get a value of x and y increment with a given angle - javascript

Note: Your solution can be in browser js or python. angleX will be in radians
I want a method that takes three parameters :-
aCord - (an object/dictionary with the co-ordinates of point A)
bCord - (an object/dictionary with the co-ordinates of point B)
angleX - (angle of rotation)
Lets say that I have a point A and a point B (any where on the screen. Not necessarily parallel as shown in the figure)
Point B is rotated angleX degrees (with point B as the center of the circle) to form point C
But instead, i want to increment b.x and b.y so it is same as c.x and c.y
Your function should return an object/dictionary with two values. An 'x-increment' and a 'y-increment' (which is how much I should increment the x and y of point B)
here is my existing code (in js)
function getIncrement(aCord, bCord, angleX) {
let r = Math.sqrt(Math.pow(aCord.x - bCord.x, 2) + Math.pow(aCord.x - bCord.x, 2));
let angleY = Math.atan(Math.abs(aCord.y - bCord.y) / Math.abs(aCord.x - bCord.x));
let cCord = {
x: Math.cos(angleY + angleX) * r,
y: Math.sin(angleY + angleX) * r
};
return {
xIncrement: cCord.x - aCord.x,
yIncrement: cCord.y - aCord.y
};
}
Sorry if my explaination is not good enough. I could explain in the comments if you do not understand something

Here is a demo of the function to use in a JavaScript snippet. Move the mouse in the box to move the B-point (A is fixed), and the line A-C will be added dynamically. Change the angle in the input box:
// The function to calculate C:
function getC(a, b, angle) {
let sign = -1; // change to 1 if Y axis goes upward
let radius = Math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2);
angle += Math.atan2(sign*(b.y-a.y), b.x-a.x);
return {
x: a.x + Math.cos(angle)*radius,
y: a.y + sign*Math.sin(angle)*radius
};
}
// I/O handling
function drawLine(ctx, a, b, color="black") {
ctx.beginPath();
ctx.moveTo(a.x, a.y);
ctx.lineTo(b.x, b.y);
ctx.strokeStyle = color;
ctx.stroke();
}
function text(ctx, a, txt, color) {
ctx.fillStyle = color;
ctx.fillText(txt, a.x+2, a.y-2);
}
function refresh(ctx, a, b, c) {
outputB.textContent = Math.round(b.x) + "," + Math.round(b.y);
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
drawLine(ctx, a, b, "black");
drawLine(ctx, a, c, "red");
text(ctx, a, "A", "black");
text(ctx, b, "B", "black");
text(ctx, c, "C", "red");
}
let ctx = document.querySelector("canvas").getContext("2d");
let inputDegrees = document.querySelector("#angle");
let outputB = document.querySelector("#b");
let a = { x: 200, y: 75 };
ctx.canvas.onmousemove = function(e) {
let b = {
x: e.clientX-e.target.offsetLeft,
y: e.clientY-e.target.offsetTop,
};
let c = getC(a, b, inputDegrees.value*Math.PI/180);
refresh(ctx, a, b, c);
}
canvas { border: 1px solid }
Angle(degrees): <input id="angle" type="number" value="15"><br>
A=(200,75) B=(<span id="b"></span>)<br>
<canvas width="400" height="150"></canvas>

In the general case, say when you have a circle with center A(x,y) and radius r. The position of the initial point is θ radians along the circle from (a+r,b).
The parametric equation for the circle is (x,y)=(a + r cosθ,b + r sinθ).
In your case, you want to increase by ϕ radians. Then the new point is
(a+ r cos(θ+ϕ),b+ r sin(θ+ϕ))
Perhaps, if you could provide more explanation to your question. it will aid more into solution. Meanwhile i will dig for answer without radius i.e distance between A & B

Related

How do I move a point's y coordinate to intersect with a line?

I have point c, which represents the center of a circle. After I drag the circle, I want its y coordinate hmm to snap to a line that's drawn between point a and b. How do I solve for hmm?
So far I've been able to find the midway y value between points a and b. However, it's not taking into account point c's x value.:
const snapYToLine = (aY, bY) => {
const yDist = bY - aY;
return aY + (yDist * 0.5);
}
const a = { x: 10, y: 10 };
const b = { x: 50, y: 30 };
const c = { x: 20, y: 0 }; // not doing anything with this yet...
const hmm = snapYToLine(a.y, b.y); // will need to include c.x here...
console.log(hmm);
X coordinate of C depends on where you drag it, but Y coordinate should be so point stays on line between A and B?
The equation of line between 2 points (A and B):
(x - Xa) / (Xa - Xb) = (y - Ya) / (Ya - Yb).
So hmm = (x - Xa) * (Ya - Yb) / (Xa - Xb) + Ya.
Because it's equation of line you can drag point C over A/B X coordinates and still find corresponsive Y value.
Hope I've understood your question right.

Advanced image skewing in JavaScript, fill polygon with image [duplicate]

I have an image which is a background containing a boxed area like this:
I know the exact positions of the corners of that shape, and I'd like to place another image within it. (So it appears to be inside the box).
I'm aware of the drawImage method for HTML5 canvas, but it seems to only support x, y, width, height parameters rather than exact coordinates. How might I draw an image onto a canvas at a specific set of coordinates, and ideally have the browser itself handle stretching the image.
Quadrilateral transform
One way to go about this is to use Quadrilateral transforms. They are different than 3D transforms and would allow you to draw to a canvas in case you want to export the result.
The example shown here is simplified and uses basic sub-divison and "cheats" on the rendering itself - that is, it draws in a small square instead of the shape of the sub-divided cell but because of the small size and the overlap we can get away with it in many non-extreme cases.
The proper way would be to split the shape into two triangles, then scan pixel wise in the destination bitmap, map the point from destination triangle to source triangle. If the position value was fractional you would use that to determine pixel interpolation (f.ex. bi-linear 2x2 or bi-cubic 4x4).
I do not intend to cover all this in this answer as it would quickly become out of scope for the SO format, but the method would probably be suitable in this case unless you need to animate it (it is not performant enough for that if you want high resolution).
Method
Lets start with an initial quadrilateral shape:
The first step is to interpolate the Y-positions on each bar C1-C4 and C2-C3. We're gonna need current position as well as next position. We'll use linear interpolation ("lerp") for this using a normalized value for t:
y1current = lerp( C1, C4, y / height)
y2current = lerp( C2, C3, y / height)
y1next = lerp(C1, C4, (y + step) / height)
y2next = lerp(C2, C3, (y + step) / height)
This gives us a new line between and along the outer vertical bars.
Next we need the X positions on that line, both current and next. This will give us four positions we will fill with current pixel, either as-is or interpolate it (not shown here):
p1 = lerp(y1current, y2current, x / width)
p2 = lerp(y1current, y2current, (x + step) / width)
p3 = lerp(y1next, y2next, (x + step) / width)
p4 = lerp(y1next, y2next, x / width)
x and y will be the position in the source image using integer values.
We can use this setup inside a loop that will iterate over each pixel in the source bitmap.
Demo
The demo can be found at the bottom of the answer. Move the circular handles around to transform and play with the step value to see its impact on performance and result.
The demo will have moire and other artifacts, but as mentioned earlier that would be a topic for another day.
Snapshot from demo:
Alternative methods
You can also use WebGL or Three.js to setup a 3D environment and render to canvas. Here is a link to the latter solution:
Three.js
and an example of how to use texture mapped surface:
Three.js texturing (instead of defining a cube, just define one place/face).
Using this approach will enable you to export the result to a canvas or an image as well, but for performance a GPU is required on the client.
If you don't need to export or manipulate the result I would suggest to use simple CSS 3D transform as shown in the other answers.
/* Quadrilateral Transform - (c) Ken Nilsen, CC3.0-Attr */
var img = new Image(); img.onload = go;
img.src = "https://i.imgur.com/EWoZkZm.jpg";
function go() {
var me = this,
stepEl = document.querySelector("input"),
stepTxt = document.querySelector("span"),
c = document.querySelector("canvas"),
ctx = c.getContext("2d"),
corners = [
{x: 100, y: 20}, // ul
{x: 520, y: 20}, // ur
{x: 520, y: 380}, // br
{x: 100, y: 380} // bl
],
radius = 10, cPoint, timer, // for mouse handling
step = 4; // resolution
update();
// render image to quad using current settings
function render() {
var p1, p2, p3, p4, y1c, y2c, y1n, y2n,
w = img.width - 1, // -1 to give room for the "next" points
h = img.height - 1;
ctx.clearRect(0, 0, c.width, c.height);
for(y = 0; y < h; y += step) {
for(x = 0; x < w; x += step) {
y1c = lerp(corners[0], corners[3], y / h);
y2c = lerp(corners[1], corners[2], y / h);
y1n = lerp(corners[0], corners[3], (y + step) / h);
y2n = lerp(corners[1], corners[2], (y + step) / h);
// corners of the new sub-divided cell p1 (ul) -> p2 (ur) -> p3 (br) -> p4 (bl)
p1 = lerp(y1c, y2c, x / w);
p2 = lerp(y1c, y2c, (x + step) / w);
p3 = lerp(y1n, y2n, (x + step) / w);
p4 = lerp(y1n, y2n, x / w);
ctx.drawImage(img, x, y, step, step, p1.x, p1.y, // get most coverage for w/h:
Math.ceil(Math.max(step, Math.abs(p2.x - p1.x), Math.abs(p4.x - p3.x))) + 1,
Math.ceil(Math.max(step, Math.abs(p1.y - p4.y), Math.abs(p2.y - p3.y))) + 1)
}
}
}
function lerp(p1, p2, t) {
return {
x: p1.x + (p2.x - p1.x) * t,
y: p1.y + (p2.y - p1.y) * t}
}
/* Stuff for demo: -----------------*/
function drawCorners() {
ctx.strokeStyle = "#09f";
ctx.lineWidth = 2;
ctx.beginPath();
// border
for(var i = 0, p; p = corners[i++];) ctx[i ? "lineTo" : "moveTo"](p.x, p.y);
ctx.closePath();
// circular handles
for(i = 0; p = corners[i++];) {
ctx.moveTo(p.x + radius, p.y);
ctx.arc(p.x, p.y, radius, 0, 6.28);
}
ctx.stroke()
}
function getXY(e) {
var r = c.getBoundingClientRect();
return {x: e.clientX - r.left, y: e.clientY - r.top}
}
function inCircle(p, pos) {
var dx = pos.x - p.x,
dy = pos.y - p.y;
return dx*dx + dy*dy <= radius * radius
}
// handle mouse
c.onmousedown = function(e) {
var pos = getXY(e);
for(var i = 0, p; p = corners[i++];) {if (inCircle(p, pos)) {cPoint = p; break}}
}
window.onmousemove = function(e) {
if (cPoint) {
var pos = getXY(e);
cPoint.x = pos.x; cPoint.y = pos.y;
cancelAnimationFrame(timer);
timer = requestAnimationFrame(update.bind(me))
}
}
window.onmouseup = function() {cPoint = null}
stepEl.oninput = function() {
stepTxt.innerHTML = (step = Math.pow(2, +this.value));
update();
}
function update() {render(); drawCorners()}
}
body {margin:20px;font:16px sans-serif}
canvas {border:1px solid #000;margin-top:10px}
<label>Step: <input type=range min=0 max=5 value=2></label><span>4</span><br>
<canvas width=620 height=400></canvas>
You can use CSS Transforms to make your image look like that box. For example:
img {
margin: 50px;
transform: perspective(500px) rotateY(20deg) rotateX(20deg);
}
<img src="https://via.placeholder.com/400x200">
Read more about CSS Transforms on MDN.
This solution relies on the browser performing the compositing. You put the image that you want warped in a separate element, overlaying the background using position: absolute.
Then use CSS transform property to apply any perspective transform to the overlay element.
To find the transform matrix you can use the answer from: How to match 3D perspective of real photo and object in CSS3 3D transforms

Formula to determine if an infinite line and a line segment intersect?

Given a point on a line and that line's slope how would one determine if the line, extending in each direction infinitely, intersects with a line segment (x1,y1), (x2,y2) and, if so, the point at which the intersection occurs?
I found this, but I'm unsure if it's helpful here.
If someone wants to help me understand "rays", that's alright with me.
http://www.realtimerendering.com/intersections.html
I'm sorry that I'm an idiot.
Arbitrary point on the first line has parametric equation
dx = Cos(slope)
dy = Sin(Slope)
x = x0 + t * dx (1)
y = y0 + t * dy
Line containing the second segment
dxx = x2 - x1
dyy = y2 - y1
x = x1 + u * dxx (2)
y = y1 + u * dyy
Intersection exists if linear system
x0 + t * dx = x1 + u * dxx (3)
y0 + t * dy = y1 + u * dyy
has solution for unknowns t and u
and u lies in range [0..1]
Intersection point could be calculated with substitution of u found in the equation pair (2)
Please don't ask me to explain how exactly this is working, I've just extrapolated/rewritten it from some ancient code I've had laying around. (Actionscript 1)
some functions to build the objects for this example:
function point(x, y){
return {x, y}
}
function line(x0, y0, x1, y1){
return {
start: point(x0, y0),
end: point(x1, y1)
}
}
function ray(x, y, vx, vy){
return {
start: point(x, y),
vector: point(vx, vy)
}
}
function ray2(x, y, angle){
var rad = angle * Math.PI / 180;
return ray(x, y, Math.cos(rad), Math.sin(rad));
}
the intersection-code:
//returns the difference vector between two points (pointB - pointA)
function delta(a, b){ return point( b.x - a.x, b.y - a.y ) }
//kind of a 2D-version of the cross-product
function cp(a, b){ return a.y * b.x - a.x * b.y }
function intersection(a, b){
var d21 = a.vector || delta(a.start, a.end),
d43 = b.vector || delta(b.start, b.end),
d13 = delta(b.start, a.start),
d = cp(d43, d21);
//rays are paralell, no intersection possible
if(!d) return null;
//if(!d) return { a, b, position: null, hitsA: false, hitsB: false };
var u = cp(d13, d21) / d,
v = cp(d13, d43) / d;
return {
a, b,
//position of the intersection
position: point(
a.start.x + d21.x * v,
a.start.y + d21.y * v
),
//is position on lineA?
hitsA: v >= 0 && v <= 1,
//is position on lineB?
hitsB: u >= 0 && u <= 1,
timeTillIntersection: v,
};
}
and an example:
var a = line(0, 0, 50, 50);
var b = line(0, 50, 50, 0); //lines are crossing
console.log(intersection(a, b));
var c = line(100, 50, 150, 0); //lines are not crossing
console.log(intersection(a, c));
var d = line(100, -1000, 100, 1000); //intersection is only on d, not on a
console.log(intersection(a, d));
var e = ray(100, 50, -1, -1); //paralell to a
console.log(intersection(a, e));
returns information about the intersection point, and wether it is on the passed lines/rays. Doesn't care wether you pass lines or rays.
about timeTillIntersection: if the first argument/ray represents a ball/bullet/whatever with current position and motion-vector, and the second argument represents a wall or so, then v, aka timeTillIntersection determines how much time it takes till this ball intersects/hits the wall (at the current conditions) in the same unit as used for the velocity of the ball. So you basically get some information for free.
What you search is the dot product. A line can be represented as a vector.
When you have 2 lines they will intersect at some point. Except in the case when they are parallel.
Parallel vectors a,b (both normalized) have a dot product of 1 (dot(a,b) = 1).
If you have the starting and end point of line i, then you can also construct the vector i easily.

Drawing a line with perpendicular decoration

I need to draw a line in the following manner:
 
For now, it will be only drawn in code, no user input.
My question is, how to draw perpendiculars to a line, if I draw it point by point? (Obviously, this will be the case, because drawing with bezier curves will not give me the possibility to somehow impact the drawing).
The closest answer I found was possibly this one, but I can't reverse the equations to derive C. Also there is no length of the decoration mentioned, so I think this will not work as I'd like it to.
Find the segment perpendicular to another one is quite easy.
Say we have points A, B.
Compute vector AB.
Normalize it to compute NAB (== the 'same' vector, but having a length of 1).
Then if a vector has (x,y) as coordinates, its normal vector has (-y,x) as coordinates, so
you can have PNAB easily (PNAB = perpendicular normal vector to AB).
// vector AB
var ABx = B.x - A.x ;
var ABy = B.y - A.y ;
var ABLength = Math.sqrt( ABx*ABx + ABy*ABy );
// normalized vector AB
var NABx = ABx / ABLength;
var NABy = ABy / ABLength;
// Perpendicular + normalized vector.
var PNABx = -NABy ;
var PNABy = NABx ;
last step is to compute D, the point that is at a distance l of A : just add l * PNAB to A :
// compute D = A + l * PNAB
var Dx = A.x + l* PNAB.x;
var Dy = A.y + l *PNAB.y;
Updated JSBIN :
http://jsbin.com/bojozibuvu/1/edit?js,output
Edit :
A second step is to draw the decorations at regular distance, since it's Christmas time, here's how i would do it :
http://jsbin.com/gavebucadu/1/edit?js,console,output
function drawDecoratedSegment(A, B, l, runningLength) {
// vector AB
var ABx = B.x - A.x;
var ABy = B.y - A.y;
var ABLength = Math.sqrt(ABx * ABx + ABy * ABy);
// normalized vector AB
var NABx = ABx / ABLength;
var NABy = ABy / ABLength;
// Perpendicular + normalized vector.
var PNAB = { x: -NABy, y: NABx };
//
var C = { x: 0, y: 0 };
var D = { x: 0, y: 0 };
//
drawSegment(A, B);
// end length of drawn segment
var endLength = runningLength + ABLength;
// while we can draw a decoration on this line
while (lastDecorationPos + decorationSpacing < endLength) {
// compute relative position of decoration.
var decRelPos = (lastDecorationPos + decorationSpacing) - runningLength;
// compute C, the start point of decoration
C.x = A.x + decRelPos * NABx;
C.y = A.y + decRelPos * NABy;
// compute D, the end point of decoration
D.x = C.x + l * PNAB.x;
D.y = C.y + l * PNAB.y;
// draw
drawSegment(C, D);
// iterate
lastDecorationPos += decorationSpacing;
}
return ABLength;
}
All you need is direction of curve (or polyline segment) in every point, where you want to draw perpendicular.
If direction vector in point P0 is (dx, dy), then perpendicular (left one) will have direction vector (-dy, dx). To draw perpendicular with length Len, use this pseudocode:
Norm = Sqrt(dx*dx + dy*dy) //use Math.Hypot if available
P1.X = P0.X - Len * dy / Norm
P1.Y = P0.Y + Len * dx / Norm
P.S. If you know direction angle A, then direction vector
(dx, dy) = (Cos(A), Sin(A))
and you don't need to calculate Norm, it is equal to 1.0

hough transform - javascript - node.js

So, i'm trying to implement hough transform, this version is 1-dimensional (its for all dims reduced to 1 dim optimization) version based on the minor properties.
Enclosed is my code, with a sample image... input and output.
Obvious question is what am i doing wrong. I've tripled check my logic and code and it looks good also my parameters. But obviously i'm missing on something.
Notice that the red pixels are supposed to be ellipses centers , while the blue pixels are edges to be removed (belong to the ellipse that conform to the mathematical equations).
also, i'm not interested in openCV / matlab / ocatve / etc.. usage (nothing against them).
Thank you very much!
var fs = require("fs"),
Canvas = require("canvas"),
Image = Canvas.Image;
var LEAST_REQUIRED_DISTANCE = 40, // LEAST required distance between 2 points , lets say smallest ellipse minor
LEAST_REQUIRED_ELLIPSES = 6, // number of found ellipse
arr_accum = [],
arr_edges = [],
edges_canvas,
xy,
x1y1,
x2y2,
x0,
y0,
a,
alpha,
d,
b,
max_votes,
cos_tau,
sin_tau_sqr,
f,
new_x0,
new_y0,
any_minor_dist,
max_minor,
i,
found_minor_in_accum,
arr_edges_len,
hough_file = 'sample_me2.jpg',
edges_canvas = drawImgToCanvasSync(hough_file); // make sure everything is black and white!
arr_edges = getEdgesArr(edges_canvas);
arr_edges_len = arr_edges.length;
var hough_canvas_img_data = edges_canvas.getContext('2d').getImageData(0, 0, edges_canvas.width,edges_canvas.height);
for(x1y1 = 0; x1y1 < arr_edges_len ; x1y1++){
if (arr_edges[x1y1].x === -1) { continue; }
for(x2y2 = 0 ; x2y2 < arr_edges_len; x2y2++){
if ((arr_edges[x2y2].x === -1) ||
(arr_edges[x2y2].x === arr_edges[x1y1].x && arr_edges[x2y2].y === arr_edges[x1y1].y)) { continue; }
if (distance(arr_edges[x1y1],arr_edges[x2y2]) > LEAST_REQUIRED_DISTANCE){
x0 = (arr_edges[x1y1].x + arr_edges[x2y2].x) / 2;
y0 = (arr_edges[x1y1].y + arr_edges[x2y2].y) / 2;
a = Math.sqrt((arr_edges[x1y1].x - arr_edges[x2y2].x) * (arr_edges[x1y1].x - arr_edges[x2y2].x) + (arr_edges[x1y1].y - arr_edges[x2y2].y) * (arr_edges[x1y1].y - arr_edges[x2y2].y)) / 2;
alpha = Math.atan((arr_edges[x2y2].y - arr_edges[x1y1].y) / (arr_edges[x2y2].x - arr_edges[x1y1].x));
for(xy = 0 ; xy < arr_edges_len; xy++){
if ((arr_edges[xy].x === -1) ||
(arr_edges[xy].x === arr_edges[x2y2].x && arr_edges[xy].y === arr_edges[x2y2].y) ||
(arr_edges[xy].x === arr_edges[x1y1].x && arr_edges[xy].y === arr_edges[x1y1].y)) { continue; }
d = distance({x: x0, y: y0},arr_edges[xy]);
if (d > LEAST_REQUIRED_DISTANCE){
f = distance(arr_edges[xy],arr_edges[x2y2]); // focus
cos_tau = (a * a + d * d - f * f) / (2 * a * d);
sin_tau_sqr = (1 - cos_tau * cos_tau);//Math.sqrt(1 - cos_tau * cos_tau); // getting sin out of cos
b = (a * a * d * d * sin_tau_sqr ) / (a * a - d * d * cos_tau * cos_tau);
b = Math.sqrt(b);
b = parseInt(b.toFixed(0));
d = parseInt(d.toFixed(0));
if (b > 0){
found_minor_in_accum = arr_accum.hasOwnProperty(b);
if (!found_minor_in_accum){
arr_accum[b] = {f: f, cos_tau: cos_tau, sin_tau_sqr: sin_tau_sqr, b: b, d: d, xy: xy, xy_point: JSON.stringify(arr_edges[xy]), x0: x0, y0: y0, accum: 0};
}
else{
arr_accum[b].accum++;
}
}// b
}// if2 - LEAST_REQUIRED_DISTANCE
}// for xy
max_votes = getMaxMinor(arr_accum);
// ONE ellipse has been detected
if (max_votes != null &&
(max_votes.max_votes > LEAST_REQUIRED_ELLIPSES)){
// output ellipse details
new_x0 = parseInt(arr_accum[max_votes.index].x0.toFixed(0)),
new_y0 = parseInt(arr_accum[max_votes.index].y0.toFixed(0));
setPixel(hough_canvas_img_data,new_x0,new_y0,255,0,0,255); // Red centers
// remove the pixels on the detected ellipse from edge pixel array
for (i=0; i < arr_edges.length; i++){
any_minor_dist = distance({x:new_x0, y: new_y0}, arr_edges[i]);
any_minor_dist = parseInt(any_minor_dist.toFixed(0));
max_minor = b;//Math.max(b,arr_accum[max_votes.index].d); // between the max and the min
// coloring in blue the edges we don't need
if (any_minor_dist <= max_minor){
setPixel(hough_canvas_img_data,arr_edges[i].x,arr_edges[i].y,0,0,255,255);
arr_edges[i] = {x: -1, y: -1};
}// if
}// for
}// if - LEAST_REQUIRED_ELLIPSES
// clear accumulated array
arr_accum = [];
}// if1 - LEAST_REQUIRED_DISTANCE
}// for x2y2
}// for xy
edges_canvas.getContext('2d').putImageData(hough_canvas_img_data, 0, 0);
writeCanvasToFile(edges_canvas, __dirname + '/hough.jpg', function() {
});
function getMaxMinor(accum_in){
var max_votes = -1,
max_votes_idx,
i,
accum_len = accum_in.length;
for(i in accum_in){
if (accum_in[i].accum > max_votes){
max_votes = accum_in[i].accum;
max_votes_idx = i;
} // if
}
if (max_votes > 0){
return {max_votes: max_votes, index: max_votes_idx};
}
return null;
}
function distance(point_a,point_b){
return Math.sqrt((point_a.x - point_b.x) * (point_a.x - point_b.x) + (point_a.y - point_b.y) * (point_a.y - point_b.y));
}
function getEdgesArr(canvas_in){
var x,
y,
width = canvas_in.width,
height = canvas_in.height,
pixel,
edges = [],
ctx = canvas_in.getContext('2d'),
img_data = ctx.getImageData(0, 0, width, height);
for(x = 0; x < width; x++){
for(y = 0; y < height; y++){
pixel = getPixel(img_data, x,y);
if (pixel.r !== 0 &&
pixel.g !== 0 &&
pixel.b !== 0 ){
edges.push({x: x, y: y});
}
} // for
}// for
return edges
} // getEdgesArr
function drawImgToCanvasSync(file) {
var data = fs.readFileSync(file)
var canvas = dataToCanvas(data);
return canvas;
}
function dataToCanvas(imagedata) {
img = new Canvas.Image();
img.src = new Buffer(imagedata, 'binary');
var canvas = new Canvas(img.width, img.height);
var ctx = canvas.getContext('2d');
ctx.patternQuality = "best";
ctx.drawImage(img, 0, 0, img.width, img.height,
0, 0, img.width, img.height);
return canvas;
}
function writeCanvasToFile(canvas, file, callback) {
var out = fs.createWriteStream(file)
var stream = canvas.createPNGStream();
stream.on('data', function(chunk) {
out.write(chunk);
});
stream.on('end', function() {
callback();
});
}
function setPixel(imageData, x, y, r, g, b, a) {
index = (x + y * imageData.width) * 4;
imageData.data[index+0] = r;
imageData.data[index+1] = g;
imageData.data[index+2] = b;
imageData.data[index+3] = a;
}
function getPixel(imageData, x, y) {
index = (x + y * imageData.width) * 4;
return {
r: imageData.data[index+0],
g: imageData.data[index+1],
b: imageData.data[index+2],
a: imageData.data[index+3]
}
}
It seems you try to implement the algorithm of Yonghong Xie; Qiang Ji (2002). A new efficient ellipse detection method 2. p. 957.
Ellipse removal suffers from several bugs
In your code, you perform the removal of found ellipse (step 12 of the original paper's algorithm) by resetting coordinates to {-1, -1}.
You need to add:
`if (arr_edges[x1y1].x === -1) break;`
at the end of the x2y2 block. Otherwise, the loop will consider -1, -1 as a white point.
More importantly, your algorithm consists in erasing every point which distance to the center is smaller than b. b supposedly is the minor axis half-length (per the original algorithm). But in your code, variable b actually is the latest (and not most frequent) half-length, and you erase points with a distance lower than b (instead of greater, since it's the minor axis). In other words, you clear all points inside a circle with a distance lower than latest computed axis.
Your sample image can actually be processed with a clearing of all points inside a circle with a distance lower than selected major axis with:
max_minor = arr_accum[max_votes.index].d;
Indeed, you don't have overlapping ellipses and they are spread enough. Please consider a better algorithm for overlapping or closer ellipses.
The algorithm mixes major and minor axes
Step 6 of the paper reads:
For each third pixel (x, y), if the distance between (x, y) and (x0,
y0) is greater than the required least distance for a pair of pixels
to be considered then carry out the following steps from (7) to (9).
This clearly is an approximation. If you do so, you will end up considering points further than the minor axis half length, and eventually on the major axis (with axes swapped). You should make sure the distance between the considered point and the tested ellipse center is smaller than currently considered major axis half-length (condition should be d <= a). This will help with the ellipse erasing part of the algorithm.
Also, if you also compare with the least distance for a pair of pixels, as per the original paper, 40 is too large for the smaller ellipse in your picture. The comment in your code is wrong, it should be at maximum half the smallest ellipse minor axis half-length.
LEAST_REQUIRED_ELLIPSES is too small
This parameter is also misnamed. It is the minimum number of votes an ellipse should get to be considered valid. Each vote corresponds to a pixel. So a value of 6 means that only 6+2 pixels make an ellipse. Since pixels coordinates are integers and you have more than 1 ellipse in your picture, the algorithm might detect ellipses that are not, and eventually clear edges (especially when combined with the buggy ellipse erasing algorithm). Based on tests, a value of 100 will find four of the five ellipses of your picture, while 80 will find them all. Smaller values will not find the proper centers of the ellipses.
Sample image is not black & white
Despite the comment, sample image is not exactly black and white. You should convert it or apply some threshold (e.g. RGB values greater than 10 instead of simply different form 0).
Diff of minimum changes to make it work is available here:
https://gist.github.com/pguyot/26149fec29ffa47f0cfb/revisions
Finally, please note that parseInt(x.toFixed(0)) could be rewritten Math.floor(x), and you probably want to not truncate all floats like this, but rather round them, and proceed where needed: the algorithm to erase the ellipse from the picture would benefit from non truncated values for the center coordinates. This code definitely could be improved further, for example it currently computes the distance between points x1y1 and x2y2 twice.

Categories

Resources