I have a pattern in my app regarding redux-saga, that for asynchro calls I have two functions - the first one is listening to some specified action and the second one is making the call to the api.
Listener function:
function* userJoinListener() {
while (true) {
const { user } = yield take(UserJoinRequest);
const promiseRace = yield race({
res: call(userJoinFunction, user),
err: take(UserJoinError),
});
if (promiseRace.res) {
// code if success
} else {
// code if fail
}
}
}
Api call executing function:
function* userJoinFunction(user) {
try {
return yield call(userJoin, user);
} catch (err) {
yield put(userJoinFail);
}
}
My question is: what is the advantage of using race here exactly? To be honest, I could just use that second function in the same place as race is and it would work as expected:
function* userJoinListener() {
while (true) {
const { user } = yield take(UserJoinRequest);
try {
// code if success
return yield call(userJoin, user);
} catch (err) {
// code if fail
yield put(userJoinFail);
}
}
}
Thank you :)
Related question: Difference between Promise.race() and try/catch in redux-saga
Update:
Advantages:
ability to cancel request
Indeed using race here is unnecessary complex.
If you are handling errors or cancellation inside the called saga (userJoinFunction) itself, then just use try..catch/cancel as that is more straightforward.
If on the other hand you need to cancel the saga when something happens from the outside (timeout, user action) then it makes sense to use the race effect.
Related
I am trying to write some code that will execute several blocking sagas in sequence. For my use case, saga1 must complete before saga2 can start executing. Here is some code that shows a simplified version of what I am trying to do:
function* logger() {
console.log('spy 1');
}
function* logger2() {
console.log('spy2');
}
function* spy1() {
yield takeEvery('*', logger);
}
function* spy2() {
yield takeEvery('*', logger2);
}
export default function* rootSaga() {
yield call(spy1);
yield call(spy2);
}
When I dispatch an action, I only ever reach the first console.log. I know that if I use fork() instead of call() I can get both to run, however I do not want them to run in parallel. How can I make my first logger function complete and allow saga to move on to the second.
Thanks!
What about creating a single watcher that simulates what takeEvery does but in a sequencial manner?
function* logger() {
yield delay(1000);
console.log("logger 1");
}
function* logger2() {
console.log("logger 2");
}
function* watcher() {
while (yield take("*")) {
yield call(logger);
yield call(logger2);
}
}
function* rootSaga() {
yield call(watcher);
}
One of the points I'd like to bring here is that, first is that takeEvery uses a fork internally and then according to takeEvery's documentation:
There is no guarantee that the tasks will terminate in the same order they were started
so maybe using takeEvery won't accomplish what you need.
I am coding a project for a simple football game in JavaScript. When a player hikes the ball, I am attempting to run a series of functions in order to validate a legal snap. To do this, I am using a generator function, so that I can organize all the functions that run, as the order in which they run is important. Essentially, I run the generator function once using the snap() function, and then at the conclusion of each Check() function, I either return validateSnap.next() if it is a legal snap, or a fail function to exit out of the generator and handle an illegal snap. Here is a simplified version of my code below:
function* snapProtocol() {
yield check1();
yield check2();
yield check3();
yield check4();
yield check5();
yield play();
}
let validateSnap = snapProtocol()
function snap() {
validateSnap.next();
}
function check1() {
let meetsCriteria = true;
if (meetsCriteria) {
validateSnap.next();
} else {
handleError();
}
}
I am receiving a "Generator is already running" error. I presume this is because the check1 function has not finished, but when I add a callback function, I get the same error. Why is this occurring? Is there a simpler method to accomplish this? Previously, I would run each check function and then have it return either a true or false value, with true if it was a legal snap to go to the next check function, or false to stop the execution of the initial function. This required to me declare a bunch of variables as well as have an if statement after every function, so I was looking for a cleaner approach.
You are try to call next() inside check function which is in progress. You can't call next() during this function end. Shortly you can not call next() inside function which is returned from generator.
Maybe this example can be helpful.
function* snapProtocol() {
yield check1();
yield check1();
yield check1();
yield check1();
yield check1();
}
let validateSnap = snapProtocol();
function snap() {
let result = null
do {
result = validateSnap.next()
if ( result.done ) {
// all creterias was meet and play could be call
break;
}
if ( result.value ) {
// meets criteria and cen check another one
continue
} else {
// doesn't meet createria and somthing should happend here
break;
}
} while( !result.done )
}
function check1() {
let meetsCriteria = true
if (meetsCriteria) {
return true
} else {
return false
}
}
I'd like to accomplish the following using promises: only execute further once the state of something is ready. I.e. like polling for an external state-change.
I've tried using promises and async-await but am not getting the desired outcome. What am I doing wrong here, and how do I fix it?
The MDN docs have something similar but their settimeout is called within the promise--that's not exactly what I'm looking for though.
I expect the console.log to show "This function is now good to go!" after 5 seconds, but instead execution seems to stop after calling await promiseForState();
var state = false;
function stateReady (){
state = true;
}
function promiseForState(){
var msg = "good to go!";
var promise = new Promise(function (resolve,reject){
if (state){
resolve(msg);
}
});
return promise;
}
async function waiting (intro){
var result = await promiseForState();
console.log(intro + result)
}
setTimeout(stateReady,5000);
waiting("This function is now ");
What you're doing wrong is the promise constructor executor function executes immediately when the promise is created, and then never again. At that point, state is false, so nothing happens.
Promises (and async/await) are not a replacement for polling. You still need to poll somewhere.
The good news: async functions make it easy to do conditional code with loops and promises.
But don't put code inside promise constructor executor functions, because of their poor error handling characteristics. They are meant to wrap legacy code.
Instead, try this:
var state = false;
function stateReady() {
state = true;
}
const wait = ms => new Promise(resolve => setTimeout(resolve, ms));
async function promiseForState() {
while (!state) {
await wait(1000);
}
return "good to go!";
}
async function waiting(intro) {
var result = await promiseForState();
console.log(intro + result)
}
setTimeout(stateReady,5000);
waiting("This function is now ");
Based on your comments that you are waiting for messages from a server it appears you are trying to solve an X/Y problem. I am therefore going to answer the question of "how do I wait for server messages" instead of waiting for global variable to change.
If your network API accepts a callback
Plenty of networking API such as XMLHttpRequest and node's Http.request() are callback based. If the API you are using is callback or event based then you can do something like this:
function myFunctionToFetchFromServer () {
// example is jQuery's ajax but it can easily be replaced with other API
return new Promise(function (resolve, reject) {
$.ajax('http://some.server/somewhere', {
success: resolve,
error: reject
});
});
}
async function waiting (intro){
var result = await myFunctionToFetchFromServer();
console.log(intro + result);
}
If your network API is promise based
If on the other hand you are using a more modern promise based networking API such as fetch() you can simply await the promise:
function myFunctionToFetchFromServer () {
return fetch('http://some.server/somewhere');
}
async function waiting (intro){
var result = await myFunctionToFetchFromServer();
console.log(intro + result);
}
Decoupling network access from your event handler
Note that the following are only my opinion but it is also the normal standard practice in the javascript community:
In either case above, once you have a promise it is possible to decouple your network API form your waiting() event handler. You just need to save the promise somewhere else. Evert's answer shows one way you can do this.
However, in my not-so-humble opinion, you should not do this. In projects of significant size this leads to difficulty in tracing the source of where the state change comes form. This is what we did in the 90s and early 2000s with javascript. We had a lot of events in our code like onChange and onReady or onData instead of callbacks passed as function parameters. The result was that sometimes it takes you a long time to figure out what code is triggering what event.
Callback parameters and promises forces the event generator to be in the same place in the code as the event consumer:
let this_variable_consumes_result_of_a_promise = await generate_a_promise();
this_function_generate_async_event((consume_async_result) => { /* ... */ });
From the wording of your question you seem to be wanting to do this instead;
..somewhere in your code:
this_function_generate_async_event(() => { set_global_state() });
..somewhere else in your code:
let this_variable_consumes_result_of_a_promise = await global_state();
I would consider this an anti-pattern.
Calling asynchronous functions in class constructors
This is not only an anti-pattern but an impossibility (as you've no doubt discovered when you find that you cannot return the asynchronous result).
There are however design patterns that can work around this. The following is an example of exposing a database connection that is created asynchronously:
class MyClass {
constructor () {
// constructor logic
}
db () {
if (this.connection) {
return Promise.resolve(this.connection);
}
else {
return new Promise (function (resolve, reject) {
createDbConnection(function (error, conn) {
if (error) {
reject(error);
}
else {
this.connection = conn; // cache the connection
resolve(this.connection);
}
});
});
}
}
}
Usage:
const myObj = new MyClass();
async function waiting (intro){
const db = await myObj.db();
db.doSomething(); // you can now use the database connection.
}
You can read more about asynchronous constructors from my answer to this other question: Async/Await Class Constructor
The way I would solve this, is as follows. I am not 100% certain this solves your problem, but the assumption here is that you have control over stateReady().
let state = false;
let stateResolver;
const statePromise = new Promise( (res, rej) => {
stateResolver = res;
});
function stateReady(){
state = true;
stateResolver();
}
async function promiseForState(){
await stateResolver();
const msg = "good to go!";
return msg;
}
async function waiting (intro){
const result = await promiseForState();
console.log(intro + result)
}
setTimeout(stateReady,5000);
waiting("This function is now ");
Some key points:
The way this is written currently is that the 'state' can only transition to true once. If you want to allow this to be fired many times, some of those const will need to be let and the promise needs to be re-created.
I created the promise once, globally and always return the same one because it's really just one event that every caller subscribes to.
I needed a stateResolver variable to lift the res argument out of the promise constructor into the global scope.
Here is an alternative using .requestAnimationFrame().
It provides a clean interface that is simple to understand.
var serverStuffComplete = false
// mock the server delay of 5 seconds
setTimeout(()=>serverStuffComplete = true, 5000);
// continue until serverStuffComplete is true
function waitForServer(now) {
if (serverStuffComplete) {
doSomethingElse();
} else {
// place this request on the next tick
requestAnimationFrame(waitForServer);
}
}
console.log("Waiting for server...");
// starts the process off
requestAnimationFrame(waitForServer);
//resolve the promise or whatever
function doSomethingElse() {
console.log('Done baby!');
}
I've read over several examples of code using JavaScript generators such as this one. The simplest generator-using block I can come up with is something like:
function read(path) {
return function (done) {
fs.readFile(path, "file", done);
}
}
co(function *() {
console.log( yield read("file") );
})();
This does indeed print out the contents of file, but my hangup is where done is called. Seemingly, yield is syntactic sugar for wrapping what it returns to in a callback and assigning the result value appropriately (and at least in the case of co, throwing the error argument to the callback). Is my understanding of the syntax correct?
What does done look like when yield is used?
Seemingly, yield is syntactic sugar for wrapping what it returns to in a callback and assigning the result value appropriately (and at least in the case of co, throwing the error argument to the callback)
No, yield is no syntactic sugar. It's the core syntax element of generators. When that generator is instantiated, you can run it (by calling .next() on it), and that will return the value that was returned or yielded. When the generator was yielded, you can continue it later by calling .next() again. The arguments to next will be the value that the yield expresion returns inside the generator.
Only in case of co, those async callback things (and other things) are handled "appropriately" for what you would consider natural in an async control flow library.
What does done look like when yield is used?
The thread function example from the article that you read gives you a good impression of this:
function thread(fn) {
var gen = fn();
function next(err, res) {
var ret = gen.next(res);
if (ret.done) return;
ret.value(next);
}
next();
}
In your code, yield does yield the value of the expression read("file") from the generator when it is ran. This becomes the ret.val, the result of gen.next(). To this, the next function is passed - a callback that will continue the generator with the result that was passed to it. In your generator code, it looks as if the yield expression returned this value.
An "unrolled" version of what happens could be written like this:
function fn*() {
console.log( yield function (done) {
fs.readFile("filepath", "file", done);
} );
}
var gen = fn();
var ret1 = gen.next();
var callasync = ret1.value;
callasync(function next(err, res) {
var ret2 = gen.next(res); // this now does log the value
ret2.done; // true now
});
I posted a detailed explanation of how generators work here.
In a simplified form, your code might look like this without co (untested):
function workAsync(fileName)
{
// async logic
var worker = (function* () {
function read(path) {
return function (done) {
fs.readFile(path, "file", done);
}
}
console.log(yield read(fileName));
})();
// driver
function nextStep(err, result) {
try {
var item = err?
worker.throw(err):
worker.next(result);
if (item.done)
return;
item.value(nextStep);
}
catch(ex) {
console.log(ex.message);
return;
}
}
// first step
nextStep();
}
workAsync("file");
The driver part of workAsync asynchronously iterates through the generator object, by calling nextStep().
From what I understand, the future style to write async code in JS is to use generators instead of callbacks. At least, or esp. in the V8 / Nodejs community. Is that right? (But that might be debatable and is not my main question here.)
To write async code with generators, I have found a few libraries:
gen-run (What I'm currently using.)
co
task.js
Galaxy
They all look kind of similar and I'm not that sure which of them to use (or if that even matters). (However, that might again be debatable and is also not my main question here -- but I still would be very happy about any advice.)
(I'm anyway only using pure V8 - if that matters. I'm not using Nodejs but I use pure V8 in my custom C++ app. However, I already have a few node-style elements in my code, including my custom require().)
Now I have some function X written in callback-style, which itself calls other async functions with callback arguments, e.g.:
function X(v, callback) {
return Y(onGotY);
function onGotY(err, res) {
if(err) return callback(err);
return Z(onGotZ);
}
function onGotZ(err, res, resExtended) {
if(err) return callback(err);
return callback(null, v + res + resExtended);
}
}
And I want to turn X into a generator, e.g. I guess function* X(v) { ... }. How would that look like?
I went with my very simple own lib which works quite well for my small V8 environment and also makes it easy to debug because the JS callstack stays intact. To make it work with Nodejs or on the web, it would need some modifications, though.
Rationales here:
For debugging, we don't really want async code - we want to have nice understandable call stacks in debuggers, esp. in the node-inspector debugger.
Also note that so far, all async code is completely artificial and we execute everything completely in sync, somewhat emulated via V8 Microtasks.
Callback-style async code is already hard to understand in call stacks.
Generator-style async code looses the call stack information completely in conventional debuggers - that includes the current Chrome Beta Developer Tools V8 debugger used with node-inspector. That is very much the nature of generators (coroutines in general). Later versions of the debugger might handle that, but that is not the case today. We even need some special C++ code to get the info. Example code can be found here:
https://github.com/bjouhier/galaxy-stack/blob/master/src/galaxy-stack.cc
So if we want to have useful debuggers, today, we cannot use generators -- at least not as it is usually done.
We still want to use generator-style async code because it makes the code much more readable, compared to callback-style code.
We introduce a new function async to overcome this. Imagine the following callback-style async code:
function doSthX(a, b, callback) { ... }
function doSthY(c, callback) {
doSthX(c/2, 42, function(err, res) {
if(err) return callback(err);
callback(null, c + res);
})
}
Now, the same code with the async function and generator-style code:
function* doSthX(a, b) { ... }
function* doSthY(c) {
var res = yield async(doSthX(c/2, 42));
return c + res;
}
We can provide two versions of async(iter):
Run the iterator iter on top of the stack. That will keep a sane call stack and everything is run serially.
Yield the iterator down to some lower handler and make it really async.
Note that there are a few notable libraries which can be used for the second approach:
https://github.com/visionmedia/co
http://taskjs.org/
https://github.com/creationix/gen-run
https://github.com/bjouhier/galaxy
For now, we just implement the first approach - to make debugging easier.
If we once want to have both, we can introduce a debug flag to switch via both implementations.
global.async = async;
function async(iter) {
// must be an iterator
assert(iter.next);
var gotValue;
var sendValue;
while(true) {
var next = iter.next(sendValue);
gotValue = next.value;
if(!next.done) {
// We expect gotValue as a value returned from this function `async`.
assert(gotValue.getResult);
var res = gotValue.getResult();
sendValue = res;
}
if(next.done) break;
}
return {
getResult: function() {
return gotValue;
}
};
}
// Like `async`, but wraps a callback-style function.
global.async_call_cb = async_call_cb;
function async_call_cb(f, thisArg /* , ... */) {
assert(f.apply && f.call);
var args = Array.prototype.slice.call(arguments, 2);
return async((function*() {
var gotCalled = false;
var res;
// This expects that the callback is run on top of the stack.
// We will get this if we always use the wrapped enqueueMicrotask().
// If we have to force this somehow else at some point, we could
// call runMicrotasks() here - or some other waiter function,
// to wait for our callback.
args.push(callback);
f.apply(thisArg, args);
function callback(err, _res) {
assert(!gotCalled);
if(err) throw err;
gotCalled = true;
res = _res;
}
assert(gotCalled);
return res;
})());
}
// get the result synchronously from async
global.sync_from_async = sync_from_async;
function sync_from_async(s) {
assert(s.getResult); // see async()
return s.getResult();
}
// creates a node.js callback-style function from async
global.callback_from_async = callback_from_async;
function callback_from_async(s) {
return function(callback) {
var res;
try { res = sync_from_async(s); }
catch(err) {
return callback(err);
}
return callback(null, res);
};
}
global.sync_get = sync_get;
function sync_get(iter) {
return sync_from_async(async(iter));
}
// this is like in gen-run.
// it's supposed to run the main-function which is expected to be a generator.
// f must be a generator
// returns the result.
global.run = run;
function run(f) {
return sync_get(f());
}
I assume that by "turning X into a generator" you mean "turning X into something you can yield", because that's how these libs work.
If you are using co (which I recommend), you need to make your function return thunks, that is a function, which accepts only a callback. Quite simple:
function coX (v) {
return function (cb) {
X(v, cb);
}
}
And then just:
co(function * () {
yield coX('v');
})();