Promise is not resolving in Node with infinite while loop? [duplicate] - javascript

The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.

It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.

This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.

There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));

Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.

because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish

var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work

Related

javsacript / node.js await one more task makes it unblock?

I use while(true) to simulate the js thread blocking as below
setInterval(() => {
console.log(new Date(), 'interval');
}, 500);
while (true) {
console.log(new Date(), 'while true');
}
In the above code, we cannot see interval printed on the terminal because the call stack busy at executing what's in the while(true).
But I can see interval in the below code by adding one more await in the while(true).
main();
async function main() {
setInterval(() => {
console.log(new Date(), 'interval');
}, 500);
while (true) {
console.log(new Date(), 'while true');
await wait();
}
function wait() {
return new Promise(ok => setTimeout(ok, 0));
}
}
Why adding one await in the while(true) would make js main thread have spare time to execute the interval ?
I usually use this image while thinking of async behaviour in js. I'm thinking the call stack is full of what's in the while(true) no matter we put a await or not.
event loop image from
https://medium.com/#swarajgandhi/what-the-heck-is-the-event-loop-anyway-fc5a687a9577
javsacript / node.js await one more task makes it unblock?
It depends upon what the task is that you're awaiting.
Why adding one await in the while(true) would make js main thread have spare time to execute the interval ?
Here's a simplified sequence of steps that happens with this loop:
while (true) {
console.log(new Date(), 'while true');
await wait();
}
Log the date
call wait()
When executing wait() call setTimeout(ok, 0)
Return unresolved promise from wait().
await that unresolved promise.
Your while loop is now suspended until that promise resolves.
Control goes back toward the event loop upon the function suspension at the await.
The first thing that is checked is a few higher priority things like the promise job queue. Nope, nothing there yet.
OK, go back to the main event loop. This main event loop has multiple steps in its cycleand one of those steps is for timers.
When the event loop gets to the timer stage, see what the oldest timer-related event is and call its callback. Hmmm, if there was already an overdue setInterval() timer waiting to run, it will get to run. After it runs, check for any other pending timers and run them.
If there's no overdue setInterval() waiting to run, then the setTimeout(ok, 0) should now be ready the run. The event loop calls its callback which resolves the promise we created earlier.
Now, there is something in the promise job queue so service that. This will resume the main function call on the await where it left off in step #6, and the while loop gets to run another cycle (starting at #1).
Because of step #10, you can see that at some point, there will be an overdue setInterval() waiting to run and it will be in line in front of the most recent setTimeout(ok, 0) so it will get to run. After it runs, the next setTimeout(ok, 0) will get its turn to run.
Thus, you get to see the setInterval() results when you await something that is only resolved when a setTimeout() fires.
So, put even simpler. The setInterval() timer and the setTimeout() timer are served by the same part of the event loop. So, the same code in the event loop that allows your setTimeout() to run which will resolve the promise you are awaiting also allows the setInterval() timer to run. So, when you await the promise that gets resolved by a setTimeout() you're making your code wait until the event loop gets to the part where it serves timers and while it's doing that, it's going to serve any setInterval() firing that was already waiting before you registered your setTimeout(). It won't serve only your setTimeout() without also serving any already waiting setInterval().
So, it's not so much about "spare time" in the event loop, but about ordering in the event loop. A setInterval() that is already overdue will get served by the event loop before your setTimeout(ok, 0). So, the promise in your wait() function won't get resolved until after any setInterval() that was already waiting to run gets to run, thus allowing them to interleave and both get to run.
As a test and a puzzle for further understanding, try changing to this:
function wait() {
return Promise.resolve();
}
This will return an immediately resolved promise which will not let the setInterval() get a chance to run because resolved promises get served before the main event loop that handles timers like setInterval(). So, you never allow the event loop to get around to serving timers as you starve it by constantly giving it a resolved promise to serve.
Note, you will generally not want to program this way (with a loop on an already resolved promise) because you are starving other parts of the event loop. This was just a demo for illustration purposes.

setTimeout() Irregular Execution Behaviour [duplicate]

The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work

Why does setTimeout not trigger after specified time

I am running a very basic javascript code in Viusal Studio Code. However I am not seeing the callback function get triggered.
I am trying to understand how setTimeout() works in javascript. I am running the following code (in file called test.js) in Visual Studio code as follows:
node test.js
'use strict'
let timerexpired = false;
setTimeout( function() {console.log(`setting timerexpired to true...`);
timerexpired = true;
},
5000);
while(1) {
console.log(`timerexpired = `, timerexpired);
if (timerexpired) {
console.log(`timer expired. Resume execution`);
break;
} else {
console.log(`keep on spinning`);
}
}
Expect the loop to break after 5000 ms. But it keeps on spinning with output as "keep on spinning"
When you call setTimeout or when you do any blocking operation for that matter, it's in fact added to an event table and not executed immediately.
It's only after the call stack is empty that the event loop check the event table to see if there's anything waiting, and move it to the call stack.
To better understand this, check the following example:
setTimeout(() => console.log('first'), 0)
console.log('second')
You may think that first will be logged before second, but in fact it's second that will be logged first.
In your example the call stack is never empty, so setTimeout won't really work as expected.
You may wanna check this, it will give you a better idea about what's happening under the hood.
While(1) is an infinite while loop. I think that is the reason

js while(true){} blocks event loop

setInterval(function(){console.log("hello")},2000);
while(true){}
"hello" never gets printed.
I think event loop runs in a different thread, but here it seems like 'while loop' is preventing the 'event loop' from execution.
Can somebody put some light on this?
You have to understand
How browser internally does setTimeout?
I will explain in brief.
To learn more about this
Here is more detail explanation of event loop by Philip Roberts
in jsconf2014
Philip Roberts: What the heck is the event loop anyway?
Also, to see this process in action there is a great tool take a look
at loupe
To understand that you have to know about event queue in javascript. There are event queues implemented in browser. Whenever an event get triggered in js, all of these events (like click etc.. ) are added to this queue. When your browser has nothing to execute it takes an event from queue and executes them one by one.
Now, when you call setTimeout or setInterval your callback get registered to an timer in browser and it gets added to the event queue after the given time expires and eventually javascript takes the event from the queue and executes it.
This happens so, because javascript execution is single threaded and they can execute only one thing at a time. So, they cannot execute other javascript and keep track of your timer. That is why these timers are registered with browser (browser are not single threaded) and it can keep track of timer and add an event in the queue after the timer expires.
same happens for setInterval only in this case the event is added to the queue again and again after the specified interval until it gets cleared or browser page refreshed.
Note
The delay parameter you pass to these functions is the minimum delay
time to execute the callback. This is because after the timer expires
the browser adds the event to the queue to be executed by the
javascript engine but the execution of the callback depends upon your
events position in the queue and as the engine is single threaded it
will execute all the events in the queue one by one.
Hence, your callback may sometime take more than the specified delay time to be called specially when your other code blocks the thread and not giving it time to process what's there in the queue.
And as I mentioned javascript is single thread. So, if you block the thread for long.
Like this code
while(true) { //infinite loop
}
Your user may get a message saying page not responding.
And here, your setTimeout event will never execute.
Non-blocking while loop:
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));

Why does a while loop block the event loop?

The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work

Categories

Resources