Related
This question already has answers here:
How does the "this" keyword work, and when should it be used?
(22 answers)
Closed 4 years ago.
So, I have 3 functions as follows:
function a() {
arguments[0]();
}
function b(fn) {
fn();
}
function c() {
console.log(this);
}
Now, consider the outputs:
a(c) // Arguments
b(c) // Window
a(() => {console.log(this}) // Window
b(() => {console.log(this)}) // Window
Why does a(c) output Arguments while it is window (considering non-strict) in all other cases?
In JavaScript this usually refers to the object from which the function was called (unless it's an arrow function). So for example if we do something like this:
var obj = { fun: function() { console.log(this); } }
var obj1 = { fun: obj.fun, otherProperty: 123 }
obj.fun(); // equivalent to obj["fun"]()
obj1.fun(); // equivalent to obj1["fun"]()
We will find out that in the first call this refers to obj and in the second it refers to obj1 even though it's the same function.
Now, the arguments variable is an object which stores all the arguments which were passed to the function. If an argument was a function and you access it through the arguments object, it becomes a "parent" object from which the function was called and it becomes the new this in the function's execution context. You can consider your case to be equal to something like this:
function c() {
console.log(this);
}
var arguments = { "0" : c }
arguments["0"]() // will log the arguments object
In your second invocation (b(c)) the function passed as an argument is called directly inside the parent function, without accessing it through a proxy object - in that case this will be copied from the parent execution scope, which is window.
In the third and fourth example both functions are defined using the arrow function, which saves the value of this from the context in which they were created and they prevent this value from being changed.
More about arrow functions: Arrow functions
This question already has answers here:
How does the "this" keyword work, and when should it be used?
(22 answers)
Closed 5 years ago.
Consider the following code:
var obj = {
x: this
}
obj.x turns out to be window. I thought this would refer to obj.
I don't understand how this works in the above situation. Even with late binding such as in JavaScript, shouldn't x refer to the obj object? I understand all other cases for this where its value is determined by how it is called in the code. Can someone please help me understand this behavior of this?
window is the default value for this if you run your code in a browser. As noted in the comments below, this will be undefined if 'use strict'; is in effect.
the value of this changes on the basis of the object where it resides.
example:
1
var test = {
a: 1,
b: function () {
console.log(this.a)
}
}
In this case the value of this will be the containing object.
var test = {
a: 1,
b: function () {
setTimeout(function () {console.log('surprise', this.a)}, 0)
}
}
This piece of code however doesn't give the same result.
Here without strict mode on, on a browser, property a will be accessed over the window.
The reason being the function in the setTimeout doesn't have the access to the object.
2
var someObject = {
value: 1,
someFunction () {
return function () {
console.log(this.value)
}
}
}
var displayValue = someObject.someFunction()
displayValue()
In this case too, this is undefined, as the value of this changes with respect to the object which contains the function being called.
someFunction is a method on the object someObject therefore, the value of this inside would be equal to someObject but the function returned by someFunction is not called by someObject hence the difference.
This refers to Current Execution Context which in this case (which is initial) is window object.
Check this out
More Specific to this question
One important principal about this is that:
this is not assigned a value until an object invokes the function where this is defined. Let’s call the function where this is defined the “this Function.”
So, lets assume you've defined your object this way:
var person = {
firstName :"John",
lastName :"Doe",
showHometown:function () {
console.log (this);
}
}
Since the this keyword is used inside the showHometown method, and the showHometown method is defined on the person object, this will have the value of the person object because the person object will invoke showHometown().
As you see difference between x in your defined object & mine, is who invokes them which is formally referred to Current Execution Context.
I just came across an interesting situation in JavaScript. I have a class with a method that defines several objects using object-literal notation. Inside those objects, the this pointer is being used. From the behavior of the program, I have deduced that the this pointer is referring to the class on which the method was invoked, and not the object being created by the literal.
This seems arbitrary, though it is the way I would expect it to work. Is this defined behavior? Is it cross-browser safe? Is there any reasoning underlying why it is the way it is beyond "the spec says so" (for instance, is it a consequence of some broader design decision/philosophy)? Pared-down code example:
// inside class definition, itself an object literal, we have this function:
onRender: function() {
this.menuItems = this.menuItems.concat([
{
text: 'Group by Module',
rptletdiv: this
},
{
text: 'Group by Status',
rptletdiv: this
}]);
// etc
}
Cannibalized from another post of mine, here's more than you ever wanted to know about this.
Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)
The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.
There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.
As a Method
A method is a function that's attached to an object
var foo = {};
foo.someMethod = function(){
alert(this);
}
When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.
As A Function
If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.
var foo = function(){
alert(this);
}
foo();
This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.
Many people get around the problem by doing something like, um, this
var foo = {};
foo.someMethod = function (){
var that=this;
function bar(){
alert(that);
}
}
You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.
NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).
As a Constructor
You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.
You invoke a function as a Constructor with the new keyword.
function Foo(){
this.confusing = 'hell yeah';
}
var myObject = new Foo();
When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.
Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.
With the Apply Method
Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.
function foo(a,b){
alert(a);
alert(b);
alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);
Function calls
Functions are just a type of Object.
All Function objects have call and apply methods which execute the Function object they're called on.
When called, the first argument to these methods specifies the object which will be referenced by the this keyword during execution of the Function - if it's null or undefined, the global object, window, is used for this.
Thus, calling a Function...
whereAmI = "window";
function foo()
{
return "this is " + this.whereAmI + " with " + arguments.length + " + arguments";
}
...with parentheses - foo() - is equivalent to foo.call(undefined) or foo.apply(undefined), which is effectively the same as foo.call(window) or foo.apply(window).
>>> foo()
"this is window with 0 arguments"
>>> foo.call()
"this is window with 0 arguments"
Additional arguments to call are passed as the arguments to the function call, whereas a single additional argument to apply can specify the arguments for the function call as an Array-like object.
Thus, foo(1, 2, 3) is equivalent to foo.call(null, 1, 2, 3) or foo.apply(null, [1, 2, 3]).
>>> foo(1, 2, 3)
"this is window with 3 arguments"
>>> foo.apply(null, [1, 2, 3])
"this is window with 3 arguments"
If a function is a property of an object...
var obj =
{
whereAmI: "obj",
foo: foo
};
...accessing a reference to the Function via the object and calling it with parentheses - obj.foo() - is equivalent to foo.call(obj) or foo.apply(obj).
However, functions held as properties of objects are not "bound" to those objects. As you can see in the definition of obj above, since Functions are just a type of Object, they can be referenced (and thus can be passed by reference to a Function call or returned by reference from a Function call). When a reference to a Function is passed, no additional information about where it was passed from is carried with it, which is why the following happens:
>>> baz = obj.foo;
>>> baz();
"this is window with 0 arguments"
The call to our Function reference, baz, doesn't provide any context for the call, so it's effectively the same as baz.call(undefined), so this ends up referencing window. If we want baz to know that it belongs to obj, we need to somehow provide that information when baz is called, which is where the first argument to call or apply and closures come into play.
Scope chains
function bind(func, context)
{
return function()
{
func.apply(context, arguments);
};
}
When a Function is executed, it creates a new scope and has a reference to any enclosing scope. When the anonymous function is created in the above example, it has a reference to the scope it was created in, which is bind's scope. This is known as a "closure."
[global scope (window)] - whereAmI, foo, obj, baz
|
[bind scope] - func, context
|
[anonymous scope]
When you attempt to access a variable this "scope chain" is walked to find a variable with the given name - if the current scope doesn't contain the variable, you look at the next scope in the chain, and so on until you reach the global scope. When the anonymous function is returned and bind finishes executing, the anonymous function still has a reference to bind's scope, so bind's scope doesn't "go away".
Given all the above you should now be able to understand how scope works in the following example, and why the technique for passing a function around "pre-bound" with a particular value of this it will have when it is called works:
>>> baz = bind(obj.foo, obj);
>>> baz(1, 2);
"this is obj with 2 arguments"
Is this defined behavior? Is it
cross-browser safe?
Yes. And yes.
Is there any reasoning underlying why
it is the way it is...
The meaning of this is pretty simple to deduce:
If this is used inside a constructor function, and the function was invoked with the new keyword, this refers to the object that will be created. this will continue to mean the object even in public methods.
If this is used anywhere else, including nested protected functions, it refers to the global scope (which in the case of the browser is the window object).
The second case is obviously a design flaw, but it's pretty easy to work around it by using closures.
In this case the inner this is bound to the global object instead of to the this variable of the outer function.
It's the way the language is designed.
See "JavaScript: The Good Parts" by Douglas Crockford for a good explanation.
I found a nice tutorial about the ECMAScript this
A this value is a special object which is related with the execution
context. Therefore, it may be named as a context object (i.e. an
object in which context the execution context is activated).
Any object may be used as this value of the context.
a this value is a property of the execution context, but not a
property of the variable object.
This feature is very important, because in contrary to variables, this value never participates in identifier resolution process. I.e. when accessing this in a code, its value is taken directly from the execution context and without any scope chain lookup. The value of this is determinate only once when entering the context.
In the global context, a this value is the global object itself (that means, this value here equals to variable object)
In case of a function context, this value in every single function call may be different
Reference Javascript-the-core and Chapter-3-this
All the answers here are very helpful but I still had a hard time to figure out what this point to in my case, which involved object destructuring. So I would like to add one more answer using a simplified version of my code,
let testThis = {
x: 12,
y: 20,
add({ a, b, c }) {
let d = a + b + c()
console.log(d)
},
test() {
//the result is NaN
this.add({
a: this.x,
b: this.y,
c: () => {
//this here is testThis, NOT the object literal here
return this.a + this.b
},
})
},
test2() {
//64 as expected
this.add({
a: this.x,
b: this.y,
c: () => {
return this.x + this.y
},
})
},
test3() {
//NaN
this.add({
a: this.x,
b: this.y,
c: function () {
//this here is the global object
return this.x + this.y
},
})
},
}
As here explained Javascript - destructuring object - 'this' set to global or undefined, instead of object it actually has nothing to do with object destructuring but how c() is called, but it is not easy to see through it here.
MDN says "arrow function expressions are best suited for non-method functions" but arrow function works here.
this in JS:
There are 3 types of functions where this has a different meaning. They are best explained via example:
Constructor
// In a constructor function this refers to newly created object
// Every function can be a constructor function in JavaScript e.g.
function Dog(color){
this.color = color;
}
// constructor functions are invoked by putting new in front of the function call
const myDog = new Dog('red');
// logs Dog has color red
console.log('Dog has color ' + myDog.color);
Normal function or method
// Browswer example:
console.log(this === window) // true
function myFn(){
console.log(this === window)
}
myFn(); // logs true
// The value of this depends on the context object.
// In this case the context from where the function is called is global.
// For the global context in the browser the context object is window.
const myObj = {fn: myFn}
myObj.fn() // logs false
// In this case the context from where the function is called is myObj.
// Therefore, false is logged.
myObj.fn2 = function myFn(){
console.log(this === myObj)
}
myObj.fn2() // logs true
// In this case the context from where the function is called is myObj.
// Therefore, true is logged.
Event listener
Inside the function of an event handler this will refer to the DOM element which detected the event. See this question: Using this inside an event handler
Consider the following code:
function A() {}
A.prototype.go = function() {
console.log(this); //A { go=function()}
var f = function() {
console.log(this); //Window
};
f();
}
var a = new A();
a.go();
Why does 'this' inside function 'f' refers to the global scope? Why it is not the scope of function 'A' ?
JavaScript has a different concept of what the special name this refers to
than most other programming languages do. There are exactly five different
ways in which the value of this can be bound in the language.
The Global Scope
this;
When using this in global scope, it will simply refer to the global object.
Calling a Function
foo();
Here, this will again refer to the global object.
ES5 Note: In strict mode, the global case no longer exists.
this will instead have the value of undefined in that case.
Calling a Method
test.foo();
In this example, this will refer to test.
Calling a Constructor
new foo();
A function call that is preceded by the new keyword acts as
a constructor. Inside the function, this will refer
to a newly created Object.
Explicit Setting of this
function foo(a, b, c) {}
var bar = {};
foo.apply(bar, [1, 2, 3]); // array will expand to the below
foo.call(bar, 1, 2, 3); // results in a = 1, b = 2, c = 3
When using the call or apply methods of Function.prototype, the value of
this inside the called function gets explicitly set to the first argument
of the corresponding function call.
As a result, in the above example the method case does not apply, and this
inside of foo will be set to bar.
Note: this cannot be used to refer to the object inside of an Object
literal. So var obj = {me: this} will not result in me referring to
obj, since this only gets bound by one of the five listed cases.
Common Pitfalls
While most of these cases make sense, the first one is to be considered another
mis-design of the language because it never has any practical use.
Foo.method = function() {
function test() {
// this is set to the global object
}
test();
}
A common misconception is that this inside of test refers to Foo; while in
fact, it does not.
In order to gain access to Foo from within test, it is necessary to create a
local variable inside of method which refers to Foo.
Foo.method = function() {
var that = this;
function test() {
// Use that instead of this here
}
test();
}
that is just a normal variable name, but it is commonly used for the reference to an
outer this. In combination with closures, it can also
be used to pass this values around.
Assigning Methods
Another thing that does not work in JavaScript is function aliasing, which is
assigning a method to a variable.
var test = someObject.methodTest;
test();
Due to the first case, test now acts like a plain function call; therefore,
this inside it will no longer refer to someObject.
While the late binding of this might seem like a bad idea at first, in
fact, it is what makes prototypal inheritance work.
function Foo() {}
Foo.prototype.method = function() {};
function Bar() {}
Bar.prototype = Foo.prototype;
new Bar().method();
When method gets called on a instance of Bar, this will now refer to that
very instance.
Disclaimer: Shamelessy stolen from my own resources at http://bonsaiden.github.com/JavaScript-Garden/#function.this
The reason why is you are invoking f as a function and not a method. When invoked as a function this is set to window during the execution of the target
// Method invocation. Invoking a member (go) of an object (a). Hence
// inside "go" this === a
a.go();
// Function invocation. Invoking a function directly and not as a member
// of an object. Hence inside "f" this === window
f();
// Function invocation.
var example = a.go;
example();
The scope of all functions is window.
To circumvent that, you can do this:
function A() {}
A.prototype.go = function() {
var self = this;
console.log(self); //A { go=function()}
var f = function() {
console.log(self); //A { go=function()}
};
f();
}
Because function f() is not called without any object reference. Try,
f.apply(this);
I just came across an interesting situation in JavaScript. I have a class with a method that defines several objects using object-literal notation. Inside those objects, the this pointer is being used. From the behavior of the program, I have deduced that the this pointer is referring to the class on which the method was invoked, and not the object being created by the literal.
This seems arbitrary, though it is the way I would expect it to work. Is this defined behavior? Is it cross-browser safe? Is there any reasoning underlying why it is the way it is beyond "the spec says so" (for instance, is it a consequence of some broader design decision/philosophy)? Pared-down code example:
// inside class definition, itself an object literal, we have this function:
onRender: function() {
this.menuItems = this.menuItems.concat([
{
text: 'Group by Module',
rptletdiv: this
},
{
text: 'Group by Status',
rptletdiv: this
}]);
// etc
}
Cannibalized from another post of mine, here's more than you ever wanted to know about this.
Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)
The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.
There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.
As a Method
A method is a function that's attached to an object
var foo = {};
foo.someMethod = function(){
alert(this);
}
When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.
As A Function
If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.
var foo = function(){
alert(this);
}
foo();
This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.
Many people get around the problem by doing something like, um, this
var foo = {};
foo.someMethod = function (){
var that=this;
function bar(){
alert(that);
}
}
You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.
NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).
As a Constructor
You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.
You invoke a function as a Constructor with the new keyword.
function Foo(){
this.confusing = 'hell yeah';
}
var myObject = new Foo();
When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.
Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.
With the Apply Method
Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.
function foo(a,b){
alert(a);
alert(b);
alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);
Function calls
Functions are just a type of Object.
All Function objects have call and apply methods which execute the Function object they're called on.
When called, the first argument to these methods specifies the object which will be referenced by the this keyword during execution of the Function - if it's null or undefined, the global object, window, is used for this.
Thus, calling a Function...
whereAmI = "window";
function foo()
{
return "this is " + this.whereAmI + " with " + arguments.length + " + arguments";
}
...with parentheses - foo() - is equivalent to foo.call(undefined) or foo.apply(undefined), which is effectively the same as foo.call(window) or foo.apply(window).
>>> foo()
"this is window with 0 arguments"
>>> foo.call()
"this is window with 0 arguments"
Additional arguments to call are passed as the arguments to the function call, whereas a single additional argument to apply can specify the arguments for the function call as an Array-like object.
Thus, foo(1, 2, 3) is equivalent to foo.call(null, 1, 2, 3) or foo.apply(null, [1, 2, 3]).
>>> foo(1, 2, 3)
"this is window with 3 arguments"
>>> foo.apply(null, [1, 2, 3])
"this is window with 3 arguments"
If a function is a property of an object...
var obj =
{
whereAmI: "obj",
foo: foo
};
...accessing a reference to the Function via the object and calling it with parentheses - obj.foo() - is equivalent to foo.call(obj) or foo.apply(obj).
However, functions held as properties of objects are not "bound" to those objects. As you can see in the definition of obj above, since Functions are just a type of Object, they can be referenced (and thus can be passed by reference to a Function call or returned by reference from a Function call). When a reference to a Function is passed, no additional information about where it was passed from is carried with it, which is why the following happens:
>>> baz = obj.foo;
>>> baz();
"this is window with 0 arguments"
The call to our Function reference, baz, doesn't provide any context for the call, so it's effectively the same as baz.call(undefined), so this ends up referencing window. If we want baz to know that it belongs to obj, we need to somehow provide that information when baz is called, which is where the first argument to call or apply and closures come into play.
Scope chains
function bind(func, context)
{
return function()
{
func.apply(context, arguments);
};
}
When a Function is executed, it creates a new scope and has a reference to any enclosing scope. When the anonymous function is created in the above example, it has a reference to the scope it was created in, which is bind's scope. This is known as a "closure."
[global scope (window)] - whereAmI, foo, obj, baz
|
[bind scope] - func, context
|
[anonymous scope]
When you attempt to access a variable this "scope chain" is walked to find a variable with the given name - if the current scope doesn't contain the variable, you look at the next scope in the chain, and so on until you reach the global scope. When the anonymous function is returned and bind finishes executing, the anonymous function still has a reference to bind's scope, so bind's scope doesn't "go away".
Given all the above you should now be able to understand how scope works in the following example, and why the technique for passing a function around "pre-bound" with a particular value of this it will have when it is called works:
>>> baz = bind(obj.foo, obj);
>>> baz(1, 2);
"this is obj with 2 arguments"
Is this defined behavior? Is it
cross-browser safe?
Yes. And yes.
Is there any reasoning underlying why
it is the way it is...
The meaning of this is pretty simple to deduce:
If this is used inside a constructor function, and the function was invoked with the new keyword, this refers to the object that will be created. this will continue to mean the object even in public methods.
If this is used anywhere else, including nested protected functions, it refers to the global scope (which in the case of the browser is the window object).
The second case is obviously a design flaw, but it's pretty easy to work around it by using closures.
In this case the inner this is bound to the global object instead of to the this variable of the outer function.
It's the way the language is designed.
See "JavaScript: The Good Parts" by Douglas Crockford for a good explanation.
I found a nice tutorial about the ECMAScript this
A this value is a special object which is related with the execution
context. Therefore, it may be named as a context object (i.e. an
object in which context the execution context is activated).
Any object may be used as this value of the context.
a this value is a property of the execution context, but not a
property of the variable object.
This feature is very important, because in contrary to variables, this value never participates in identifier resolution process. I.e. when accessing this in a code, its value is taken directly from the execution context and without any scope chain lookup. The value of this is determinate only once when entering the context.
In the global context, a this value is the global object itself (that means, this value here equals to variable object)
In case of a function context, this value in every single function call may be different
Reference Javascript-the-core and Chapter-3-this
All the answers here are very helpful but I still had a hard time to figure out what this point to in my case, which involved object destructuring. So I would like to add one more answer using a simplified version of my code,
let testThis = {
x: 12,
y: 20,
add({ a, b, c }) {
let d = a + b + c()
console.log(d)
},
test() {
//the result is NaN
this.add({
a: this.x,
b: this.y,
c: () => {
//this here is testThis, NOT the object literal here
return this.a + this.b
},
})
},
test2() {
//64 as expected
this.add({
a: this.x,
b: this.y,
c: () => {
return this.x + this.y
},
})
},
test3() {
//NaN
this.add({
a: this.x,
b: this.y,
c: function () {
//this here is the global object
return this.x + this.y
},
})
},
}
As here explained Javascript - destructuring object - 'this' set to global or undefined, instead of object it actually has nothing to do with object destructuring but how c() is called, but it is not easy to see through it here.
MDN says "arrow function expressions are best suited for non-method functions" but arrow function works here.
this in JS:
There are 3 types of functions where this has a different meaning. They are best explained via example:
Constructor
// In a constructor function this refers to newly created object
// Every function can be a constructor function in JavaScript e.g.
function Dog(color){
this.color = color;
}
// constructor functions are invoked by putting new in front of the function call
const myDog = new Dog('red');
// logs Dog has color red
console.log('Dog has color ' + myDog.color);
Normal function or method
// Browswer example:
console.log(this === window) // true
function myFn(){
console.log(this === window)
}
myFn(); // logs true
// The value of this depends on the context object.
// In this case the context from where the function is called is global.
// For the global context in the browser the context object is window.
const myObj = {fn: myFn}
myObj.fn() // logs false
// In this case the context from where the function is called is myObj.
// Therefore, false is logged.
myObj.fn2 = function myFn(){
console.log(this === myObj)
}
myObj.fn2() // logs true
// In this case the context from where the function is called is myObj.
// Therefore, true is logged.
Event listener
Inside the function of an event handler this will refer to the DOM element which detected the event. See this question: Using this inside an event handler