [duplicate]

Given a simple class
class Foo {
constructor(x) {
if (!(this instanceof Foo)) return new Foo(x);
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
Is it possible to call the class constructor without the new keyword?
Usage should allow
(new Foo("world")).hello(); // "hello world"
Or
Foo("world").hello(); // "hello world"
But the latter fails with
Cannot call a class as a function
Classes have a "class body" that is a constructor.
If you use an internal constructor() function, that function would be the same class body as well, and would be what is called when the class is called, hence a class is always a constructor.
Constructors require the use of the new operator to create a new instance, as such invoking a class without the new operator results in an error, as it's required for the class constructor to create a new instance.
The error message is also quite specific, and correct
TypeError: Class constructors cannot be invoked without 'new'
You could:
either use a regular function instead of a class1.
Always call the class with new.
Call the class inside a wrapping regular function, always using new, that way you get the benefits of classes, but the wrapping function can still be called with and without the new operator2.
1)
function Foo(x) {
if (!(this instanceof Foo)) return new Foo(x);
this.x = x;
this.hello = function() {
return this.x;
}
}
2)
class Foo {
constructor(x) {
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
var _old = Foo;
Foo = function(...args) { return new _old(...args) };
As others have pointed out, ES2015 spec strictly states that such call should throw TypeError, but at the same time, it provides feature that can be used to achieve exactly the desired result, namely Proxies.
Proxies allows us to virtualize over a concept of an object. For instance, they can be used to change some behaviour of particular object without affecting anything else.
In your specific use case, class Foo is Function object which can be called -- this normally means that body of this function will be executed. But this can be changed with Proxy:
const _Foo = new Proxy(Foo, {
// target = Foo
apply (target, thisArg, argumentsList) {
return new target(...argumentsList);
}
});
_Foo("world").hello();
const f = _Foo("world");
f instanceof Foo; // true
f instanceof _Foo; // true
(Note that _Foo is now the class you want to expose, so identifiers should probably be the other way round)
If run by browsers that support Proxies, calling _Foo(...) will now execute apply trap function instead of the original constructor.
At the same time, this "new" _Foo class is indistinguishable from original Foo (apart from being able to call it as a normal function). Similarly, there is no difference by which you can tell object created with Foo and _Foo.
The biggest downside of this is that it cannot be transpiled or polyfilled, but still it's viable solution for having Scala-like class applied in JS in the future.
Here's a pattern I've come across that really helps me. It doesn't use a class, but it doesn't require the use of new either. Win/Win.
const Foo = x => ({
x,
hello: () => `hello ${x}`,
increment: () => Foo(x + 1),
add: ({x: y}) => Foo(x + y)
})
console.log(Foo(1).x) // 1
console.log(Foo(1).hello()) // hello 1
console.log(Foo(1).increment().hello()) // hello 2
console.log(Foo(1).add(Foo(2)).hello()) // hello 3
i just made this npm module for you ;)
https://www.npmjs.com/package/classy-decorator
import classy from "classy-decorator";
#classy()
class IamClassy {
constructor() {
console.log("IamClassy Instance!");
}
}
console.log(new IamClassy() instanceof IamClassy()); // true
console.log(IamClassy() instanceof IamClassy()); // true
No, this is not possible. Constructors that are created using the class keyword can only be constructed with new, if they are [[call]]ed without they always throw a TypeError1 (and there's not even a way to detect this from the outside).
1: I'm not sure whether transpilers get this right
You can use a normal function as a workaround, though:
class Foo {
constructor(x) {
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
{
const _Foo = Foo;
Foo = function(...args) {
return new _Foo(...args);
};
Foo.prototype = _Foo.prototype;
}
Disclaimer: instanceof and extending Foo.prototype work as normal, Foo.length does not, .constructor and static methods do not but can be fixed by adding Foo.prototype.constructor = Foo; and Object.setPrototypeOf(Foo, _Foo) if required.
For subclassing Foo (not _Foo) with class Bar extends Foo …, you should use return Reflect.construct(_Foo, args, new.target) instead of the new _Foo call. Subclassing in ES5 style (with Foo.call(this, …)) is not possible.
class MyClass {
constructor(param) {
// ...
}
static create(param) {
return new MyClass(param);
}
doSomething() {
// ...
}
}
MyClass.create('Hello World').doSomething();
Is that what you want?
If you need some logic when creating a new instance of MyClass, it could be helpful to implement a "CreationStrategy", to outsorce the logic (for example complex builder logic with validation)
Edit: As discussed in the comments It does not make sense to create some sort of Builder Pattern with a separate class in JavaScript. Removed related example.
Here's a where you can use a 'scope safe constructor'
Observe this code:
function Student(name) {
if(this instanceof Student) {
this.name = name;
} else {
return new Student(name);
}
}
Now you can create a Student object without using new as follows:
var stud1 = Student('Kia');
Dug up this one in the draft
Constructors defined using class definition syntax throw when called as functions
So I guess that's not possible with classes.
Call class constructor manually can be usefull when refactoring code (having parts of the code in ES6, other parts beeing function & prototype definition)
I ended up with a small, yet usefull boilerplate, slicing the constructor into another function. Period.
class Foo {
constructor() {
//as i will not be able to call the constructor, just move everything to initialize
this.initialize.apply(this, arguments)
}
initialize() {
this.stuff = {};
//whatever you want
}
}
function Bar () {
Foo.prototype.initialize.call(this);
}
Bar.prototype.stuff = function() {}
I had problems extending classes converted with the transformation function mentioned in some other answers. The issue seems to be that node (as of v9.4.0) doesn't properly support the argument spread operator ((...args) =>).
This function based on the transpiled output of the classy-decorator (mentioned in another answer) works for me and doesn't require support for decorators or the argument spread operator.
// function that calls `new` for you on class constructors, simply call
// YourClass = bindNew(YourClass)
function bindNew(Class) {
function _Class() {
for (
var len = arguments.length, rest = Array(len), key = 0;
key < len;
key++
) {
rest[key] = arguments[key];
}
return new (Function.prototype.bind.apply(Class, [null].concat(rest)))();
}
_Class.prototype = Class.prototype;
return _Class;
}
Usage:
class X {}
X = bindNew(X);
// or
const Y = bindNew(class Y {});
const x = new X();
const x2 = X(); // woohoo
x instanceof X; // true
x2 instanceof X; // true
class Z extends X {} // works too
As a bonus, TypeScript (with "es5" output) seems to be fine with the old instanceof trick (well, it won't typecheck if used without new but it works anyhow):
class X {
constructor() {
if (!(this instanceof X)) {
return new X();
}
}
}
because it compiles it down to:
var X = /** #class */ (function () {
function X() {
if (!(this instanceof X)) {
return new X();
}
}
return X;
}());
Alright I have another answer here, and I think this one is pretty innovative.
Basically, the problem with doing something similar to Naomik's answer is that you create functions each and every time you chain methods together.
EDIT: This solution shares the same problem, however, this answer is being left up for educational purposes.
So here I'm offering a way to merely bind new values to your methods--which are basically just independent functions. This offer the additional benefit of being able to import functions from different modules into the newly constructed object.
Okay, so here it goes.
const assoc = (prop, value, obj) =>
Object.assign({},obj,{[prop]: value})
const reducer = ( $values, accumulate, [key,val] ) => assoc( key, val.bind( undefined,...$values ), accumulate )
const bindValuesToMethods = ( $methods, ...$values ) =>
Object.entries( $methods ).reduce( reducer.bind( undefined, ...$values), {} )
const prepareInstance = (instanceMethods, staticMethods = ({}) ) => Object.assign(
bindValuesToMethods.bind( undefined, instanceMethods ),
staticMethods
)
// Let's make our class-like function
const RightInstanceMethods = ({
chain: (x,f) => f(x),
map: (x,f) => Right(f(x)),
fold: (x,l,r) => r(x),
inspect: (x) => `Right(${x})`
})
const RightStaticMethods = ({
of: x => Right(x)
})
const Right = prepareInstance(RightInstanceMethods,RightStaticMethods)
Now you can do
Right(4)
.map(x=>x+1)
.map(x=>x*2)
.inspect()
You can also do
Right.of(4)
.map(x=>x+1)
.map(x=>x*2)
.inspect()
You also have the added benefit of being able to export from modules as such
export const Right = prepareInstance(RightInstanceMethods,RightStaticMethods)
While you don't get ClassInstance.constructor you do have FunctorInstance.name (note, you may need to polyfill Function.name and/or not use an arrow function for export for browser compatibility with Function.name purposes)
export function Right(...args){
return prepareInstance(RightInstanceMethods,RightStaticMethods)(...args)
}
PS - New name suggestions for prepareInstance welcomed, see Gist.
https://gist.github.com/babakness/56da19ba85e0eaa43ae5577bc0064456
As pointed out by you and others
Foo("world").hello();
fails with an error because it is an error,
according to rules of ES6 syntax.
Others pointed out that
(new Foo("world")).hello();
works but is clunky because
It needs the 'new' AND
It needs the extra parenthesis.
I agree it is clunky. So I'm often using
this solution instead:
In your class Foo, create a static method
named 'new':
static new (...args)
{ return new this (...args);
}
Use it like this:
Foo.new("world").hello();
This way I hide the "clunkiness" inside
this static method 'new()'.
Note that this method new() is generic,
it will work as is also
when inherited to sub-classes. If you need
to customize it in a subclass you can first call:
super.new(...args)
and then add any other stuff you need in the
method in a subclass, before returning its result.
A recapped working "one-line" solution for ES6: explained
The answer posted above by Bergi is basically correct.
TLDR; skip to the end 😎 for the one-liner solution
Bergi's answer may seem a unclear when reading it. So, here is a more expanded code-sample that illustrates TWO new ES6 features to achieve the desired goals.
Together, they let a single function C (below) provide the dual-role of a factory and new-able fn; which constructs a B inst that derives from a A.
The B constructor utilizes super handling to invoke the A constructor with initialization arguments. In our final #3 - #4 examples constructed by C.
The A constructor demonstrates the semantics of the new.target psuedo-var to discover new was actually invoked with B.
First, we will make use of ES6 new.target psuedo-var that gives us the RHS of a new RHS() expression.
Technically, we could have gotten new.target as this?.__proto__?.constructor; they are equivalent.
Second, we will make use of ES6 Reflect.construct. Which is crucial to working around the ES6 class constructor invocation constraints; if we are bound and determined to not use new RHS(...).
Test the following and see for yourself its output (also provided in #1-4 below).
class A {
constructor(...a) {
const descendentType = new.target;
console.log(`A's constructor seeing 'new' invoked on ${descendentType?.name} with args: %o`,a);
}
}
class B extends A {
constructor(...a) {
super(...a);
}
}
// C is our DUAL mode Factory
function C(...a) {
console.log(`C's new.target => ${new.target?.name}`);
const inst = new.target ? Reflect.construct(B, a) : new B(...a);
console.log(`C has constructed a ${inst.__proto__.constructor.name} inst`);
return inst;
}
Which we can then invoke it in the following ways:
new A('NEW-A()')
output => "A's constructor seeing 'new' invoked on A with args: ['NEW-A()']"
new B('NEW-B()')
output => "A's constructor seeing 'new' invoked on B with args: ['NEW-B()']"
new C('NEW-C()')
output => "C's new.target => C"
output => "A's constructor seeing 'new' invoked on B with args: ['NEW-C()']"
output => "C has constructed a B inst"
C('PLAIN-C()')
output => "C's new.target => undefined"
output => "A's constructor seeing 'new' invoked on B with args: ['PLAIN-C()']"
output => "C has constructed a B inst"
Where #3 and #4 achieve the originally desired goals.
The simplified `C` looks like:
function C(...a) {return Reflect.construct(B, a);}
OR - if 3rd arg of Reflect.construct not utilized for init.
function C(...a) {return new B(...a);}
Beware: C must be a function not a class for this to both be allowed, and to work returning an alternate this on a new C() invocation, etc.
Also to circumvent strict mode rules for arguments.callee requires using a closure (smalltalk-block. Illustrated below:
class B extends A {
// embedding within a class and generically referencing it requires =>
static C = (() => {
const $class = this; return function(...a) {
return Reflect.construct($class, a);}})();
// Read more on `Reflect.construct` 3rd argument to see more capabilities
// for why it does MORE than just `new $class(...a)` would do.
}
exports.C = B.C;
⛐⚠️⛐ You could do some awful things like fiddle the __proto__ on the resulting inst and change out its constructor and name. Which would make it look and feel like a real subclass C of B depending on how far you want to go to manipulate the object-model. The subtleties abound in what happens with getters/setters, super and # privates. But for much of that you can STAY ES6 CLEAN and get clever with using extends and providing a template superclass flattened mixin tree; which I do a lot of in efekt for supporting tiny-but-complete µhtml reactive custom-elements parts and related PWA app models and responsive dynamic just-in-time versioned code bundling from EdgeS ESS backend servers. As in ... const M = $class => class extends $class {...}.
My motivations...
I posted this to help explain the semantics and a working ES6 solution, which is what I use to support subclassing Promise to provide FutureValue with better workflow handling capabilities in my github efekt library (EdgeS Front End Kit library).
In 2022, with ES6 onwards you can do it with the static method that can be called before the instance of the class is created, to create a instance of the class.
So the code should look something like this:
class Foo {
constructor(x) {
this.x = x;
}
//static class
static Init(x) {
return new Foo(x)
}
sayHello() {
return `hello ${this.x}`;
}
}
//so if i call
Foo.Init('world').sayHello();
//it prints: hello world
But if you are doing all this to make a chain of method you can also look at the following construct:
function MyName(name) {
if (this instanceof MyName) {
this.name = name,
this.prepend = function(n) {
this.name = `${n} ${this.name}`;
return this;
}
,
this.append = function(n) {
this.name = `${this.name} ${n} `;
return this;
}
,
this.show = function() {
return this.name;
}
} else {
return new MyName(name);
}
}
//Call
MyName('vinod').prepend('dev').append('hacks').show();
//prints: dev vinod hacks
The method above returns this at the end of each method which makes the object, properties & method avaialble.
The good part is these methods can be used again & again to create a sentence as
MyName('vinod').prepend('dev').append('hacks')
.prepend("the").append('javascript').append('for Stackoverflow').show();
I have used it as a stringBuilder or to generate xml dynamically.
Calling the class constructor without the new keyword is not possible.
The error message is quite specific.
See a blog post on 2ality and the spec:
However, you can only invoke a class via new, not via a function call (Sect. 9.2.2 in the spec):
> Point()
TypeError: Classes can’t be function-called
I'm adding this as a follow up to a comment by naomik and utilizing on the method illustrated by Tim and Bergi. I'm also going to suggest an of function to use as a general case.
To do this in a functional way AND utilize the efficiency of prototypes (not re-create all method each time a new instance is created), one could use this pattern
const Foo = function(x){ this._value = x ... }
Foo.of = function(x){ return new Foo(x) }
Foo.prototype = {
increment(){ return Foo.of(this._value + 1) },
...
}
Please note that this is consistent with fantasy-land JS specs
https://github.com/fantasyland/fantasy-land#of-method
I personally feel that it is cleaner to use the ES6 class syntax
class Foo {
static of(x) { new Foo(x)}
constructor(x) { this._value = x }
increment() { Foo.of(this._value+1) }
}
Now one could wrap this in a closure as such
class Foo {
static of(x) { new _Foo(x)}
constructor(x) { this._value = x }
increment() { Foo.of(this._value+1) }
}
function FooOf (x) {
return Foo.of(x)
}
Or rename FooOf and Foo as desired, ie the class could be FooClass and the function just Foo, etc.
This is better than place the class in the function because creating new instances doesn't burden us with creating new classes as well.
Yet another way is to create a an of function
const of = (classObj,...args) => (
classObj.of
? classObj.of(value)
: new classObj(args)
)
And then do something like of(Foo,5).increment()
Still finding interesting ways to use instanceof without relying on new or class keywords. In this example program, we compute the 100,000th fibonacci number in less than one second. The result is over 20,000 digits long -
const fib = x =>
Loop // <- no `new`
( (n, a, b) =>
n <= 0n
? String(a) // <- no `new`
: Recur(n - 1n, b, a + b) // <- no `new`
, BigInt(x) // <- no `new`
, 0n
, 1n
)
function Loop (f, ...init)
{ let r = f(...init)
while (r instanceof Recur) // <- instanceof works
r = f(...r)
return r
}
function Recur (...v)
{ return Object.create // <- not a class, but works
( Recur.prototype // <- set prototype
, { constructor: { value: Recur } // <- set constructor
, [Symbol.iterator]: { value: _ => v.values() } // <- whatever you want
}
)
}
document.body.textContent = fib(100000)
body { overflow-wrap: anywhere; }
I don't know why I haven't thought of this before -
function atom (T, v)
{ return Object.assign
( Object.create
( T.prototype
, { constructor: { value: T } }
)
, v
)
}
function pair (car, cdr)
{ return atom(pair, { car, cdr }) }
const p =
pair(1, 2)
console.log(p)
console.log(p instanceof pair)
Output -
{
"car": 1,
"cdr": 2
}
true
I wrote a small helper function which solves this problem. It effectively converts an ES6 class into an older ES5 constructor function which isn't subject to the same ruleset. This way you can create constructors which don't need new. You can also overload constructors in a similar way to the builtin Number, String etc.
function callableConstructor(c, f) {
function ret(...args) {
if(new.target) {
return new c(...args)
}
return f(...args)
}
ret.prototype = c.prototype
ret.prototype.constructor = ret
return ret
}
Test it below:
function callableConstructor(c, f) {
function ret(...args) {
if(new.target) {
return new c(...args)
}
return f(...args)
}
ret.prototype = c.prototype
ret.prototype.constructor = ret
return ret
}
// Usage
class Foo {
constructor(a, b) {
this.a = a
this.b = 2 * b
}
f() {
return this.a + this.b
}
}
Foo = callableConstructor(Foo, (...args) => new Foo(...args))
let foo = new Foo(2, 3)
console.log(foo) // Foo { a: 2, b: 6 }
console.log(foo.f()) // 8
console.log(foo instanceof Foo) // true
foo = Foo(2, 3)
console.log(foo) // Foo { a: 2, b: 6 }
console.log(foo.f()) // 8
console.log(foo instanceof Foo) // true
I came at this issue because I encountered the no-new "do not use new for side effects" eslint rule - which turns out it's a bad practice to use new for an object that is immediately discarded.
I still wanted to use the class syntax because I like it, but I agree that a regular class with new keyword for something that does not produce an object can be confusing.
The solution for me was simple. Define an unexported class in a module and export a function that instatinates it.
class SideEffects {
constructor() {
}
// ...
}
export function addSideEffects() {
// eslint-disable-next-line no-new
new SideEffects();
}
Yes, we are still using the new keyword, but it's used internally in the module and it's obvious from reading the module file that it's not a regular class - and the exported function also makes it clear that it does not create an object.
This might be a little contrived, but it works
function Foo(x){
"use strict"
class Bar {
constructor(x) {
if (!(this instanceof Bar)) return new Bar(x);
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
return new Bar(x)
}
Foo("world").hello()
You can't use a class without the new constructor, in my case I didn't want to use the new constructor any time I wanted to use my class, so what you can do is to wrap your class as follows (in my case it's a Dates utils library):
const defaultOptions = {
defaultFormatOptions: 'dd/MM/yyyy'
}
class DatesClass {
constructor(date = new Date(), options) {
this.date = date
this.options = { ...defaultOptions, ...options }
}
get value() {
return this.date
}
add() {}
...
}
export default (date, options) => new DateClass(date, options)
// then you can use it as follow
import dates from 'path/to/yourClass/from/above'
dates(new Date()).add({ unit: 'day', qty: 2}).value

Make JS class callable without side effects [duplicate]

Given a simple class
class Foo {
constructor(x) {
if (!(this instanceof Foo)) return new Foo(x);
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
Is it possible to call the class constructor without the new keyword?
Usage should allow
(new Foo("world")).hello(); // "hello world"
Or
Foo("world").hello(); // "hello world"
But the latter fails with
Cannot call a class as a function
Classes have a "class body" that is a constructor.
If you use an internal constructor() function, that function would be the same class body as well, and would be what is called when the class is called, hence a class is always a constructor.
Constructors require the use of the new operator to create a new instance, as such invoking a class without the new operator results in an error, as it's required for the class constructor to create a new instance.
The error message is also quite specific, and correct
TypeError: Class constructors cannot be invoked without 'new'
You could:
either use a regular function instead of a class1.
Always call the class with new.
Call the class inside a wrapping regular function, always using new, that way you get the benefits of classes, but the wrapping function can still be called with and without the new operator2.
1)
function Foo(x) {
if (!(this instanceof Foo)) return new Foo(x);
this.x = x;
this.hello = function() {
return this.x;
}
}
2)
class Foo {
constructor(x) {
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
var _old = Foo;
Foo = function(...args) { return new _old(...args) };
As others have pointed out, ES2015 spec strictly states that such call should throw TypeError, but at the same time, it provides feature that can be used to achieve exactly the desired result, namely Proxies.
Proxies allows us to virtualize over a concept of an object. For instance, they can be used to change some behaviour of particular object without affecting anything else.
In your specific use case, class Foo is Function object which can be called -- this normally means that body of this function will be executed. But this can be changed with Proxy:
const _Foo = new Proxy(Foo, {
// target = Foo
apply (target, thisArg, argumentsList) {
return new target(...argumentsList);
}
});
_Foo("world").hello();
const f = _Foo("world");
f instanceof Foo; // true
f instanceof _Foo; // true
(Note that _Foo is now the class you want to expose, so identifiers should probably be the other way round)
If run by browsers that support Proxies, calling _Foo(...) will now execute apply trap function instead of the original constructor.
At the same time, this "new" _Foo class is indistinguishable from original Foo (apart from being able to call it as a normal function). Similarly, there is no difference by which you can tell object created with Foo and _Foo.
The biggest downside of this is that it cannot be transpiled or polyfilled, but still it's viable solution for having Scala-like class applied in JS in the future.
Here's a pattern I've come across that really helps me. It doesn't use a class, but it doesn't require the use of new either. Win/Win.
const Foo = x => ({
x,
hello: () => `hello ${x}`,
increment: () => Foo(x + 1),
add: ({x: y}) => Foo(x + y)
})
console.log(Foo(1).x) // 1
console.log(Foo(1).hello()) // hello 1
console.log(Foo(1).increment().hello()) // hello 2
console.log(Foo(1).add(Foo(2)).hello()) // hello 3
i just made this npm module for you ;)
https://www.npmjs.com/package/classy-decorator
import classy from "classy-decorator";
#classy()
class IamClassy {
constructor() {
console.log("IamClassy Instance!");
}
}
console.log(new IamClassy() instanceof IamClassy()); // true
console.log(IamClassy() instanceof IamClassy()); // true
No, this is not possible. Constructors that are created using the class keyword can only be constructed with new, if they are [[call]]ed without they always throw a TypeError1 (and there's not even a way to detect this from the outside).
1: I'm not sure whether transpilers get this right
You can use a normal function as a workaround, though:
class Foo {
constructor(x) {
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
{
const _Foo = Foo;
Foo = function(...args) {
return new _Foo(...args);
};
Foo.prototype = _Foo.prototype;
}
Disclaimer: instanceof and extending Foo.prototype work as normal, Foo.length does not, .constructor and static methods do not but can be fixed by adding Foo.prototype.constructor = Foo; and Object.setPrototypeOf(Foo, _Foo) if required.
For subclassing Foo (not _Foo) with class Bar extends Foo …, you should use return Reflect.construct(_Foo, args, new.target) instead of the new _Foo call. Subclassing in ES5 style (with Foo.call(this, …)) is not possible.
class MyClass {
constructor(param) {
// ...
}
static create(param) {
return new MyClass(param);
}
doSomething() {
// ...
}
}
MyClass.create('Hello World').doSomething();
Is that what you want?
If you need some logic when creating a new instance of MyClass, it could be helpful to implement a "CreationStrategy", to outsorce the logic (for example complex builder logic with validation)
Edit: As discussed in the comments It does not make sense to create some sort of Builder Pattern with a separate class in JavaScript. Removed related example.
Here's a where you can use a 'scope safe constructor'
Observe this code:
function Student(name) {
if(this instanceof Student) {
this.name = name;
} else {
return new Student(name);
}
}
Now you can create a Student object without using new as follows:
var stud1 = Student('Kia');
Dug up this one in the draft
Constructors defined using class definition syntax throw when called as functions
So I guess that's not possible with classes.
Call class constructor manually can be usefull when refactoring code (having parts of the code in ES6, other parts beeing function & prototype definition)
I ended up with a small, yet usefull boilerplate, slicing the constructor into another function. Period.
class Foo {
constructor() {
//as i will not be able to call the constructor, just move everything to initialize
this.initialize.apply(this, arguments)
}
initialize() {
this.stuff = {};
//whatever you want
}
}
function Bar () {
Foo.prototype.initialize.call(this);
}
Bar.prototype.stuff = function() {}
I had problems extending classes converted with the transformation function mentioned in some other answers. The issue seems to be that node (as of v9.4.0) doesn't properly support the argument spread operator ((...args) =>).
This function based on the transpiled output of the classy-decorator (mentioned in another answer) works for me and doesn't require support for decorators or the argument spread operator.
// function that calls `new` for you on class constructors, simply call
// YourClass = bindNew(YourClass)
function bindNew(Class) {
function _Class() {
for (
var len = arguments.length, rest = Array(len), key = 0;
key < len;
key++
) {
rest[key] = arguments[key];
}
return new (Function.prototype.bind.apply(Class, [null].concat(rest)))();
}
_Class.prototype = Class.prototype;
return _Class;
}
Usage:
class X {}
X = bindNew(X);
// or
const Y = bindNew(class Y {});
const x = new X();
const x2 = X(); // woohoo
x instanceof X; // true
x2 instanceof X; // true
class Z extends X {} // works too
As a bonus, TypeScript (with "es5" output) seems to be fine with the old instanceof trick (well, it won't typecheck if used without new but it works anyhow):
class X {
constructor() {
if (!(this instanceof X)) {
return new X();
}
}
}
because it compiles it down to:
var X = /** #class */ (function () {
function X() {
if (!(this instanceof X)) {
return new X();
}
}
return X;
}());
Alright I have another answer here, and I think this one is pretty innovative.
Basically, the problem with doing something similar to Naomik's answer is that you create functions each and every time you chain methods together.
EDIT: This solution shares the same problem, however, this answer is being left up for educational purposes.
So here I'm offering a way to merely bind new values to your methods--which are basically just independent functions. This offer the additional benefit of being able to import functions from different modules into the newly constructed object.
Okay, so here it goes.
const assoc = (prop, value, obj) =>
Object.assign({},obj,{[prop]: value})
const reducer = ( $values, accumulate, [key,val] ) => assoc( key, val.bind( undefined,...$values ), accumulate )
const bindValuesToMethods = ( $methods, ...$values ) =>
Object.entries( $methods ).reduce( reducer.bind( undefined, ...$values), {} )
const prepareInstance = (instanceMethods, staticMethods = ({}) ) => Object.assign(
bindValuesToMethods.bind( undefined, instanceMethods ),
staticMethods
)
// Let's make our class-like function
const RightInstanceMethods = ({
chain: (x,f) => f(x),
map: (x,f) => Right(f(x)),
fold: (x,l,r) => r(x),
inspect: (x) => `Right(${x})`
})
const RightStaticMethods = ({
of: x => Right(x)
})
const Right = prepareInstance(RightInstanceMethods,RightStaticMethods)
Now you can do
Right(4)
.map(x=>x+1)
.map(x=>x*2)
.inspect()
You can also do
Right.of(4)
.map(x=>x+1)
.map(x=>x*2)
.inspect()
You also have the added benefit of being able to export from modules as such
export const Right = prepareInstance(RightInstanceMethods,RightStaticMethods)
While you don't get ClassInstance.constructor you do have FunctorInstance.name (note, you may need to polyfill Function.name and/or not use an arrow function for export for browser compatibility with Function.name purposes)
export function Right(...args){
return prepareInstance(RightInstanceMethods,RightStaticMethods)(...args)
}
PS - New name suggestions for prepareInstance welcomed, see Gist.
https://gist.github.com/babakness/56da19ba85e0eaa43ae5577bc0064456
As pointed out by you and others
Foo("world").hello();
fails with an error because it is an error,
according to rules of ES6 syntax.
Others pointed out that
(new Foo("world")).hello();
works but is clunky because
It needs the 'new' AND
It needs the extra parenthesis.
I agree it is clunky. So I'm often using
this solution instead:
In your class Foo, create a static method
named 'new':
static new (...args)
{ return new this (...args);
}
Use it like this:
Foo.new("world").hello();
This way I hide the "clunkiness" inside
this static method 'new()'.
Note that this method new() is generic,
it will work as is also
when inherited to sub-classes. If you need
to customize it in a subclass you can first call:
super.new(...args)
and then add any other stuff you need in the
method in a subclass, before returning its result.
A recapped working "one-line" solution for ES6: explained
The answer posted above by Bergi is basically correct.
TLDR; skip to the end 😎 for the one-liner solution
Bergi's answer may seem a unclear when reading it. So, here is a more expanded code-sample that illustrates TWO new ES6 features to achieve the desired goals.
Together, they let a single function C (below) provide the dual-role of a factory and new-able fn; which constructs a B inst that derives from a A.
The B constructor utilizes super handling to invoke the A constructor with initialization arguments. In our final #3 - #4 examples constructed by C.
The A constructor demonstrates the semantics of the new.target psuedo-var to discover new was actually invoked with B.
First, we will make use of ES6 new.target psuedo-var that gives us the RHS of a new RHS() expression.
Technically, we could have gotten new.target as this?.__proto__?.constructor; they are equivalent.
Second, we will make use of ES6 Reflect.construct. Which is crucial to working around the ES6 class constructor invocation constraints; if we are bound and determined to not use new RHS(...).
Test the following and see for yourself its output (also provided in #1-4 below).
class A {
constructor(...a) {
const descendentType = new.target;
console.log(`A's constructor seeing 'new' invoked on ${descendentType?.name} with args: %o`,a);
}
}
class B extends A {
constructor(...a) {
super(...a);
}
}
// C is our DUAL mode Factory
function C(...a) {
console.log(`C's new.target => ${new.target?.name}`);
const inst = new.target ? Reflect.construct(B, a) : new B(...a);
console.log(`C has constructed a ${inst.__proto__.constructor.name} inst`);
return inst;
}
Which we can then invoke it in the following ways:
new A('NEW-A()')
output => "A's constructor seeing 'new' invoked on A with args: ['NEW-A()']"
new B('NEW-B()')
output => "A's constructor seeing 'new' invoked on B with args: ['NEW-B()']"
new C('NEW-C()')
output => "C's new.target => C"
output => "A's constructor seeing 'new' invoked on B with args: ['NEW-C()']"
output => "C has constructed a B inst"
C('PLAIN-C()')
output => "C's new.target => undefined"
output => "A's constructor seeing 'new' invoked on B with args: ['PLAIN-C()']"
output => "C has constructed a B inst"
Where #3 and #4 achieve the originally desired goals.
The simplified `C` looks like:
function C(...a) {return Reflect.construct(B, a);}
OR - if 3rd arg of Reflect.construct not utilized for init.
function C(...a) {return new B(...a);}
Beware: C must be a function not a class for this to both be allowed, and to work returning an alternate this on a new C() invocation, etc.
Also to circumvent strict mode rules for arguments.callee requires using a closure (smalltalk-block. Illustrated below:
class B extends A {
// embedding within a class and generically referencing it requires =>
static C = (() => {
const $class = this; return function(...a) {
return Reflect.construct($class, a);}})();
// Read more on `Reflect.construct` 3rd argument to see more capabilities
// for why it does MORE than just `new $class(...a)` would do.
}
exports.C = B.C;
⛐⚠️⛐ You could do some awful things like fiddle the __proto__ on the resulting inst and change out its constructor and name. Which would make it look and feel like a real subclass C of B depending on how far you want to go to manipulate the object-model. The subtleties abound in what happens with getters/setters, super and # privates. But for much of that you can STAY ES6 CLEAN and get clever with using extends and providing a template superclass flattened mixin tree; which I do a lot of in efekt for supporting tiny-but-complete µhtml reactive custom-elements parts and related PWA app models and responsive dynamic just-in-time versioned code bundling from EdgeS ESS backend servers. As in ... const M = $class => class extends $class {...}.
My motivations...
I posted this to help explain the semantics and a working ES6 solution, which is what I use to support subclassing Promise to provide FutureValue with better workflow handling capabilities in my github efekt library (EdgeS Front End Kit library).
In 2022, with ES6 onwards you can do it with the static method that can be called before the instance of the class is created, to create a instance of the class.
So the code should look something like this:
class Foo {
constructor(x) {
this.x = x;
}
//static class
static Init(x) {
return new Foo(x)
}
sayHello() {
return `hello ${this.x}`;
}
}
//so if i call
Foo.Init('world').sayHello();
//it prints: hello world
But if you are doing all this to make a chain of method you can also look at the following construct:
function MyName(name) {
if (this instanceof MyName) {
this.name = name,
this.prepend = function(n) {
this.name = `${n} ${this.name}`;
return this;
}
,
this.append = function(n) {
this.name = `${this.name} ${n} `;
return this;
}
,
this.show = function() {
return this.name;
}
} else {
return new MyName(name);
}
}
//Call
MyName('vinod').prepend('dev').append('hacks').show();
//prints: dev vinod hacks
The method above returns this at the end of each method which makes the object, properties & method avaialble.
The good part is these methods can be used again & again to create a sentence as
MyName('vinod').prepend('dev').append('hacks')
.prepend("the").append('javascript').append('for Stackoverflow').show();
I have used it as a stringBuilder or to generate xml dynamically.
Calling the class constructor without the new keyword is not possible.
The error message is quite specific.
See a blog post on 2ality and the spec:
However, you can only invoke a class via new, not via a function call (Sect. 9.2.2 in the spec):
> Point()
TypeError: Classes can’t be function-called
I'm adding this as a follow up to a comment by naomik and utilizing on the method illustrated by Tim and Bergi. I'm also going to suggest an of function to use as a general case.
To do this in a functional way AND utilize the efficiency of prototypes (not re-create all method each time a new instance is created), one could use this pattern
const Foo = function(x){ this._value = x ... }
Foo.of = function(x){ return new Foo(x) }
Foo.prototype = {
increment(){ return Foo.of(this._value + 1) },
...
}
Please note that this is consistent with fantasy-land JS specs
https://github.com/fantasyland/fantasy-land#of-method
I personally feel that it is cleaner to use the ES6 class syntax
class Foo {
static of(x) { new Foo(x)}
constructor(x) { this._value = x }
increment() { Foo.of(this._value+1) }
}
Now one could wrap this in a closure as such
class Foo {
static of(x) { new _Foo(x)}
constructor(x) { this._value = x }
increment() { Foo.of(this._value+1) }
}
function FooOf (x) {
return Foo.of(x)
}
Or rename FooOf and Foo as desired, ie the class could be FooClass and the function just Foo, etc.
This is better than place the class in the function because creating new instances doesn't burden us with creating new classes as well.
Yet another way is to create a an of function
const of = (classObj,...args) => (
classObj.of
? classObj.of(value)
: new classObj(args)
)
And then do something like of(Foo,5).increment()
Still finding interesting ways to use instanceof without relying on new or class keywords. In this example program, we compute the 100,000th fibonacci number in less than one second. The result is over 20,000 digits long -
const fib = x =>
Loop // <- no `new`
( (n, a, b) =>
n <= 0n
? String(a) // <- no `new`
: Recur(n - 1n, b, a + b) // <- no `new`
, BigInt(x) // <- no `new`
, 0n
, 1n
)
function Loop (f, ...init)
{ let r = f(...init)
while (r instanceof Recur) // <- instanceof works
r = f(...r)
return r
}
function Recur (...v)
{ return Object.create // <- not a class, but works
( Recur.prototype // <- set prototype
, { constructor: { value: Recur } // <- set constructor
, [Symbol.iterator]: { value: _ => v.values() } // <- whatever you want
}
)
}
document.body.textContent = fib(100000)
body { overflow-wrap: anywhere; }
I don't know why I haven't thought of this before -
function atom (T, v)
{ return Object.assign
( Object.create
( T.prototype
, { constructor: { value: T } }
)
, v
)
}
function pair (car, cdr)
{ return atom(pair, { car, cdr }) }
const p =
pair(1, 2)
console.log(p)
console.log(p instanceof pair)
Output -
{
"car": 1,
"cdr": 2
}
true
I wrote a small helper function which solves this problem. It effectively converts an ES6 class into an older ES5 constructor function which isn't subject to the same ruleset. This way you can create constructors which don't need new. You can also overload constructors in a similar way to the builtin Number, String etc.
function callableConstructor(c, f) {
function ret(...args) {
if(new.target) {
return new c(...args)
}
return f(...args)
}
ret.prototype = c.prototype
ret.prototype.constructor = ret
return ret
}
Test it below:
function callableConstructor(c, f) {
function ret(...args) {
if(new.target) {
return new c(...args)
}
return f(...args)
}
ret.prototype = c.prototype
ret.prototype.constructor = ret
return ret
}
// Usage
class Foo {
constructor(a, b) {
this.a = a
this.b = 2 * b
}
f() {
return this.a + this.b
}
}
Foo = callableConstructor(Foo, (...args) => new Foo(...args))
let foo = new Foo(2, 3)
console.log(foo) // Foo { a: 2, b: 6 }
console.log(foo.f()) // 8
console.log(foo instanceof Foo) // true
foo = Foo(2, 3)
console.log(foo) // Foo { a: 2, b: 6 }
console.log(foo.f()) // 8
console.log(foo instanceof Foo) // true
I came at this issue because I encountered the no-new "do not use new for side effects" eslint rule - which turns out it's a bad practice to use new for an object that is immediately discarded.
I still wanted to use the class syntax because I like it, but I agree that a regular class with new keyword for something that does not produce an object can be confusing.
The solution for me was simple. Define an unexported class in a module and export a function that instatinates it.
class SideEffects {
constructor() {
}
// ...
}
export function addSideEffects() {
// eslint-disable-next-line no-new
new SideEffects();
}
Yes, we are still using the new keyword, but it's used internally in the module and it's obvious from reading the module file that it's not a regular class - and the exported function also makes it clear that it does not create an object.
This might be a little contrived, but it works
function Foo(x){
"use strict"
class Bar {
constructor(x) {
if (!(this instanceof Bar)) return new Bar(x);
this.x = x;
}
hello() {
return `hello ${this.x}`;
}
}
return new Bar(x)
}
Foo("world").hello()
You can't use a class without the new constructor, in my case I didn't want to use the new constructor any time I wanted to use my class, so what you can do is to wrap your class as follows (in my case it's a Dates utils library):
const defaultOptions = {
defaultFormatOptions: 'dd/MM/yyyy'
}
class DatesClass {
constructor(date = new Date(), options) {
this.date = date
this.options = { ...defaultOptions, ...options }
}
get value() {
return this.date
}
add() {}
...
}
export default (date, options) => new DateClass(date, options)
// then you can use it as follow
import dates from 'path/to/yourClass/from/above'
dates(new Date()).add({ unit: 'day', qty: 2}).value

Is there a way to instantiate a new instance of a subclass from inside a super class method?

I would like to be able to instantiate a new instance of a subclass from inside a superclass method.
If I have just a single class with no inheritance, it is straight forward:
class A {
static build(opts) {
return new A(opts)
}
makeAnother() {
return A.build(...)
}
}
const a = new A()
const a2 = a.makeAnother()
This works. However, it doesn't work with subclassing:
class B extends A { ... }
const b = new B()
const b2 = b.makeAnother() // this returns an instance of A, not B
I suppose I could add the build & makeAnother methods to each subclass, but I would rather not repeat things.
You can reference this.constructor inside the super class to get to the constructor of the subclass (or the super class itself, if the method is called on a super instance rather than a sub instance):
class A {
static build(theClass) {
return new theClass()
}
makeAnother() {
return A.build(this.constructor)
}
}
const a = new A()
const a2 = a.makeAnother()
console.log(a2 instanceof A);
class B extends A { }
const b = new B()
const b2 = b.makeAnother()
console.log(b2 instanceof B);
You'll want to use
class A {
static build(opts) {
return new this(opts)
}
makeAnother() {
return this.constructor.build(...)
}
}
Unless build does more than shown here, you don't need it at all of course, you'd rather directly return new this.constructor(...) in makeAnother.

Is there a standard way for Javascript classes to refer to each other?

I was wondering, is there a standard way for class properties and methods to refer to each other in their declaration? For example:
class A {
methodA(){
b.methodB()
...
}
}
class B {
methodB(){...}
}
const a = new A();
const b = new B();
///will throw ReferenceError: Cannot access 'b' before initialization;
I understand that you can add methodA in later after all class/object declarations, but it gets quite untidy after many repetitions, which I feel like defeats the purpose of classes. Or that you can delay the reference through some other means. Is there a standard way to do this?
First, Javascript has no "classes". The class keyword is just there to make it look familiar. It should have been proto instead of class.
It's better to use mixins. Also it very much depends on whether to be able to propagate changes to methodB to all decedents of A, or if you want that.
See also "prose-like syntax"
No propagation - copying
If you don't need propagation and you need to copy a lot of methods over:
const A = {
name: 'I am A.'
}
const B = {
name: 'I am B.', // this will overwrite A when we #assign. so be careful to assign it back
methodB() {
console.log(`${this.name} - foo`)
}
}
const a = Object.create(A)
Object.assign(a, B)
a.name = A.name
// methodB is changed but it won't propagate.
B.methodB = function() {
console.log(`${this.name} - bar`)
}
a.methodB() // I am A. - foo
B.methodB() // I am B. - bar
With propagation.
And if you only need 1 or a few methods:
const A = {
name: 'I am A.'
}
const B = {
name: 'I am B.',
methodB() {
console.log(`${this.name} - foo`)
}
}
const a = Object.create(A)
a.methodA = function() {
B.methodB.call(this)
}
B.methodB = function() {
console.log(`${this.name} - bar`)
}
a.methodA() // I am A. - bar
B.methodB() // I am B. - bar
Well, you could always keep instantiating the other classes in your class, say A and access their methods and properties like this.
class A {
methodA(){
const b = new B();
b.methodB()
}
}
class B {
methodB(){console.log("Here I am")}
}
const a = new A();
a.methodA();
Or, You can use inheritance.
class A {}
class B extends A{
constructor() { super(); //}
}

TypeScript dynamic class - combine/remove

I'm trying to make a dynamic class that is constructed using the components of many other possible classes.
I'm trying to add and remove them using ES6 Object.assign() and can get the variables to copy over but can't seem to get the methods to copy.
Here is an example of what I'm trying to do:
class foo {
salad: string = 'salad';
chop(){
console.log('Chop');
}
}
class man {
nuts: string = 'nuts';
kick(){
console.log('Kick')
}
}
class choo {
add(){
var f: foo = new foo();
var m: man = new man();
//Copy variables
Object.assign(this, f, m);
//Copy methods
//Object.assign(this.prototype, f, m);
}
remove(){
d = Object.getPrototypeOf(foo);
for (key in d){
delete this[key]
}
}
}
var karate = new choo();
karate.add();
//karate.chop();
console.log(karate.salad);
//karate.kick();
console.log(karate.nuts);
I tried to get an example to share on http://fiddlesalad.com/typescript/ but it wouldn't save. The code that is not working is commented out.
Object.assign(this.prototype, obj1) is what is recommended by ES6 to copy prototype functions from one class to another but TypeScript doesn't seem to like it.
Any ideas?
This is a total hack but it seems to do what you're looking for:
function extend < A, B > (d: A,
b: B) {
for (var x in b) d[x] = b[x];
return <A & B > d;
}
interface Object {
assign < P, Q > (a: P,
...b: Q[]): P & Q;
}
interface ifoo {
salad: string;
chop();
}
interface iman {
nuts: string;
kick();
}
class foo implements ifoo {
salad: string = 'salad';
chop() {
console.log('Chop');
}
}
class man implements iman {
nuts: string = 'nuts';
kick() {
console.log('Kick')
}
}
class choo {
foo: foo;
man: man;
add() {
return extend(this, extend(this.foo = new foo(), this.man = new man()));
}
remove() {
Object.keys(this.man).forEach(k => delete this[k]);
return <ifoo><any>this;
}
}
let both = new choo();
var karate = both.add();
console.log("karate", karate);
karate.chop();
console.log(karate.salad);
karate.kick();
console.log(karate.nuts);
let chooman = both.remove();
console.log("karate", karate);
chooman.chop();
First off I'll point out that mixins are probably the correct answer to what I was looking to do.
Here is a good article about mixins:
https://www.stevefenton.co.uk/2014/02/TypeScript-Mixins-Part-One/
That being said, I did figure out a solution that uses Object.assign() although it's probably a bit frowned upon due to mutating __proto__ directly.
Choo will now look like this:
class choo {
add(){
var f: foo = new foo();
var m: man = new man();
//Copy variables
Object.assign(this, f, m);
//Copy methods
Object.assign(this.__proto__, foo.prototype, man.prototype);
}
}
remove() method was deleted because Object.assign() will overwrite class methods if they share the same name. Before testing I wasn't sure if there would be issues with that.

Categories

Resources