For loop inside another for loop crashes in Javascript - javascript

I want to randomly generate a color for each pixel in the canvas however my loop seems to crash the browser and I cannot figure out why?
I have tried reducing the loop to a static number (X = 10 x Y=100) and it seems to work. However it takes a few seconds for the result to be shown on the screen (despite my tests showing a run time of 10ms)
I am new to javascript/html so this could be an obvious solution, however any help is greatly appreciated.
//"use strict";
// SELECT THE CANVAS ELEMENT FROM THE HTML PAGE AND NAME IT 'WORLD'
let world = document.querySelector("canvas");
// SET THE CANVAS HEIGHT/WIDTH TO THE WINDOW INNER X/Y
world.width = window.innerWidth;
world.height = window.innerHeight;
let context = world.getContext("2d");
// GET PERFORMANCE TEST VALUE BEFORE LOOP
let t0 = performance.now();
let x=0;
let y=0;
// LOOP THROUGH THE CANVAS STARTING AT FIRST PIXEL OF TOP ROW MOVING TO THE LAST PIXEL OF THE TOP ROW AND FILL, THEN MOVE TO THE NEXT LINE AND REPEAT FILL FOR EACH ROW UNTIL CANVAS IS COLORED
for (y=0; y < world.height; y++)
{
//TODO: ADD RANDOM RGB COLOR TO STROKE
context.lineTo(x,y);
context.stroke();
for (x=0; x < 10; x++){
//TODO: ADD RANDOM RGB COLOR TO STROKE
context.lineTo(x,y);
context.stroke();
}
}
// GET PERFORMANCE TEST VALUE AFTER LOOP
let t1 = performance.now();
// LOG THE TOTAL MILLISECONDS OF THE LOOP
console.log("Total Time" + (t1-t0) + " milliseconds");
// GENERATE A RANDOM NUMBER BASED ON THE WINDOW INNER WIDTH
function getRandomX(){
return Math.random() * window.innerWidth;
}
// GENERATE A RANDOM NUMBER BASED ON THE WINDOW INNER HEIGHT
function getRandomY(){
return Math.random() * window.innerHeight;
}
// GENERATE A RANDOM NUMBER BETWEEN 0 - 255
function getRandomRGB(){
return Math.Random() * 255;
}
<canvas></canvas>
Does not load, crashes browser window

You’re redrawing the path every time you add a line to it. That’s quadratic and not necessary. (Quadratic is a problem when you have 20,000+ lines.)
Draw once:
let x = 0;
for (let y = 0; y < world.height; y++) {
context.lineTo(x, y);
for (x = 0; x < 10; x++) {
context.lineTo(x, y);
}
}
context.stroke();
And when you want to draw in multiple colours, start a new path every for each line:
let x = 0;
for (let y = 0; y < world.height; y++) {
//TODO: ADD RANDOM RGB COLOR TO STROKE
context.lineTo(x, y);
context.stroke();
context.beginPath();
context.moveTo(x, y);
for (x = 0; x < 10; x++) {
//TODO: ADD RANDOM RGB COLOR TO STROKE
context.lineTo(x, y);
context.stroke();
context.beginPath();
context.moveTo(x, y);
}
}
fillRect seems like a better choice for a canvas method to draw a pixel, though:
const getRandomColor = () =>
'#' + (Math.random() * 0x1000000 >>> 0).toString(16);
const world = document.getElementById('canvas');
const context = world.getContext('2d');
const start = performance.now();
for (let y = 0; y < world.height; y++) {
for (let x = 0; x < world.width; x++) {
context.fillStyle = getRandomColor();
context.fillRect(x, y, 1, 1);
}
}
console.log(performance.now() - start);
<canvas id="canvas"></canvas>
And finally, putting image data probably gives the best performance.
const world = document.getElementById('canvas');
const context = world.getContext('2d');
const start = performance.now();
const {width, height} = world;
const random32 = new Uint32Array(width * height);
for (let i = 0; i < random32.length; i++) {
random32[i] = Math.random() * 0x100000000 >>> 0;
}
const randomRGBA = new Uint8ClampedArray(random32.buffer);
for (let i = 3; i < randomRGBA.length; i += 4) {
randomRGBA[i] = 255;
}
const imageData = new ImageData(randomRGBA, width, height);
context.putImageData(imageData, 0, 0);
console.log(performance.now() - start);
<canvas id="canvas"></canvas>
(Fun fact: crypto.getRandomValues is faster than this in practice, but not a good choice.)

Related

Different results with the same code on a computer and a smartphone

Different results are obtained with the same code on a computer(windows 10) and a smartphone(android).I'm working in P5.JS with used loadPixels(). Below is an example code and screenshots. I will also leave a link to OpenProcessing so that you can test the program:
https://openprocessing.org/sketch/1703228
function setup() {
createCanvas(300, 300);
randomSeed(1);
for (let x2=0; x2<width; x2 +=100) {
for (let y2=0; y2<height; y2 += 100) {
fill(random(200),random(55),random(155));
rect(x2,y2,100,100);
}
}
///////
loadPixels();
background(255);
for (let y1=0; y1<height; y1+=100) {
for (let x1=0; x1<width; x1+=100) {
let poz=(x1+y1*width)*4;
let r=pixels[poz];
let g=pixels[poz+1];
let b=pixels[poz+2];
fill(r,g,b);
rect(x1,y1,100,100);
}
}
//////////
}
Computer picture
Smartphone picture
p5js pixels array is different from the original Java's processing pixels array. Very different.
It stores all canvas pixels in 1d array, 4 slots for each pixel:
[pix1R, pix1G, pix1B, pix1A, pix2R, pix2G, pix2B, pix2A...] And also the pixel density mathers.
So your issue is with pixel density that are different from one device to another.
Try differents values to pixelDensity() in the code below. With 1 you get the result that you are getting in PC, with 3 you get the result you get with mobile.
function setup() {
createCanvas(300, 300);
//change here!!
pixelDensity(3);
randomSeed(1);
for (let x2 = 0; x2 < width; x2 += 100) {
for (let y2 = 0; y2 < height; y2 += 100) {
fill(random(200), random(55), random(155));
rect(x2, y2, 100, 100);
}
}
///////
loadPixels();
background(255);
for (let y1 = 0; y1 < height; y1 += 100) {
for (let x1 = 0; x1 < width; x1 += 100) {
let poz = (x1 + y1 * width) * 4;
let r = pixels[poz];
let g = pixels[poz + 1];
let b = pixels[poz + 2];
fill(r, g, b);
rect(x1, y1, 100, 100);
}
}
//////////
}
To make them consistent you need to account for different pixelsDensity in your code.
the following code shows how to account for density using pixels in a determined area, in you case that would be the entire canvas.
To work any given area (a loaded image for instance) you can adapt this snippet:
(here i'm setting the color of the area, but you can get the idea;)
//the area data
const area_x = 35;
const area_y = 48;
const width_of_area = 180;
const height_of_area = 200;
//the pixel density
const d = pixelDensity();
loadPixels();
// those 2 first loops goes trough every pixel in the area
for (let x = area_x; x < width_of_area; x++) {
for (let y = area_y; y < height_of_area; y++) {
//here we go trough the pixels array to get each value of a pixel minding the density.
for (let i = 0; i < d; i++) {
for (let j = 0; j < d; j++) {
// calculate the index of the 1d array for every pixel
// 4 values in the array for each pixel
// y times density times #of pixels
// x idem
index = 4 * ((y * d + j) * width * d + (x * d + i));
// numbers for rgb color
pixels[index] = 255;
pixels[index + 1] = 30;
pixels[index + 2] = 200;
pixels[index + 3] = 255;
}
}
}
}
updatePixels();

How to Improve Html5 Canvas Performance

So I have this project I have been working on and the goal of it is to randomly generate terrain on a 2D plane, and put rain in the background, and I chose to use the html5 canvas element to accomplish this goal. After creating it I am happy with the result but I am having performance issues and could use some advice on how to fix it. So far I have tried to only clear the bit of the canvas that is needed, which is above the rectangles I drew under the terrain to fill it in, but because of this I have to redraw the circles. The rn(rain number) has already been lowered by about 2 times and it still lags, any suggestions?
Note - The code in the snippet does not lag due to it's small size, but if I was to run it in full screen with the actual rain number(800), it would lag. I have shrunk the values to fit the snippet.
var canvas = document.getElementById('gamecanvas');
var c = canvas.getContext('2d');
var ma = Math.random;
var mo = Math.round;
var wind = 5;
var rn = 100;
var rp = [];
var tp = [];
var tn;
function setup() {
//fillstyle
c.fillStyle = 'black';
//canvas size
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
//rain setup
for (i = 0; i < rn; i++) {
let x = mo(ma() * canvas.width);
let y = mo(ma() * canvas.width);
let w = mo(ma() * 1) + 1;
let s = mo(ma() * 5) + 10;
rp[i] = { x, y, w, s };
}
//terrain setup
tn = (canvas.width) + 20;
tp[0] = { x: -2, y: canvas.height - 50 };
for (i = 1; i <= tn; i++) {
let x = tp[i - 1].x + 2;
let y = tp[i - 1].y + (ma() * 20) - 10;
if (y > canvas.height - 50) {
y = tp[i - 1].y -= 1;
}
if (y < canvas.height - 100) {
y = tp[i - 1].y += 1;
}
tp[i] = { x, y };
c.fillRect(x, y, 4, canvas.height - y);
}
}
function gameloop() {
//clearing canvas
for (i = 0; i < tn; i++) {
c.clearRect(tp[i].x - 2, 0, 2, tp[i].y);
}
for (i = 0; i < rn; i++) {
//rain looping
if (rp[i].y > canvas.height + 5) {
rp[i].y = -5;
}
if (rp[i].x > canvas.width + 5) {
rp[i].x = -5;
}
//rain movement
rp[i].y += rp[i].s;
rp[i].x += wind;
//rain drawing
c.fillRect(rp[i].x, rp[i].y, rp[i].w, 6);
}
for (i = 0; i < tn; i++) {
//terrain drawing
c.beginPath();
c.arc(tp[i].x, tp[i].y, 6, 0, 7);
c.fill();
}
}
setup();
setInterval(gameloop, 1000 / 60);
body {
background-color: white;
overflow: hidden;
margin: 0;
}
canvas {
background-color: white;
}
<html>
<head>
<link rel="stylesheet" href="index.css">
<title>A Snowy Night</title>
</head>
<body id="body"> <canvas id="gamecanvas"></canvas>
<script src="index.js"></script>
</body>
</html>
Superimposing canvas
Like I suggested in my comment, the use of a second canvas point is to only have to draw the terrain once, and hence it could enhance the performance of your animation by saving a redraw on each new frame. This can be done with CSS by positioning one on the other (like layers).
#canvasBase {
position: relative;
}
#canvasLayer1 {
position: absolute;
top: 0;
left: 0;
}
#canvasLayer2 {
position: absolute;
top: 0;
left: 0;
}
// etc...
Also I advise you to use requestAnimationFrame over setinterval (see why).
requestAnimationFrame
However, by using requestAnimationFrame, we don't control the refresh rate, it's tied to the client hardware. So we need to handle it and for that, we will use the DOMHighResTimeStamp which is passed as an argument to our callback method.
The idea is to let it run at native speed and manage the fps by updating the logic (our calculs) only at desired time. For exemple, if we need a fps = 60; that means we need to update our logic every 1000 / 60 = ~16,67 ms. So we check if the deltaTime with the time of the last frame is equal or superior than ~16,67ms. If not enough time elapsed, we call a new frame & we return (important, otherwise the control we just did is useless as the code keeps going whatever the outcome of it).
let fps = 60;
/* Check if we need to update the logic */
/* if not request a new frame & return */
if(deltaLastUpdate <= 1000 / fps){ // 1000 / 60 = ~16,67ms
requestAnimationFrame(animate);
return;
}
Clearing canvas
As you need to erase all the past rain drops, the simplest & cheapest in ressources in to clear the whole context in one swoop.
ctxRain.clearRect(0, 0, rainCanvas.width, rainCanvas.height);
Path2D
As your drawing use the same color for the rain drops, you can as well group all these in one path:
rainPath = new Path2D();
...
So you will need only one instruction to draw them (same ressources saving type as the clearRect):
ctxRain.fill(rainPath);
Result
/* CANVAS "Terrain" */
const terrainCanvas = document.getElementById('gameTerrain');
const ctxTerrain = terrainCanvas.getContext('2d');
terrainCanvas.height = window.innerHeight;
terrainCanvas.width = window.innerWidth;
/* CANVAS "Rain" */
const rainCanvas = document.getElementById('gameRain');
const ctxRain = rainCanvas.getContext('2d');
rainCanvas.height = window.innerHeight;
rainCanvas.width = window.innerWidth;
/* Game Constants */
const wind = 5;
const rainMaxParticules = 100;
const rain = [];
let rainPath;
const terrainMaxParticules = terrainCanvas.width + 20;
const terrain = [];
let terrainPath;
/* Maths help */
const ma = Math.random;
const mo = Math.round;
/* Clear */
function clearTerrain(){
ctxTerrain.clearRect(0, 0, terrainCanvas.width, terrainCanvas.height);
}
function clearRain(){
ctxRain.clearRect(0, 0, rainCanvas.width, rainCanvas.height);
}
/* Logic */
function initTerrain(){
terrain[0] = { x: -2, y: terrainCanvas.height - 50 };
for (let i = 1; i <= terrainMaxParticules; i++) {
let x = terrain[i - 1].x + 2;
let y = terrain[i - 1].y + (ma() * 20) - 10;
if (y > terrainCanvas.height - 50) {
y = terrain[i - 1].y -= 1;
}
if (y < terrainCanvas.height - 100) {
y = terrain[i - 1].y += 1;
}
terrain[i] = { x, y };
}
}
function initRain(){
for (let i = 0; i < rainMaxParticules; i++) {
let x = mo(ma() * rainCanvas.width);
let y = mo(ma() * rainCanvas.width);
let w = mo(ma() * 1) + 1;
let s = mo(ma() * 5) + 10;
rain[i] = { x, y, w, s };
}
}
function init(){
initTerrain();
initRain();
}
function updateTerrain(){
terrainPath = new Path2D();
for(let i = 0; i < terrain.length; i++){
terrainPath.arc(terrain[i].x, terrain[i].y, 6, Math.PI/2, 5*Math.PI/2);
}
terrainPath.lineTo(terrainCanvas.width, terrainCanvas.height);
terrainPath.lineTo(0, terrainCanvas.height);
}
function updateRain(){
rainPath = new Path2D();
for (let i = 0; i < rain.length; i++) {
// Rain looping
if (rain[i].y > rainCanvas.height + 5) {
rain[i].y = -5;
}
if (rain[i].x > rainCanvas.width + 5) {
rain[i].x = -5;
}
// Rain movement
rain[i].y += rain[i].s;
rain[i].x += wind;
// Path containing all the drops
rainPath.rect(rain[i].x, rain[i].y, rain[i].w, 6);
}
}
/* Drawing */
function drawTerrain(){
ctxTerrain.fillStyle = 'black';
ctxTerrain.fill(terrainPath);
}
function drawRain(){
ctxRain.fillStyle = 'black';
ctxRain.fill(rainPath);
}
/* Animation Constant */
const fps = 60;
let lastTimestampUpdate;
let terrainDrawn = false;
/* Game loop */
function animate(timestamp){
/* Initialize rain & terrain particules */
if(rain.length === 0 || terrain.length === 0){
init();
}
/* Define "lastTimestampUpdate" from the first call */
if (lastTimestampUpdate === undefined){
lastTimestampUpdate = timestamp;
}
/* Check if we need to update the logic & the drawing, if not, request a new frame & return */
if(timestamp - lastTimestampUpdate <= 1000 / fps){
requestAnimationFrame(animate);
return;
}
if(!terrainDrawn){
/* Terrain --------------------- */
/* Clear */
clearTerrain();
/* Logic */
updateTerrain();
/* Draw */
drawTerrain();
/* ----------------------------- */
terrainDrawn = true;
}
/* --- Rain -------------------- */
/* Clear */
clearRain();
/* Logic */
updateRain();
/* Draw */
drawRain();
/* ----------------------------- */
/* Request another frame */
lastTimestampUpdate = timestamp;
requestAnimationFrame(animate);
}
/* Start the animation */
requestAnimationFrame(animate);
body {
background-color: white;
overflow: hidden;
margin: 0;
}
#gameTerrain {
position: relative;
}
#gameRain {
position: absolute;
top: 0;
left: 0;
}
<body>
<canvas id="gameTerrain"></canvas>
<canvas id="gameRain"></canvas>
</body>
Aside
This won't affect performance, however I encourage you to use const & let over var (What's the difference between using “let” and “var”?).
Generally, having more paint instructions will be what costs the most, the complexity of these paint instructions only comes to play when it's really complex.
Here you are spamming the GPU with paint instructions:
(canvas.width) + 20 calls to clearRect(). clearRect() is a paint instruction, and not a cheap one. Use it sporadically, but actually, you should use it only to clear the whole context.
One fillRect() per rain drop.. They're all the same color, they can be merged in a single sub-path and drawn in a single draw call.
One fill per circle composing the terrain.
So instead of this huge number of draw calls, we could make it in only two draw calls:
One clearRect, one fill() of one big subpath containing both the drops and
the terrain.
However it's certainly more practical to keep the terrain and the rain separated, so let's make it three draw calls, by keeping the terrain in its own Path2D object, which is more friendly for the CPU:
var canvas = document.getElementById('gamecanvas');
var c = canvas.getContext('2d');
var ma = Math.random;
var mo = Math.round;
var wind = 5;
var rn = 100;
var rp = [];
// this will hold our Path2D object
// which will hold the full terrain drawing
// set a 'let' because we will set it again on resize
let terrain;
var tp = [];
var tn;
function setup() {
//fillstyle
c.fillStyle = 'black';
//canvas size
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
//rain setup
for (let i = 0; i < rn; i++) {
let x = mo(ma() * canvas.width);
let y = mo(ma() * canvas.width);
let w = mo(ma() * 1) + 1;
let s = mo(ma() * 5) + 10;
rp[i] = { x, y, w, s };
}
//terrain setup
tn = (canvas.width) + 20;
tp[0] = { x: -2, y: canvas.height - 50 };
terrain = new Path2D();
for (let i = 1; i <= tn; i++) {
let x = tp[i - 1].x + 2;
let y = tp[i - 1].y + (ma() * 20) - 10;
if (y > canvas.height - 50) {
y = tp[i - 1].y -= 1;
}
if (y < canvas.height - 100) {
y = tp[i - 1].y += 1;
}
tp[i] = { x, y };
terrain.rect(x, y, 4, canvas.height - y);
terrain.arc(x, y, 6, 0, Math.PI*2);
}
}
function gameloop() {
// clear the whole canvas
c.clearRect(0, 0, canvas.width, canvas.height);
// start a new sub-path for the rain
c.beginPath();
for (let i = 0; i < rn; i++) {
//rain looping
if (rp[i].y > canvas.height + 5) {
rp[i].y = -5;
}
if (rp[i].x > canvas.width + 5) {
rp[i].x = -5;
}
//rain movement
rp[i].y += rp[i].s;
rp[i].x += wind;
//rain tracing
c.rect(rp[i].x, rp[i].y, rp[i].w, 6);
}
// paint all the drops in a single op
c.fill();
// paint the whole terrain in a single op
c.fill(terrain);
// loop at screen refresh frequency
requestAnimationFrame(gameloop);
}
setup();
requestAnimationFrame(gameloop);
onresize = () => setup();
body {
background-color: white;
overflow: hidden;
margin: 0;
}
canvas {
background-color: white;
}
<canvas id="gamecanvas"></canvas>
Further possible improvements:
Instead of making our terrain path a set of rectangles, using only lineTo to trace the actual outline would probably help a bit, some more calculations at init, but it's done only once in a while.
If the terrain becomes more complex, with more details, or with various colors and shadows etc. then consider painting it only once, and then produce an ImageBitmap from the canvas. Then in gameLoop you'll just have to drawImage that ImageBitmap (drawing bitmaps is super fast, but storing it consumes memory, so remember to .close() the ImageBitmap when you don't need it anymore).

How to avoid repeated?

Good day,
I am generating some circles with colors, sizes and positions. All of this things randomly.
But, my problem is that I do not want them to collide, so that no circle is inside another, not even a little bit.
The logic explained in detail within the code, I would like to know why the failure and why the infinite loop.
The important functions are:
checkSeparation and setPositions
window.addEventListener("load", draw);
function draw() {
var canvas = document.getElementById("balls"), // Get canvas
ctx = canvas.getContext("2d"); // Context
canvas.width = document.body.clientWidth; // Set canvas width
canvas.height = document.documentElement.scrollHeight; // Height
var cW = canvas.width, cH = canvas.height; // Save in vars
ctx.fillStyle = "#fff022"; // Paint background
ctx.fillRect(0, 0, cW, cH); // Coordinates to paint
var arrayOfBalls = createBalls(); // create all balls
setPositions(arrayOfBalls, cW, cH);
arrayOfBalls.forEach(ball => { // iterate balls to draw
ctx.beginPath(); // start the paint
ctx.fillStyle = ball.color;
ctx.arc(ball.x, ball.y, ball.radius, 0, (Math.PI/180) * 360, false); // draw the circle
ctx.fill(); // fill
ctx.closePath(); // end the paint
});
}
function Ball() {
this.x = 0; // x position of Ball
this.y = 0; // y position of Ball
this.radius = Math.floor(Math.random() * ( 30 - 10 + 1) + 10);
this.color = "";
}
Ball.prototype.setColor = function(){
for(var j = 0, hex = "0123456789ABCDEF", max = hex.length,
random, str = ""; j <= 6; j++, random = Math.floor(Math.random() * max), str += hex[random])
this.color = "#" + str;
};
function random(val, min) {
return Math.floor(Math.random() * val + min); // Random number
}
function checkSeparation(value, radius, toCompare) {
var min = value - radius, // Min border of circle
max = value + radius; // Max border of circle
// Why ? e.g => x position of circle + this radius it will be its right edge
for(; min <= max; min++) {
if(toCompare.includes(min)) return false;
/*
Since all the positions previously obtained, I add them to the array, in order to have a reference when verifying the other positions and that they do NOT collide.
Here I check if they collide.
In the range of:
[pos x - its radius, pos x + its radius]
*/
}
return true; // If they never collided, it returns true
}
function createBalls() {
var maxBalls = 50, // number of balls
balls = []; // array of balls
for(var j = 0; j < maxBalls; j++) { // create 50 balls
var newBall = new Ball(); // create ball
newBall.setColor(); // set the ball color
balls.push(newBall); //push the ball to the array of balls
}
return balls; // return all balls to draw later
}
function setPositions(balls, canvasW, canvasH) {
var savedPosX = [], // to save x pos of balls
savedPosY = []; // to save y pos of balls
for(var start = 0, max = balls.length; start < max; start++) {
var current = balls[start], // current ball
randomX = random(canvasW, current.radius), // get random value for x pos
randomY = random(canvasH, current.radius); // get random value for y pos
if(checkSeparation(randomX, current.radius, savedPosX)) {
current.x = randomX; // If it position, along with your radio does not touch another circle, I add the position
} else {
// start--; continue;
console.log("X: The above code causes an infinite loop");
}
if(checkSeparation(randomY, current.radius, savedPosY)) {
current.y = randomY;
} else {
// start--; continue;
console.log("Y: The above code causes an infinite loop");
}
}
}
body,html {
margin: 0; border: 0; padding: 0; overflow: hidden;
}
<canvas id="balls"></canvas>
In your code, you test possible collisions by means of arrays of already used x and y positions, but you never add new positions to these arrays. You also check the x and y coordinates separately, which means you are really testing a collision of a bounding box.
Two circles collide when the distance between their centres is smaller than the sum of their radii, so you could use:
function collides(balls, n, x, y, r) {
for (let i = 0; i < n; i++) {
let ball = balls[i];
let dx = ball.x - x;
let dy = ball.y - y;
let dd = dx*dx + dy*dy;
let rr = r + ball.radius;
if (dd < rr * rr) return true;
}
return false;
}
function setPositions(balls, canvasW, canvasH) {
for (let i = 0, max = balls.length; i < max; i++) {
let ball = balls[i],
r = ball.radius,
maxTries = 20;
ball.x = -canvasW;
ball.y = -canvasH;
for (let tries = 0; tries = maxTries; tries++) {
let x = random(canvasW - 2*r, r),
y = random(canvasH - 2*r, r);
if (!collides(balls, i, x, y, r)) {
ball.x = x;
ball.y = y;
break;
}
}
}
}
This is reasonably fast for 50 balls, but will be slow if you have more balls. In that case, some spatial data structures can speed up the collision search.
You must also guard against the case that no good place can be found. The code above gives up after 20 tries and moves the ball outside the visible canvas. You can improve the chances of placing balls by sorting the balls by radius and plaing the large balls first.
Finally, you add one hex digit too many to your random colour. (That for loop, where everything happens in the loop control is horrible, by the way.)

How to optimize canvas rendering for dynamic loading HTML5 game world?

I've been working on an isometric game engine for my own game. Currently, it's a big, open world with the map data being retrieved dynamically from the Node.js server. 
To understand what I'm doing... for the most part it's a tile based world. So each map has a max number of cols,rows (19) and each world has a max number of maps by col,row (6). So it's a 6x6 world map consisting of 19x19 tiles per map. Whenever the players move onto a new map/region, the client requests a 3x3 matrix of the surrounding maps with the center map being the map the player is currently on. This part is pretty well optimized.
My problem, however, is finding a great way to optimize the drawing onto the canvas. Currently, I don't have a lot of lag doing so, but I also have a fast computer, but I worry that at times it could cause others to lag / mess with the rendering of other graphics.
Basically, how I have it working right now is when the data is sent back from the server, it adds each map and all the tile images for each col/row it has to render into a buffer. Each loop of the game loop, it will basically render a small section of the 25 tiles onto the specific map's hidden canvas. When all of the requested maps are done rendering (after a few game loops), the camera will go ahead and merge these hidden maps into 1 big map canvas of the 3x3 matrix (by slicing parts from the hidden canvases and merging them onto the new canvas).
Ideally I would love this whole process to be async. but I've been looking into web workers and apparently they do not support canvas well. Has anyone come up with a process to do something similar and keep it well optimized?
Thanks!
Here's an example of rendering a 19x19 grid in each frame. A new random tile is added from right to left top to bottom in each frame. The grid is rendered in the same order and you can see that this works for overlapping tiles.
I think it's best to save each tile and make a function that renders the entire grid. So if the player gets updates in the 3x3 surrounding area then download and keep those tiles and re-render the entire grid.
update
I provided a function to eliminate overdraw and a toggle. This may increase performance for some people. It draws from bottom to top left to right. This draws the overlaying items first and with globalCompositeOperation "distination-over" tells the canvas to leave existing pixels alone when adding new content. This should mean less work to do in putting pixels on the canvas as it's not drawing over unused pixels.
var cols = 19;
var tile_width = 32;
var rows = 19;
var tile_height = 16;
var y_offset = 64;
var h_tw = tile_width / 2;
var h_th = tile_height / 2;
var frames = 0;
var fps = "- fps";
setInterval(function(){
fps = frames + " fps";
frames = 0;
}, 1000);
var can = document.getElementById('tile');
var ctx = can.getContext('2d');
var wcan = document.getElementById('world');
var wctx = wcan.getContext('2d');
wcan.width = cols * tile_width;
wcan.height = rows * tile_height + y_offset;
var tiles = initTiles();
document.getElementById('toggle').addEventListener('click', function() {
if (this.innerHTML == 'renderWorld') {
renderFn = renderWorldNoOverdraw;
this.innerHTML = "renderWorldNoOverdraw";
} else {
renderFn = renderWorld;
this.innerHTML = "renderWorld";
}
});
//renderWorld();
var ani_x = cols;
var ani_y = 0;
var renderFn = renderWorld;
ani();
function initTiles () {
var tiles = [];
for (var y = 0; y < rows; y++) {
var row = [];
for (var x = 0; x < cols; x++) {
var can = document.createElement('canvas');
can.width=tile_width;
can.height=tile_height+y_offset;
row[x]=can;
}
tiles[y] = row;
}
return tiles;
}
function ani() {
var can = tiles[ani_y][--ani_x]
if (ani_x == 0) ani_x = cols, ani_y++;
ani_y %= rows;
var ctx = can.getContext('2d');
randTile(can, ctx);
renderFn();
requestAnimationFrame(ani);
}
// renders from bottom left to right and skips
// drawing over pixels already present.
function renderWorldNoOverdraw() {
frames++;
wctx.clearRect(0,0,wcan.width,wcan.height);
wctx.save();
wctx.globalCompositeOperation = "destination-over";
wctx.translate(0, y_offset);
var x_off = 0;
var y_off = 0;
var y_off2 = 0;
for (var y = rows; y--;) {
x_off = (cols * h_tw)- ((rows-y) * h_tw);
y_off = y * h_th + tile_height;
y_off2 = y_off;
for (var x = 0; x < cols; x++) {
var can = tiles[y][x];
wctx.drawImage(can, x_off, y_off2 + y_offset);
y_off2 -= h_th;
x_off += h_tw;
}
}
wctx.translate(0,-y_offset);
wctx.fillStyle = "#ddaadd";
wctx.fillRect(0,0,wcan.width, wcan.height);
wctx.restore();
wctx.fillStyle= "black";
wctx.fillText(fps, 10, 10);
}
function renderWorld() {
frames++;
wctx.fillStyle = "#CCEEFF";
wctx.fillRect(0, 0, wcan.width, wcan.height);
wctx.save();
wctx.translate(0, y_offset);
var x_off = 0;
var y_off = 0;
var y_off2 = 0;
for (var y = 0; y < rows; y++) {
x_off = (cols * h_tw) + (y * h_tw) - h_tw;
y_off = y * h_th;
y_off2 = y_off;
for (var x = cols; x--;) {
var can = tiles[y][x];
wctx.drawImage(can, x_off, y_off2 - 64);
y_off2 += h_th;
x_off -= h_tw;
}
y_off += h_th;
x_off -= h_tw;
}
wctx.restore();
wctx.fillStyle= "black";
wctx.fillText(fps, 10, 10);
}
function randTile(can, ctx) {
var maxH = can.height - 24;
var ranH = Math.floor(Math.random() * maxH);
var h = Math.max(ranH, 1);
ctx.clearRect(0, 0, can.width, can.height);
ctx.beginPath();
ctx.save();
ctx.translate(0, can.height - 16);
ctx.moveTo(0, 8);
ctx.lineTo(16, 0);
ctx.lineTo(32, 8);
ctx.lineTo(16, 16);
ctx.lineTo(0, 8);
ctx.strokeStyle = "#333333";
ctx.stroke();
// random floor color
var colors = ["#dd9933", "#22aa00", "#66cccc", "#996600"];
ctx.fillStyle = colors[Math.floor(Math.random() * 4)];
ctx.fill();
// random building
if (Math.floor(Math.random() * 8) == 0) {
ctx.beginPath();
ctx.moveTo(8, 8);
ctx.lineTo(8, -h - 4);
ctx.lineTo(16, -h);
ctx.lineTo(16, 12);
ctx.lineTo(8, 8);
ctx.stroke();
ctx.fillStyle = "#333333";
ctx.fill();
ctx.beginPath();
ctx.moveTo(16, 12);
ctx.lineTo(16, -h);
ctx.lineTo(24, -h - 4);
ctx.lineTo(24, 8);
ctx.lineTo(16, 12);
ctx.stroke();
ctx.fillStyle = "#999999";
ctx.fill()
ctx.beginPath();
ctx.moveTo(16, -h);
ctx.lineTo(24, -h - 4);
ctx.lineTo(16, -h - 8);
ctx.lineTo(8, -h - 4);
ctx.moveTo(16, -h);
ctx.stroke();
ctx.fillStyle = "#CCCCCC";
ctx.fill()
}
ctx.restore();
}
body {
background-color: #444444;
}
<button id="toggle">renderWorld</button><br/>
<canvas id='tile' width="32" height="32" style="display:none"></canvas>
<canvas id="world" width="608" height="368">
</canvas>

How to detect shape on a transparent canvas?

I'm looking for a method of detecting a shape in a transparent PNG.
For example, I will create a transparent canvas of 940x680, then place a fully opaque object somewhere in that canvas.
I want to be able to detect the size (w, h), and top + left location of that object.
Here is an example of the original image:
Here is an example of what I would like to achieve (Bounding box overlay, with top + left margin data):
I've found a resource that does some transparency detection, but I'm not sure how I scale something like this to what I'm looking for.
var imgData,
width = 200,
height = 200;
$('#mask').bind('mousemove', function(ev){
if(!imgData){ initCanvas(); }
var imgPos = $(this).offset(),
mousePos = {x : ev.pageX - imgPos.left, y : ev.pageY - imgPos.top},
pixelPos = 4*(mousePos.x + height*mousePos.y),
alpha = imgData.data[pixelPos+3];
$('#opacity').text('Opacity = ' + ((100*alpha/255) << 0) + '%');
});
function initCanvas(){
var canvas = $('<canvas width="'+width+'" height="'+height+'" />')[0],
ctx = canvas.getContext('2d');
ctx.drawImage($('#mask')[0], 0, 0);
imgData = ctx.getImageData(0, 0, width, height);
}
Fiddle
What you need to do:
Get the buffer
Get a 32-bits reference of that buffer (If your other pixels are transparent then you can use a Uint32Array buffer to iterate).
Scan 0 - width to find x1 edge
Scan width - 0 to find x2 edge
Scan 0 - height to find y1 edge
Scan height - 0 to find y2 edge
These scans can be combined but for simplicity I'll show each step separately.
Online demo of this can be found here.
Result:
When image is loaded draw it in (if the image is small then the rest of this example would be waste as you would know the coordinates when drawing it - assuming here the image you draw is large with a small image inside it)
(note: this is a non-optimized version for the sake of simplicity)
ctx.drawImage(this, 0, 0, w, h);
var idata = ctx.getImageData(0, 0, w, h), // get image data for canvas
buffer = idata.data, // get buffer (unnes. step)
buffer32 = new Uint32Array(buffer.buffer), // get a 32-bit representation
x, y, // iterators
x1 = w, y1 = h, x2 = 0, y2 = 0; // min/max values
Then scan each edge. For left edge you scan from 0 to width for each line (non optimized):
// get left edge
for(y = 0; y < h; y++) { // line by line
for(x = 0; x < w; x++) { // 0 to width
if (buffer32[x + y * w] > 0) { // non-transparent pixel?
if (x < x1) x1 = x; // if less than current min update
}
}
}
For the right edge you just reverse x iterator:
// get right edge
for(y = 0; y < h; y++) { // line by line
for(x = w; x >= 0; x--) { // from width to 0
if (buffer32[x + y * w] > 0) {
if (x > x2) x2 = x;
}
}
}
And the same is for top and bottom edges just that the iterators are reversed:
// get top edge
for(x = 0; x < w; x++) {
for(y = 0; y < h; y++) {
if (buffer32[x + y * w] > 0) {
if (y < y1) y1 = y;
}
}
}
// get bottom edge
for(x = 0; x < w; x++) {
for(y = h; y >= 0; y--) {
if (buffer32[x + y * w] > 0) {
if (y > y2) y2 = y;
}
}
}
The resulting region is then:
ctx.strokeRect(x1, y1, x2-x1, y2-y1);
There are various optimizations you could implement but they depend entirely on the scenario such as if you know approximate placement then you don't have to iterate all lines/columns.
You could do a brute force guess of he placement by skipping x number of pixels and when you found a non-transparent pixel you could make a max search area based on that and so forth, but that is out of scope here.
Hope this helps!
I was in need of something similar to this, just recently. Although the question is answered, I wanted to post my code for a future reference.
In my case, I'm drawing a (font) icon on a blank/transparent canvas, and want to get the bounding box. Even if I know the height of the icon (using font-size, i.e., height), I can't know the width. So I have to calculate it manually.
I'm not sure if there's a clever way to calculate this. First thing that popped into my head was doing it the hard way: manually checking every pixel, and that's what I did.
I think the code is pretty self-explanatory, so I won't do any explanation. I tried to keep the code as clean as possible.
/* Layer 3: The App */
let canvas = document.querySelector("#canvas");
let input = document.querySelector("#input");
let output = document.querySelector("#output");
canvas.width = 256;
canvas.height = 256;
let context = canvas.getContext("2d");
context.font = "200px Arial, sans-serif";
let drawnLetter = null;
drawLetter(input.value);
function drawLetter(letter) {
letter = letter ? letter[0] : null;
if (!letter) {
// clear canvas
context.clearRect(0, 0, canvas.width, canvas.height);
output.textContent = null;
return;
}
if (letter == drawnLetter) {
return;
}
drawnLetter = letter;
// clear canvas
context.clearRect(0, 0, canvas.width, canvas.height);
// draw letter
context.fillText(letter, 50, canvas.height - 50);
// find edges
let boundingBox = findEdges(context);
// mark the edges
context.beginPath();
context.rect(boundingBox.left, boundingBox.top, boundingBox.width, boundingBox.height);
context.lineWidth = 2;
context.strokeStyle = "red";
context.stroke();
// output the values
output.textContent = JSON.stringify(boundingBox, null, " ");
}
/* Layer 2: Interacting with canvas */
function findEdges(context) {
let left = findLeftEdge(context);
let right = findRightEdge(context);
let top = findTopEdge(context);
let bottom = findBottomEdge(context);
// right and bottom are relative to top left (0,0)
return {
left,
top,
right,
bottom,
width : right - left,
height : bottom - top,
};
}
function findLeftEdge(context) {
let imageData = context.getImageData(0, 0, context.canvas.width, context.canvas.height);
let emptyPixel = [0, 0, 0, 0].join();
for (let x = 0; x < context.canvas.width; x++) {
for (let y = 0; y < context.canvas.height; y++) {
let pixel = getPixel(imageData, x, y).join();
if (pixel != emptyPixel) {
return x;
}
}
}
}
function findRightEdge(context) {
let imageData = context.getImageData(0, 0, context.canvas.width, context.canvas.height);
let emptyPixel = [0, 0, 0, 0].join();
for (let x = context.canvas.width - 1; x >= 0; x--) {
for (let y = 0; y < context.canvas.height; y++) {
let pixel = getPixel(imageData, x, y).join();
if (pixel != emptyPixel) {
return x;
}
}
}
}
function findTopEdge(context) {
let imageData = context.getImageData(0, 0, context.canvas.width, context.canvas.height);
let emptyPixel = [0, 0, 0, 0].join();
for (let y = 0; y < context.canvas.height; y++) {
for (let x = 0; x < context.canvas.width; x++) {
let pixel = getPixel(imageData, x, y).join();
if (pixel != emptyPixel) {
return y;
}
}
}
}
function findBottomEdge(context) {
let imageData = context.getImageData(0, 0, context.canvas.width, context.canvas.height);
let emptyPixel = [0, 0, 0, 0].join();
for (let y = context.canvas.height - 1; y >= 0; y--) {
for (let x = 0; x < context.canvas.width; x++) {
let pixel = getPixel(imageData, x, y).join();
if (pixel != emptyPixel) {
return y;
}
}
}
}
/* Layer 1: Interacting with ImageData */
/**
* Returns the pixel array at the specified position.
*/
function getPixel(imageData, x, y) {
return getPixelByIndex(imageData, pos2index(imageData, x, y));
}
/**
* Returns the RGBA values at the specified index.
*/
function getPixelByIndex(imageData, index) {
return [
imageData.data[index + 0],
imageData.data[index + 1],
imageData.data[index + 2],
imageData.data[index + 3],
];
}
/**
* Returns the index of a position.
*/
function pos2index(imageData, x, y) {
return 4 * (y * imageData.width + x);
}
body {
background-color: hsl(0, 0%, 95%);
}
canvas {
background: white;
image-rendering: pixelated;
background-image: url();
zoom: 0.8; /* this counters the scale up (125%) of my screen; can be removed */
}
input {
padding: 0.2em;
margin-top: 0.5em;
}
<canvas id="canvas"></canvas>
<br>
<input type="text" id="input" placeholder="type a letter" value="A" onkeyup="drawLetter(this.value)" />
<pre id="output"></pre>

Categories

Resources