I'm currently having difficulties at visualizing Fourier series. I tried the same thing about three times in order to find errors but in vain.
Now I even don't know what is wrong with my code or understanding of Fourier series.
What I'm trying to make is a thing like shown in the following Youtube video: https://youtu.be/r6sGWTCMz2k
I think I know what is Fourier series a bit. I can prove this by showing my previous works:
(1) square wave approximation
(2) parameter
So now I would like to draw more complicated thing in a parametric way. Please let me show the process I've walked.
① From svg path, get coordinates. For example,
// svg path
const d = 'M 0 0 L 20 30 L 10 20 ... ... ... Z';
↓
↓ convert with some processing...
↓
const cx = [0, 20, 10, ...]; // function Fx(t)
const cy = [0, 30, 20, ...]; // function Fy(t)
② Get Fourier coefficients from Fx(t), Fy(t), respectively. After that, I can get approximated coordinates by calculating Fourier series respectively by using the coefficients I got. For example,
Let's say I have a0_x, an_x, bn_x, a0_y, an_y, bn_y.
Then, Fx(t) = a0_x + an_x[1] * cos(1wt) + bn_x[1] * cos(1wt)
+ an_x[2] * cos(2wt) + bn_x[2] * cos(2wt) + ...;
Fy(t) = a0_y + an_y[1] * cos(1wt) + bn_y[1] * cos(1wt)
+ an_y[2] * cos(2wt) + bn_y[2] * cos(2wt) + ...;
Therefore a set of points (Fx(t), Fy(t)) is an approximated path!
This is all! Only thing left is just drawing!
Meanwhile, I processed the data in the following way:
const d = [svg path data];
const split = d.split(/[, ]/);
const points = get_points(split);
const normalized = normalize(points);
const populated = populate(normalized, 8);
const cx = populated.x; // Fx(t)
const cy = populated.y; // Fy(t)
/**
* This function does the below job.
* populate([0,3,6], 2) => output 0 12 3 45 6
* populate([0,4,8], 3) => output 0 123 4 567 8
*/
function populate(data, n) {
if (data.x.length <= 1) throw new Error('NotEnoughData');
if (n < 1) throw new Error('InvalidNValue');
const arr_x = new Array(data.x.length + (data.x.length - 1) * n);
const arr_y = new Array(data.y.length + (data.y.length - 1) * n);
for (let i = 0; i < data.x.length; i++) {
arr_x[i * (n + 1)] = data.x[i];
arr_y[i * (n + 1)] = data.y[i];
}
for (let i = 0; i <= arr_x.length - n - 1 - 1; i += (n + 1)) {
const x_interpolation = (arr_x[i + n + 1] - arr_x[i]) / (n + 1);
const y_interpolation = (arr_y[i + n + 1] - arr_y[i]) / (n + 1);
for (let j = 1; j <= n; j++) {
arr_x[i + j] = arr_x[i] + x_interpolation * j;
arr_y[i + j] = arr_y[i] + y_interpolation * j;
}
}
return { x: arr_x, y: arr_y };
}
// This function makes all values are in range of [-1, 1].
// I just did it... because I don't want to deal with big numbers (and not want numbers having different magnitude depending on data).
function normalize(obj) {
const _x = [];
const _y = [];
const biggest_x = Math.max(...obj.x);
const smallest_x = Math.min(...obj.x);
const final_x = Math.max(Math.abs(biggest_x), Math.abs(smallest_x));
const biggest_y = Math.max(...obj.y);
const smallest_y = Math.min(...obj.y);
const final_y = Math.max(Math.abs(biggest_y), Math.abs(smallest_y));
for (let i = 0; i < obj.x.length; i++) {
_x[i] = obj.x[i] / final_x;
_y[i] = obj.y[i] / final_y;
}
return { x: _x, y: _y };
}
// returns Fx(t) and Fy(t) from svg path data
function get_points(arr) {
const x = [];
const y = [];
let i = 0;
while (i < arr.length) {
const path_command = arr[i];
if (path_command === "M") {
x.push(Number(arr[i + 1]));
y.push(Number(arr[i + 2]));
i += 3;
} else if (path_command === 'm') {
if (i === 0) {
x.push(Number(arr[i + 1]));
y.push(Number(arr[i + 2]));
i += 3;
} else {
x.push(x.at(-1) + Number(arr[i + 1]));
y.push(y.at(-1) + Number(arr[i + 2]));
i += 3;
}
} else if (path_command === 'L') {
x.push(Number(arr[i + 1]));
y.push(Number(arr[i + 2]));
i += 3;
} else if (path_command === 'l') {
x.push(x.at(-1) + Number(arr[i + 1]));
y.push(y.at(-1) + Number(arr[i + 2]));
i += 3;
} else if (path_command === 'H') {
x.push(Number(arr[i + 1]));
y.push(y.at(-1));
i += 2;
} else if (path_command === 'h') {
x.push(x.at(-1) + Number(arr[i + 1]));
y.push(y.at(-1));
i += 2;
} else if (path_command === 'V') {
x.push(x.at(-1));
y.push(Number(arr[i + 1]));
i += 2;
} else if (path_command === 'v') {
x.push(x.at(-1));
y.push(y.at(-1) + Number(arr[i + 1]));
i += 2;
} else if (path_command === 'Z' || path_command === 'z') {
i++;
console.log('reached to z/Z, getting points done');
} else if (path_command === 'C' || path_command === 'c' || path_command === 'S' || path_command === 's' || path_command === 'Q' || path_command === 'q' || path_command === 'T' || path_command === 't' || path_command === 'A' || path_command === 'a') {
throw new Error('unsupported path command, getting points aborted');
} else {
x.push(x.at(-1) + Number(arr[i]));
y.push(y.at(-1) + Number(arr[i + 1]));
i += 2;
}
}
return { x, y };
}
Meanwhile, in order to calculate Fourier coefficients, I used numerical integration. This is the code.
/**
* This function calculates Riemann sum (area approximation using rectangles).
* #param {Number} div division number (= number of rectangles to be used)
* #param {Array | Function} subject subject of integration
* #param {Number} start where to start integration
* #param {Number} end where to end integration
* #param {Number} nth this parameter will be passed to 'subject'
* #param {Function} paramFn this parameter will be passed to 'subject'
* #returns {Number} numerical-integrated value
*/
function numerical_integration(div, subject, start, end, nth = null, paramFn = null) {
if (div < 1) throw new Error(`invalid div; it can't be 0 or 0.x`);
let sum = 0;
const STEP = 1 / div;
const isSubjectArray = Array.isArray(subject);
if (isSubjectArray) {
for (let t = start; t < end; t++) {
for (let u = 0; u < div; u++) {
sum += subject[t + 1] * STEP;
}
}
} else {
for (let t = start; t < end; t++) {
for (let u = 0; u < div; u++) {
const period = end - start;
const isParamFnArray = Array.isArray(paramFn);
if (isParamFnArray) sum += subject((t + 1), period, nth, paramFn) * STEP;
else sum += subject(((t + STEP) + STEP * u), period, nth, paramFn) * STEP;
}
}
}
return sum;
// console.log(numerical_integration(10, (x) => x ** 3, 0, 2));
}
The approximation is near. For (x) => x, division 10, from 0 to 2, the approximation is 2.1 while actual answer is 2. For (x) => x ** 2, division 10, from 0 to 2, the approximation is 2.87, while actual answer is 2.67. For (x) => x ** 3, division 10, from 0 to 2, the approximation is 4.41, while actual answer is 4.
And I found a0, an, bn by the following: (※ You can find Fourier coefficients formulas in my previous question)
/**
* This function will be passed to 'getAn' function.
* #param {Number} t this function is a function of time
* #param {Number} period period of a function to be integrated
* #param {Number} nth integer multiple
* #param {Array | Function} paramFn
* #returns {Number} computed value
*/
function fc(t, period, nth, paramFn) {
const isParamFnArray = Array.isArray(paramFn);
const w = 2 * Math.PI / period;
if (isParamFnArray) return paramFn[t] * Math.cos(nth * w * t);
else return paramFn(t) * Math.cos(nth * w * t);
}
// This function will be passed to 'getBn' function.
function fs(t, period, nth, paramFn) {
const isParamFnArray = Array.isArray(paramFn);
const w = 2 * Math.PI / period;
if (isParamFnArray) return paramFn[t] * Math.sin(nth * w * t);
else return paramFn(t) * Math.sin(nth * w * t);
}
/**
* This function returns a0 value.
* #param {Number} period period of a function to be integrated
* #param {Array | Function} intgFn function to be intergrated
* #param {Number} div number of rectangles to use
* #returns {Number} a0 value
*/
// Why * 30? in order to scale up
// Why - 1? because arr[arr.length] is undefined.
function getA0(period, intgFn, div) {
return 30 * numerical_integration(div, intgFn, 0, period - 1) / period;
}
/**
* This function returns an values.
* #param {Number} period period of a function to be integrated
* #param {Number} div number of rectangles to use
* #param {Number} howMany number of an values to be calculated
* #param {Array | Function} paramFn function to be integrated
* #returns {Array} an values
*/
function getAn(period, div, howMany, paramFn) {
const an = [];
for (let n = 1; n <= howMany; n++) {
const value = 30 * numerical_integration(div, fc, 0, period - 1, n, paramFn) * 2 / period;
an.push(value);
}
return an;
}
// This function returns bn values.
function getBn(period, div, howMany, paramFn) {
const bn = [];
for (let n = 1; n <= howMany; n++) {
const value = 30 * numerical_integration(div, fs, 0, period - 1, n, paramFn) * 2 / period;
bn.push(value);
}
return bn;
}
const xa0 = getA0(cx.length, cx, 10);
const xan = getAn(cx.length, 10, 100, cx);
const xbn = getBn(cx.length, 10, 100, cx);
const ya0 = getA0(cy.length, cy, 10);
const yan = getAn(cy.length, 10, 100, cy);
const ybn = getBn(cy.length, 10, 100, cy);
However, the result was not a thing I wanted... It was a weird shape... Maybe this is life...
The below is the canvas drawing code:
const $cvs = document.createElement('canvas');
const cctx = $cvs.getContext('2d');
$cvs.setAttribute('width', 1000);
$cvs.setAttribute('height', 800);
$cvs.setAttribute('style', 'border: 1px solid black;');
document.body.appendChild($cvs);
window.requestAnimationFrame(draw_tick);
// offset
const xoo = { x: 200, y: 600 }; // x oscillator offset
const yoo = { x: 600, y: 200 }; // y ~
// path
const path = [];
// drawing function
let deg = 0;
function draw_tick() {
const rAF = window.requestAnimationFrame(draw_tick);
// initialize
cctx.clearRect(0, 0, 1000, 800);
// y oscillator
const py = { x: 0, y: 0 };
// a0
// a0 circle
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(yoo.x + py.x, yoo.y + py.y, Math.abs(ya0), 0, 2 * Math.PI);
cctx.stroke();
// a0 line
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(yoo.x + py.x, yoo.y + py.y);
py.x += ya0 * Math.cos(0 * deg * Math.PI / 180);
py.y += ya0 * Math.sin(0 * deg * Math.PI / 180);
cctx.lineTo(yoo.x + py.x, yoo.y + py.y);
cctx.stroke();
// an
for (let i = 0; i < yan.length; i++) {
const radius = yan[i];
// an circles
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(yoo.x + py.x, yoo.y + py.y, Math.abs(radius), 0, 2 * Math.PI);
cctx.stroke();
// an lines
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(yoo.x + py.x, yoo.y + py.y);
py.x += radius * Math.cos((i+1) * deg * Math.PI / 180);
py.y += radius * Math.sin((i+1) * deg * Math.PI / 180);
cctx.lineTo(yoo.x + py.x, yoo.y + py.y);
cctx.stroke();
}
// bn
for (let i = 0; i < ybn.length; i++) {
const radius = ybn[i];
// bn circles
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(yoo.x + py.x, yoo.y + py.y, Math.abs(radius), 0, 2 * Math.PI);
cctx.stroke();
// bn lines
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(yoo.x + py.x, yoo.y + py.y);
py.x += radius * Math.cos((i+1) * deg * Math.PI / 180);
py.y += radius * Math.sin((i+1) * deg * Math.PI / 180);
cctx.lineTo(yoo.x + py.x, yoo.y + py.y);
cctx.stroke();
}
// x oscillator
const px = { x: 0, y: 0 };
// a0
// a0 circle
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(yoo.x + py.x, yoo.y + py.y, Math.abs(xa0), 0, 2 * Math.PI);
cctx.stroke();
// a0 line
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(yoo.x + py.x, yoo.y + py.y);
py.x += xa0 * Math.cos(0 * deg * Math.PI / 180);
py.y += xa0 * Math.sin(0 * deg * Math.PI / 180);
cctx.lineTo(yoo.x + py.x, yoo.y + py.y);
cctx.stroke();
// an
for (let i = 0; i < xan.length; i++) {
const radius = xan[i];
// an circles
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(xoo.x + px.x, xoo.y + px.y, Math.abs(radius), 0, 2 * Math.PI);
cctx.stroke();
// an lines
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(xoo.x + px.x, xoo.y + px.y);
px.x += radius * Math.cos((i+1) * deg * Math.PI / 180);
px.y += radius * Math.sin((i+1) * deg * Math.PI / 180);
cctx.lineTo(xoo.x + px.x, xoo.y + px.y);
cctx.stroke();
}
// bn
for (let i = 0; i < xbn.length; i++) {
const radius = xbn[i];
// bn circles
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.arc(xoo.x + px.x, xoo.y + px.y, Math.abs(radius), 0, 2 * Math.PI);
cctx.stroke();
// bn lines
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(xoo.x + px.x, xoo.y + px.y);
px.x += radius * Math.cos((i+1) * deg * Math.PI / 180);
px.y += radius * Math.sin((i+1) * deg * Math.PI / 180);
cctx.lineTo(xoo.x + px.x, xoo.y + px.y);
cctx.stroke();
}
// y oscillator line
cctx.strokeStyle = 'black';
cctx.beginPath();
cctx.moveTo(yoo.x + py.x, yoo.y + py.y);
cctx.lineTo(xoo.x + px.x, yoo.y + py.y);
cctx.stroke();
// x oscillator line
cctx.strokeStyle = 'black';
cctx.beginPath();
cctx.moveTo(xoo.x + px.x, xoo.y + px.y);
cctx.lineTo(xoo.x + px.x, yoo.y + py.y);
cctx.stroke();
// path
path.push({ x: px.x, y: py.y });
cctx.beginPath();
cctx.strokeStyle = 'black';
cctx.moveTo(200 + path[0].x, 200 + path[0].y);
for (let i = 0; i < path.length; i++) {
cctx.lineTo(200 + path[i].x, 200 + path[i].y);
}
cctx.stroke();
// degree update
if (deg === 359) {
window.cancelAnimationFrame(rAF);
} else {
deg++;
}
}
So! I decided to be logical. First, I checked whether the converted path data is correct by drawing it at canvas. The below is the canvas code and the data.
let count = 0;
function draw_tick2() {
const rAF = window.requestAnimationFrame(draw_tick2);
const s = 100; // scale up
// initialize
cctx.clearRect(0, 0, 1000, 800);
cctx.beginPath();
// 200 has no meaning I just added it to move the path.
for (let i = 0; i < count; i++) {
if (i === 0) cctx.moveTo(200 + s * cx[i], 200 + s * cy[i]);
else cctx.lineTo(200 + s * cx[i], 200 + s * cy[i]);
}
cctx.stroke();
if (count < cx.length - 1) {
count++;
} else {
window.cancelAnimationFrame(rAF);
}
}
const paimon = 'm 0,0 -2.38235,-2.87867 -1.58823,-1.29045 -1.9853,-0.893384 -3.17647,-0.39706 1.58824,-1.98529 1.09191,-2.08456 v -2.38235 l -0.79412,-2.87868 1.88603,2.18383 1.6875,1.88602 1.78677,0.99265 1.78676,0.39706 1.78676,-0.19853 -1.6875,1.58824 -0.69485,1.68749 -0.0993,2.084564 0.39706,2.18383 9.62867,3.87132 2.77941,1.9853 4.66544,-1.09192 3.07721,-1.88603 1.9853,-2.58088 -3.97059,0.49633 -3.375,-0.79412 -2.87868,-2.58088 -2.08456,-3.077214 2.38235,1.48897 2.08456,0.19853 3.57353,-0.89338 2.58089,-2.48162 -3.07721,0.39706 -3.87132,-1.88603 -2.97794,-2.08456 -2.48162,-2.87868 -3.87133,-4.06985 -4.06985,-2.68015 -5.95588,-2.58088 -5.85662,-0.79412 -5.45956,0.99265 0.59559,1.6875 -0.99265,1.09191 -0.79412,3.47427 -1.29044,-2.97794 -0.89338,-1.19118 0.79412,-1.48897 1.6875,-0.79412 0.39706,-3.772057 1.48897,1.290441 1.78676,0.09926 -2.08456,-1.985293 1.78677,-0.893382 4.36765,-0.19853 4.86397,0.992648 1.19117,1.091912 -2.38235,1.985301 3.17647,-0.49633 2.87868,-2.680149 -3.57353,-2.580881 -5.45956,-1.488972 h -4.46691 l -3.6728,-3.176471 -0.79412,1.389706 -0.79411,-1.488969 0.69485,-0.595588 -1.58824,-3.871325 -0.39706,3.672795 -0.69485,0.297794 0.89338,1.091911 v 1.091912 h -1.19113 l -0.59559,-0.992648 -1.98529,2.878677 -4.06986,1.588236 -4.26838,1.985293 3.27574,3.871329 2.87867,1.88603 2.58088,0.29779 -2.58088,-1.58823 -0.89338,-2.084566 4.86397,-0.992645 -1.19118,2.382351 h 1.58824 l 1.48897,-1.88603 0.29779,2.77942 -2.38235,2.38235 -3.57353,2.87868 -3.97059,4.86397 -2.08456,3.67279 -2.58088,2.58088 -2.68015,1.09192 -3.17647,0.0993 -1.3897,-0.69485 1.09191,3.17647 2.18382,3.573534 3.375,2.38235 -1.78676,5.85662 -1.38971,6.05514 0.39706,4.36765 1.38971,4.66544 3.87132,4.46691 -0.79412,-3.57352 -0.49632,-4.06986 v -2.48162 l 1.78676,5.85662 3.07721,3.17647 3.07721,1.29044 3.37499,0.79412 2.28309,-0.89338 0.69486,-1.48897 -1.19118,0.49632 -2.48162,-1.98529 -2.28309,-2.87868 2.28309,2.48162 h 0.99265 l 0.69485,-0.49632 0.2978,-1.19118 0.0993,-0.79412 -0.89339,0.59559 -1.58823,-0.99265 -1.29044,-1.3897 -1.19118,-2.38236 -0.89338,-4.86397 -0.0993,-4.56617 0.29779,-4.96324 0.39706,0.89338 1.19118,-0.44669 0.0496,-0.89338 1.09191,0.69485 1.48897,0.2978 1.53861,0.89338 0.99264,0.64522 h -0.79411 l 0.49632,2.43199 -0.44669,1.58823 -1.78676,0.39706 -1.24081,-1.24081 -0.24817,-1.43934 0.84375,-0.94301 1.19118,-0.49633 1.14154,0.94302 0.24816,1.14154 -0.0993,1.48897 -1.83639,0.64523 -1.58824,-1.53861 -0.44669,-1.48897 -0.24816,-2.18382 -1.43934,0.99264 0.0496,-0.99264 -0.44669,1.78676 0.69485,3.12684 1.09192,4.26838 1.78676,1.78677 6.89889,3.02757 -2.53124,0.99265 -3.17647,1.3897 -0.79412,0.39706 0.59559,0.39706 1.34007,-0.69485 0.0496,1.19117 1.98529,-0.39705 2.68015,-0.44669 -0.2978,-1.93567 0.79412,1.58824 2.82905,-0.44669 4.06985,-1.34008 1.04229,-0.59559 -0.2978,-1.78676 -0.34743,-1.73713 -4.9136,2.48162 -2.58088,0.94301 -3.17648,-4.81434 1.53861,0.49633 1.3897,0.0496 1.43935,-0.24816 -1.34008,0.24816 h -1.58824 l -1.41452,-0.54596 3.12684,4.78953 2.63052,-0.89339 4.86397,-2.4568 2.65533,-2.08456 0.39706,-5.90625 -0.84375,1.5386 -1.14155,0.54596 -1.5386,0.19853 -1.29044,-0.89338 -0.59559,-1.09191 -0.24816,-1.73714 0.24816,-1.3897 -2.08456,0.54595 -0.29779,-0.34742 0.34743,-0.49633 0.64522,-0.39706 1.5386,-0.39705 2.18382,-0.19853 1.24081,0.0993 1.14154,0.54596 0.4467,1.43934 -0.19853,1.63786 -0.59559,1.29044 -1.24081,0.89339 -1.43934,-0.39706 -0.99264,-1.09191 -0.0496,-1.19118 0.79412,-0.89338 0.89338,-0.44669 1.19118,-0.0496 0.64522,1.04228 0.34742,0.79412 -0.14889,1.14155 0.99265,-0.4467 0.29779,-1.34007 -0.19853,-4.06985 -1.93566,-0.44669 -2.53125,-1.6875 -2.23346,-1.88603 -2.23345,-4.069864 -0.44669,3.920964 0.64522,4.21875 1.5386,3.92096 0.74448,0.44669 h -1.73713 l -2.18383,-0.54596 -3.12684,-2.08456 -1.58823,-2.28309 -1.14154,-2.08456 -1.29044,-3.871324 -1.38971,2.481624 -1.48897,2.63051 -0.94302,1.9853 3.8217,-6.948534 1.29044,3.672794 2.33272,3.92096 2.9283,2.13419 0.49633,0.44669 2.28309,0.49632 h 1.63787 l -0.69485,-0.69485 -0.84375,-1.93566 -1.34008,-5.80698 0.44669,-3.970594 2.33273,4.069854 4.56617,3.47426 2.08456,0.59559 0.19853,2.82905 -0.0496,3.97058 -0.0993,6.00552 -0.54595,3.02757 -1.58824,2.77941 -1.5386,0.89339 -1.19118,0.24816 -1.48897,-0.69485 -0.69485,-0.1489 0.69485,1.24081 1.43934,1.6875 2.68015,1.19117 3.17647,0.2978 3.77206,-2.23346 1.3897,-2.77941 0.89339,-3.82169 0.0496,-3.375 0.14889,6.25368 -1.14154,5.11213 -2.08456,3.27573 -2.08456,1.6875 -1.88603,0.59559 -2.28308,-0.79412 1.78676,1.6875 4.9136,1.88603 2.43199,0.2978 2.68015,-0.39706 2.72977,-1.09191 3.62317,-3.27574 0.89338,-3.97059 0.49632,-3.57353 -0.0993,-2.87867 -0.39706,-3.17647 -0.49632,-3.07721 1.98529,3.47427 1.19117,2.18382 0.39706,1.29044 0.39706,-2.28309 -0.39706,-3.0772 -1.29044,-3.77206 -1.29044,-2.87868 -1.6875,-3.27573 -10.125,-4.16912 z';
This is ★Paimon chan★ from a computer game 'Genshin Impact'. Thus it is proved that there are no flaws at the data, since all the data is plotted correctly.
Next, I plotted the approximated (Fx(t), Fy(t)) points so that I can check whether there is a problem. And It turned out that there was a problem. But I don't understand what is the problem. At the same time this path is interesting; The beginning part of the path seems like the hairpin.
This is the drawing code:
function approxFn(t) {
let x = xa0;
let y = ya0;
for (let i = 0; i < xan.length; i++) {
x += xan[i] * Math.cos(2 * Math.PI * i * t / cx.length);
x += xbn[i] * Math.sin(2 * Math.PI * i * t / cx.length);
y += yan[i] * Math.cos(2 * Math.PI * i * t / cx.length);
y += ybn[i] * Math.sin(2 * Math.PI * i * t / cx.length);
}
return { x, y };
}
function draw_tick3() {
const rAF = window.requestAnimationFrame(draw_tick3);
const s = 5;
// initialize
cctx.clearRect(0, 0, 1000, 800);
cctx.beginPath();
for (let t = 0; t < count; t++) {
if (count === 0) cctx.moveTo(200 + s * approxFn(t).x, 200 + s * approxFn(t).y);
else cctx.lineTo(200 + s * approxFn(t).x, 200 + s * approxFn(t).y);
}
cctx.stroke();
if (count < cx.length - 1) {
count++;
} else {
window.cancelAnimationFrame(rAF);
}
}
The above is all the code in my js file. In where I made a mistake? It's a mystery! I know this question is exceptionally seriously long question. But please help me! I want to realize Paimon chan! ㅠwㅠ
※ (This section is irrelevant with the question) Meanwhile I made a success to draw the path in a complex number plane. If you're interested, please see my work... I would like to add circle things to this but I have no idea what is 'radius' in this case.
// You can see that I used real part for x and imaginary part for y.
for (let i = 0; i <= count; i++) {
if (i === 0) {
cctx.moveTo(coords[i].real * scaler + paimonPosition, coords[i].imag * scaler + paimonPosition);
} else {
cctx.lineTo(coords[i].real * scaler + paimonPosition, coords[i].imag * scaler + paimonPosition);
}
}
And this is the result. But what makes me confused is a case of cn = -5000 ~ 5000. As far as I understand, more cn, more accurate as original wave. But why it crashes when cn is so big?
Anyways, thank you very much for reading this long question!
(the character shown: Paimon from Genshin Impact)
Hello myself!
First, errors in your code...
You did not consider a case where sequence of values come after drawing command. For example, your get_points function can't handle a case like h 0 1 2.
Current get_points function can't handle second m drawing command. You need to manually join strings if you have multiple paths.
You need to manually set m x y to m 0 0. Otherwise you can't see canvas drawing. (Maybe values are too too small to draw)
Second, in brief, you can't draw a shape with rotating vectors having fixed magnitude, if you approximate f(t) in a xy plane. It's because what you approximated is not a shape itself, but shape's coordinates.
Third, the reason you got weird shape when you tried to plot approximated data is at your approxFn() function.
x += xan[i] * Math.cos(2 * Math.PI * i * t / cx.length);
x += xbn[i] * Math.sin(2 * Math.PI * i * t / cx.length);
y += yan[i] * Math.cos(2 * Math.PI * i * t / cx.length);
y += ybn[i] * Math.sin(2 * Math.PI * i * t / cx.length);
not t, (t + 1) is correct. Your approximated data has no problem.
Fourth, so you need to take a complex plane approach if you want rotating vectors. In this case, the radius of circles are the magnitude of a sum vector of a real part vector and an imaginary part vector (Pythagorean theorem).
Fifth, In Cn formula, you missed 1 / T.
Sixth, The reason it crashed is... I don't know the exact reason but I think numerical integration and/or finding Cn is wrong. The new code I wrote don't crash at high Cn.
p.s. I wrote some writings about Fourier series. Please see if you are interested: https://logic-finder.github.io/memory/FourierSeriesExploration/opening/opening-en.html
I need to calculate the foot of a perpendicular line drawn from a point P to a line segment AB. I need coordinates of point C where PC is perpendicular drawn from point P to line AB.
I found few answers on SO here but the vector product process does not work for me.
Here is what I tried:
function nearestPointSegment(a, b, c) {
var t = nearestPointGreatCircle(a,b,c);
return t;
}
function nearestPointGreatCircle(a, b, c) {
var a_cartesian = normalize(Cesium.Cartesian3.fromDegrees(a.x,a.y))
var b_cartesian = normalize(Cesium.Cartesian3.fromDegrees(b.x,b.y))
var c_cartesian = normalize(Cesium.Cartesian3.fromDegrees(c.x,c.y))
var G = vectorProduct(a_cartesian, b_cartesian);
var F = vectorProduct(c_cartesian, G);
var t = vectorProduct(G, F);
t = multiplyByScalar(normalize(t), R);
return fromCartesianToDegrees(t);
}
function vectorProduct(a, b) {
var result = new Object();
result.x = a.y * b.z - a.z * b.y;
result.y = a.z * b.x - a.x * b.z;
result.z = a.x * b.y - a.y * b.x;
return result;
}
function normalize(t) {
var length = Math.sqrt((t.x * t.x) + (t.y * t.y) + (t.z * t.z));
var result = new Object();
result.x = t.x/length;
result.y = t.y/length;
result.z = t.z/length;
return result;
}
function multiplyByScalar(normalize, k) {
var result = new Object();
result.x = normalize.x * k;
result.y = normalize.y * k;
result.z = normalize.z * k;
return result;
}
function fromCartesianToDegrees(pos) {
var carto = Cesium.Ellipsoid.WGS84.cartesianToCartographic(pos);
var lon = Cesium.Math.toDegrees(carto.longitude);
var lat = Cesium.Math.toDegrees(carto.latitude);
return [lon,lat];
}
What I am missing in this?
Here's a vector-based way:
function foot(A, B, P) {
const AB = {
x: B.x - A.x,
y: B.y - A.y
};
const k = ((P.x - A.x) * AB.x + (P.y - A.y) * AB.y) / (AB.x * AB.x + AB.y * AB.y);
return {
x: A.x + k * AB.x,
y: A.y + k * AB.y
};
}
const A = { x: 1, y: 1 };
const B = { x: 4, y: 5 };
const P = { x: 4.5, y: 3 };
const C = foot(A, B, P);
console.log(C);
// perpendicular?
const AB = {
x: B.x - A.x,
y: B.y - A.y
};
const PC = {
x: C.x - P.x,
y: C.y - P.y
};
console.log((AB.x * PC.x + AB.y * PC.y).toFixed(3));
Theory:
I start with the vector from A to B, A➞B. By multiplying this vector by a scalar k and adding it to point A I can get to any point C on the line AB.
I) C = A + k × A➞B
Next I need to establish the 90° angle, which means the dot product of A➞B and P➞C is zero.
II) A➞B · P➞C = 0
Now solve for k.
function closestPointOnLineSegment(pt, segA, segB) {
const A = pt.x - segA.x,
B = pt.y - segA.y,
C = segB.x - segA.x,
D = segB.y - segA.y
const segLenSq = C**2 + D**2
const t = (segLenSq != 0) ? (A*C + B*D) / segLenSq : -1
return (t<0) ? segA : (t>1) ? segB : {
x: segA.x + t * C,
y: segA.y + t * D
}
}
can.width = can.offsetWidth
can.height = can.offsetHeight
const ctx = can.getContext('2d')
const segA = {x:100,y:100},
segB = {x:400, y:200},
pt = {x:250, y:250}
visualize()
function visualize() {
ctx.clearRect(0, 0, can.width, can.height)
const t = Date.now()
pt.x = Math.cos(t/1000) * 150 + 250
pt.y = Math.sin(t/1000) * 100 + 150
segA.x = Math.cos(t / 2000) * 50 + 150
segA.y = Math.sin(t / 2500) * 50 + 50
segB.x = Math.cos(t / 3000) * 75 + 400
segB.y = Math.sin(t / 2700) * 75 + 100
line(segA, segB, 'gray', 2)
const closest = closestPointOnLineSegment(pt, segA, segB)
ctx.setLineDash([5, 8])
line(pt, closest, 'orange', 2)
ctx.setLineDash([])
dot(closest, 'rgba(255, 0, 0, 0.8)', 10)
dot(pt, 'blue', 7)
dot(segA, 'black', 7)
dot(segB, 'black', 7)
window.requestAnimationFrame(visualize)
}
function dot(p, color, w) {
ctx.fillStyle = color
ctx.fillRect(p.x - w/2, p.y - w/2, w, w)
}
function line(a, b, color, n) {
ctx.strokeStyle = color
ctx.lineWidth = n
ctx.beginPath()
ctx.moveTo(a.x, a.y)
ctx.lineTo(b.x, b.y)
ctx.stroke()
}
html, body { height:100%; min-height:100%; margin:0; padding:0; overflow:hidden }
canvas { width:100%; height:100%; background:#ddd }
<canvas id="can"></canvas>
I need to use CMYK colors on my web page. Is there any way to use CMYK in CSS or may be convert CMYK to RGB using JavaScript?
EDIT:
I mean I have colors creating algorithm in CMYK notation and I need to use it on web page.
There is no perfect algorithmic way to convert CMYK to RGB. CYMK is a subtractive color system, RGB is an additive color system. Each have different gamuts, which means there are colors that just cannot be represented in the other color system and vice versa. Both are device dependent color spaces, which really means that what color you really get is dependent on which device you use to reproduce that color, which is why you have color profiles for each device that adjust how it produces color into something more "absolute".
The best that you can do is approximate a simulation of one space onto the other. There is an entire field of computer science that is dedicated to this kind of work, and its non-trivial.
If you are looking for a heuristic for doing this, then the link that Cyrille provided is pretty simple math, and easily invertible to accept a CYMK color and produce a reasonable RGB facsimile.
A very simple heuristic is to map cyan to 0x00FFFF, magenta to 0xFF00FF, and yellow to 0xFFFF00, and black (key) to 0x000000. Then do something like this:
function cmykToRGB(c,m,y,k) {
function padZero(str) {
return "000000".substr(str.length)+str
}
var cyan = (c * 255 * (1-k)) << 16;
var magenta = (m * 255 * (1-k)) << 8;
var yellow = (y * 255 * (1-k)) >> 0;
var black = 255 * (1-k);
var white = black | black << 8 | black << 16;
var color = white - (cyan | magenta | yellow );
return ("#"+padZero(color.toString(16)));
}
invoking cmykToRGB with cmyk ranges from 0.0 to 1.0. That should give you back an RGB color code. But again this is just a heuristic, an actual conversation between these color spaces is much more complicated and takes into account a lot more variables then are represented here. You mileage may vary, and the colors you get out of this might not "look right"
jsFiddle here
There's no way to use CMYK in CSS. You can either use RGB or HSL (CSS3 only). Here's a JavaScript algorithm to convert CMYK to RGB (and the other way around).
Edit: the link seems dead now, here's the code from a cached version:
/**
*
* Javascript color conversion
* http://www.webtoolkit.info/
*
**/
function HSV(h, s, v) {
if (h <= 0) { h = 0; }
if (s <= 0) { s = 0; }
if (v <= 0) { v = 0; }
if (h > 360) { h = 360; }
if (s > 100) { s = 100; }
if (v > 100) { v = 100; }
this.h = h;
this.s = s;
this.v = v;
}
function RGB(r, g, b) {
if (r <= 0) { r = 0; }
if (g <= 0) { g = 0; }
if (b <= 0) { b = 0; }
if (r > 255) { r = 255; }
if (g > 255) { g = 255; }
if (b > 255) { b = 255; }
this.r = r;
this.g = g;
this.b = b;
}
function CMYK(c, m, y, k) {
if (c <= 0) { c = 0; }
if (m <= 0) { m = 0; }
if (y <= 0) { y = 0; }
if (k <= 0) { k = 0; }
if (c > 100) { c = 100; }
if (m > 100) { m = 100; }
if (y > 100) { y = 100; }
if (k > 100) { k = 100; }
this.c = c;
this.m = m;
this.y = y;
this.k = k;
}
var ColorConverter = {
_RGBtoHSV : function (RGB) {
var result = new HSV(0, 0, 0);
r = RGB.r / 255;
g = RGB.g / 255;
b = RGB.b / 255;
var minVal = Math.min(r, g, b);
var maxVal = Math.max(r, g, b);
var delta = maxVal - minVal;
result.v = maxVal;
if (delta == 0) {
result.h = 0;
result.s = 0;
} else {
result.s = delta / maxVal;
var del_R = (((maxVal - r) / 6) + (delta / 2)) / delta;
var del_G = (((maxVal - g) / 6) + (delta / 2)) / delta;
var del_B = (((maxVal - b) / 6) + (delta / 2)) / delta;
if (r == maxVal) { result.h = del_B - del_G; }
else if (g == maxVal) { result.h = (1 / 3) + del_R - del_B; }
else if (b == maxVal) { result.h = (2 / 3) + del_G - del_R; }
if (result.h < 0) { result.h += 1; }
if (result.h > 1) { result.h -= 1; }
}
result.h = Math.round(result.h * 360);
result.s = Math.round(result.s * 100);
result.v = Math.round(result.v * 100);
return result;
},
_HSVtoRGB : function (HSV) {
var result = new RGB(0, 0, 0);
var h = HSV.h / 360;
var s = HSV.s / 100;
var v = HSV.v / 100;
if (s == 0) {
result.r = v * 255;
result.g = v * 255;
result.v = v * 255;
} else {
var_h = h * 6;
var_i = Math.floor(var_h);
var_1 = v * (1 - s);
var_2 = v * (1 - s * (var_h - var_i));
var_3 = v * (1 - s * (1 - (var_h - var_i)));
if (var_i == 0) {var_r = v; var_g = var_3; var_b = var_1}
else if (var_i == 1) {var_r = var_2; var_g = v; var_b = var_1}
else if (var_i == 2) {var_r = var_1; var_g = v; var_b = var_3}
else if (var_i == 3) {var_r = var_1; var_g = var_2; var_b = v}
else if (var_i == 4) {var_r = var_3; var_g = var_1; var_b = v}
else {var_r = v; var_g = var_1; var_b = var_2};
result.r = var_r * 255;
result.g = var_g * 255;
result.b = var_b * 255;
result.r = Math.round(result.r);
result.g = Math.round(result.g);
result.b = Math.round(result.b);
}
return result;
},
_CMYKtoRGB : function (CMYK){
var result = new RGB(0, 0, 0);
c = CMYK.c / 100;
m = CMYK.m / 100;
y = CMYK.y / 100;
k = CMYK.k / 100;
result.r = 1 - Math.min( 1, c * ( 1 - k ) + k );
result.g = 1 - Math.min( 1, m * ( 1 - k ) + k );
result.b = 1 - Math.min( 1, y * ( 1 - k ) + k );
result.r = Math.round( result.r * 255 );
result.g = Math.round( result.g * 255 );
result.b = Math.round( result.b * 255 );
return result;
},
_RGBtoCMYK : function (RGB){
var result = new CMYK(0, 0, 0, 0);
r = RGB.r / 255;
g = RGB.g / 255;
b = RGB.b / 255;
result.k = Math.min( 1 - r, 1 - g, 1 - b );
result.c = ( 1 - r - result.k ) / ( 1 - result.k );
result.m = ( 1 - g - result.k ) / ( 1 - result.k );
result.y = ( 1 - b - result.k ) / ( 1 - result.k );
result.c = Math.round( result.c * 100 );
result.m = Math.round( result.m * 100 );
result.y = Math.round( result.y * 100 );
result.k = Math.round( result.k * 100 );
return result;
},
toRGB : function (o) {
if (o instanceof RGB) { return o; }
if (o instanceof HSV) { return this._HSVtoRGB(o); }
if (o instanceof CMYK) { return this._CMYKtoRGB(o); }
},
toHSV : function (o) {
if (o instanceof HSV) { return o; }
if (o instanceof RGB) { return this._RGBtoHSV(o); }
if (o instanceof CMYK) { return this._RGBtoHSV(this._CMYKtoRGB(o)); }
},
toCMYK : function (o) {
if (o instanceof CMYK) { return o; }
if (o instanceof RGB) { return this._RGBtoCMYK(o); }
if (o instanceof HSV) { return this._RGBtoCMYK(this._HSVtoRGB(o)); }
}
}
Usage:
To convert from HSV to RGB use library like this:
var result = ColorConverter.toRGB(new HSV(10, 20, 30));
alert("RGB:" + result.r + ":" + result.g + ":" + result.b);
To convert from RGB to HSV use library like this:
var result = ColorConverter.toHSV(new RGB(10, 20, 30));
alert("HSV:" + result.h + ":" + result.s + ":" + result.v);
The same goes for CMYK.
CMYK support in CSS is currently considered by W3 for CSS3. But it’s mainly meant for printers and “it is not expected that screen-centric user agents support CMYK colors”. I think you can safely bet that none of the current browsers support CMYK for the screen and therefore you have to convert the colors to RGB somehow.
In the CSS Color Module Level 4 of the W3C as of 5 November 2019, there is a function called device-cmyk that can be used to define a device dependent CMYK color value.
Example:
color: device-cmyk(0 81% 81% 30%);
The function returns an RGB value that the device calculates by trying to convert the CMYK color to an RGB value that matches the CMYK color as close as possible.
Note: I can't find anything regarding the browser support. I guess that no browser is currently supporting this.
You can create your own SCSS/SASS function.
SCSS:
#function cmyk($c, $m, $y, $k) {
$c: $c / 100;
$m: $m / 100;
$y: $y / 100;
$k: $k / 100;
$r: 255 * (1 - $c) * (1 - $k);
$g: 255 * (1 - $m) * (1 - $k);
$b: 255 * (1 - $y) * (1 - $k);
#return rgb($r, $g, $b);
}
SASS:
#function cmyk($c, $m, $y, $k)
$c: $c / 100
$m: $m / 100
$y: $y / 100
$k: $k / 100
$r: 255 * (1 - $c) * (1 - $k)
$g: 255 * (1 - $m) * (1 - $k)
$b: 255 * (1 - $y) * (1 - $k)
#return rgb($r, $g, $b)