I want to cross compare multiple objects containing location data (latitude, longitude) for the distance between them. The goal is to calculate the farthest two locations from a bunch of locations. I already know how to calculate the distance between two locations but what to do if you have multiple locations?
function FarthestDistance(points) {
// here this function should cross compare all objects within 'points' to calculate which two locations have the furthest distance between them
// the function should calculate the distance between each point in a recursive manner and return the two farthest points back
}
var obj = {{lat1,lon1},{lat2,lon2},{lat3,lon3},{lat4,lon4}};
FarthestDistance(obj);
Hope it is clear now. Thanks.
Alright, so this is for a Magic Mirror module I am making. Its a wrapper for the Traccar Service to be deployed on magic mirror. I needed to calculate the farthest two points on the map from an object containing multiple locations of each registered user. Then once I have the farthest two points on the map, I could calculate the middle point between them to set it as center of the map. Now I am working on the zooming of the map to include all the markers on the map.. anyways, for the problem I explained here the solution was found after little bit of research. Here it goes.
function toRadians (deg){ // Helper function
return deg * (Math.PI/180);
}
function toDegrees (rad){ // Helper function
return rad * (180/Math.PI);
}
function distance (obj){ // Helper function from https://www.movable-type.co.uk/scripts/latlong.html | http://mathforum.org/library/drmath/view/51822.html
var R = 6371e3; // metres
var φ1 = obj[0][0];
var φ2 = obj[1][0];
var Δφ = obj[1][0]-obj[0][0];
var Δλ = obj[1][1]-obj[0][1];
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
Math.cos(φ1) * Math.cos(φ2) *
Math.sin(Δλ/2) * Math.sin(Δλ/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return (R * c);
}
function midPoints(obj){ // Helper functions (which I modified for the specifications) from https://stackoverflow.com/questions/477591/algorithm-to-find-two-points-furthest-away-from-each-other | https://www.movable-type.co.uk/scripts/latlong.html | http://mathforum.org/library/drmath/view/51822.html
var self = this;
var solution = {"start": [], "end": [], "distance": 0};
for (i = 0; i < obj.length; i++) {
for (j = i+1; j < obj.length; j++) {
var newpoint = [
[
self.toRadians(obj[i][0]),
self.toRadians(obj[i][1])
],
[
self.toRadians(obj[j][0]),
self.toRadians(obj[j][1])
]
];
var distance = self.distance(newpoint);
if (distance > solution.distance){
solution = {"start": [obj[i][0],obj[i][1]], "end": [obj[j][0],obj[j][1]], "distance": distance}
}
}
}
var Bx = Math.cos(solution.end[0]) * Math.cos(solution.end[1]-solution.start[1]);
var By = Math.cos(solution.end[0]) * Math.sin(solution.end[1]-solution.start[1]);
var latMid = Math.atan2(Math.sin(solution.start[0]) + Math.sin(solution.end[0]),Math.sqrt((Math.cos(solution.start[0])+Bx)*(Math.cos(solution.start[0])+Bx) + By*By ) );
var lonMid = solution.start[1] + Math.atan2(By, Math.cos(solution.start[0]) + Bx);
return {"lat": self.toDegrees(latMid), "lon": self.toDegrees(lonMid), "distance": solution.distance};
}
Related
I am woking on a project of weighted interpolation. Each station has a coordinate point on the map as shown below.
var stationCoor = [[408,352],[525,348],[535,495],[420,400],[272,145],[175,195],[197,335]];
I am taking points that are located in the lake and I am using those to create weighted averages for inputs from those stations. Here is my function for determining the weighted numbers.
function findWeightSpeed(xPos, yPos){
var totalHypt = 0;
var arrHpyt = [];
var arrWeight = [];
for(var l=0;l<7;l++){
var xDis = Math.abs(xPos-stationCoor[l][0]);
var yDis = Math.abs(yPos-stationCoor[l][1]);
var hptSq = Math.pow(xDis,2)+Math.pow(yDis,2);
var hypt = Math.sqrt(hptSq);
totalHypt = totalHypt+hypt;
arrHpyt.push(hypt);
}
for(var j=0;j<7;j++){
arrWeight.push(arrHpyt[j]/totalHypt)
}
return arrWeight;
}
This finds the hypotenuse between the point (xPos,yPos) and the stations. It then adds the data up and divides each station by the total yielding the weighted numbers.
I need to use these points to weight wind direction from these stations. I was using the funciotn below to calculate an average of points.
function averageAngles(){
var x = 0;
var y = 0;
var pi = 22/7;
var angle = [2.7925,2.8797,2.9670,3.0543, 0.0872]; // 310,320,330,340,10
for(var i = 0; i < angle.length; i++) {
x += Math.cos(angle[i]);
y += Math.sin(angle[i]);
}
var average_angle = Math.atan2(y, x);
console.log((average_angle/pi)*360);
}
This gave me accurate information for a weighted average of .20 for all points. However, the weighted average points for the 7 stations (as seen below on the map) is similar to [0.1076839005418769, 0.08051796093187284, 0.003987308213631277, 0.08458358029618485, 0.2463427297217639, 0.26463834002675196, 0.21224618026791833].
How would I go about making a function that takes the weighted average numbers from the findWeightSpeed() and using that to weight the circular quantities in averageAngles()?
I used this How do you calculate the average of a set of circular data? to make the function for averaging angles.
Many thanks for any suggestions given.
Here is a link I found online that explains the entire procedure.
Computing Weighted Averages for Wind Speed and Direction
The code is similar to this.
function weightAllData(xPos,yPos,windData){
var uVecSum = 0;
var vVecSum = 0;
var arrayWeightSpeed = findWeightSpeed(xPos, yPos); //using weighted interpolation based on distance
var arrayWindSpeed = [WSData];
var arrayWindDirection = [WDData];
for(var m=0;m<7;m++){
uVecSum = uVecSum + (arrayWeightSpeed[m] * getUVector(arrayWindSpeed[m],(arrayWindDirection[m]/180)*Math.PI));
vVecSum = vVecSum + (arrayWeightSpeed[m] * getVVector(arrayWindSpeed[m],(arrayWindDirection[m]/180)*Math.PI));
}
var weightWS = Math.sqrt(Math.pow(uVecSum,2)+Math.pow(vVecSum,2));
if(vVecSum!=0){
weightWDRad = Math.atan(uVecSum/vVecSum);
}
if(vVecSum==0){
weightWDRad = Math.atan(uVecSum/(0.0001+vVecSum));
}
if(weightWDRad<0){
weightWDRad = weightWDRad + Math.PI
}
weightWD = (weightWDRad * (180/Math.PI));
}
Let me know if you want an explanation
I have a database that has got a month full of datasets in 10min intervals. (So a dataset for every 10min)
Now I want to show that data on three graphs: last 24 hours, last 7 days and last 30 days.
The data looks like this:
{ "data" : 278, "date" : ISODate("2016-08-31T01:51:05.315Z") }
{ "data" : 627, "date" : ISODate("2016-08-31T01:51:06.361Z") }
{ "data" : 146, "date" : ISODate("2016-08-31T01:51:07.938Z") }
// etc
For the 24h graph I simply output the data for the last 24h, that's easy.
For the other graphs I thin the data:
const data = {}; //data from database
let newData = [];
const interval = 7; //for 7 days the interval is 7, for 30 days it's 30
for( let i = 0; i < data.length; i += interval ) {
newData.push( data[ i ] );
};
This works fine but extreme events where data is 0 or differs greatly from the other values average, can be lost depending on what time you search the data. Not thinning out the data however will result in a large sum of data points that are sent over the pipe and have to be processed on the front end. I'd like to avoid that.
Now to my question
How can I reduce the data for a 7 day period while keeping extremes in it? What's the most efficient way here?
Additions:
In essence I think I'm trying to simplify a graph to reduce points but keep the overall shape. (If you look at it from a pure image perspective)
Something like an implementation of Douglas–Peucker algorithm in node?
As you mention in the comments, the Ramer-Douglas-Peucker (RDP) algorithm is used to process data points in 2D figures but you want to use it for graph data where X values are fixed. I modified this Javascript implementation of the algorithm provided by M Oehm to consider only the vertical (Y) distance in the calculations.
On the other hand, data smoothing is often suggested to reduce the number of data points in a graph (see this post by csgillespie).
In order to compare the two methods, I made a small test program. The Reset button creates new test data. An algorithm can be selected and applied to obtain a reduced number of points, separated by the specified interval. In the case of the RDP algorithm however, the resulting points are not evenly spaced. To get the same number of points as for the specified interval, I run the calculations iteratively, adjusting the espilon value each time until the correct number of points is reached.
From my tests, the RDP algorithm gives much better results. The only downside is that the spacing between points varies. I don't think that this can be avoided, given that we want to keep the extreme points which are not evenly distributed in the original data.
Here is the code snippet, which is better seen in Full Page mode:
var svgns = 'http://www.w3.org/2000/svg';
var graph = document.getElementById('graph1');
var grpRawData = document.getElementById('grpRawData');
var grpCalculatedData = document.getElementById('grpCalculatedData');
var btnReset = document.getElementById('btnReset');
var cmbMethod = document.getElementById('cmbMethod');
var btnAddCalculated = document.getElementById('btnAddCalculated');
var btnClearCalculated = document.getElementById('btnClearCalculated');
var data = [];
var calculatedCount = 0;
var colors = ['black', 'red', 'green', 'blue', 'orange', 'purple'];
var getPeriod = function () {
return parseInt(document.getElementById('txtPeriod').value, 10);
};
var clearGroup = function (grp) {
while (grp.lastChild) {
grp.removeChild(grp.lastChild);
}
};
var showPoints = function (grp, pts, markerSize, color) {
var i, point;
for (i = 0; i < pts.length; i++) {
point = pts[i];
var marker = document.createElementNS(svgns, 'circle');
marker.setAttributeNS(null, 'cx', point.x);
marker.setAttributeNS(null, 'cy', point.y);
marker.setAttributeNS(null, 'r', markerSize);
marker.setAttributeNS(null, 'fill', color);
grp.appendChild(marker);
}
};
// Create and display test data
var showRawData = function () {
var i, x, y;
var r = 0;
data = [];
for (i = 1; i < 500; i++) {
x = i;
r += 15.0 * (Math.random() * Math.random() - 0.25);
y = 150 + 30 * Math.sin(x / 200) * Math.sin((x - 37) / 61) + 2 * Math.sin((x - 7) / 11) + r;
data.push({ x: x, y: y });
}
showPoints(grpRawData, data, 1, '#888');
};
// Gaussian kernel smoother
var createGaussianKernelData = function () {
var i, x, y;
var r = 0;
var result = [];
var period = getPeriod();
for (i = Math.floor(period / 2) ; i < data.length; i += period) {
x = data[i].x;
y = gaussianKernel(i);
result.push({ x: x, y: y });
}
return result;
};
var gaussianKernel = function (index) {
var halfRange = Math.floor(getPeriod() / 2);
var distance, factor;
var totalValue = 0;
var totalFactor = 0;
for (i = index - halfRange; i <= index + halfRange; i++) {
if (0 <= i && i < data.length) {
distance = Math.abs(i - index);
factor = Math.exp(-Math.pow(distance, 2));
totalFactor += factor;
totalValue += data[i].y * factor;
}
}
return totalValue / totalFactor;
};
// Ramer-Douglas-Peucker algorithm
var ramerDouglasPeuckerRecursive = function (pts, first, last, eps) {
if (first >= last - 1) {
return [pts[first]];
}
var slope = (pts[last].y - pts[first].y) / (pts[last].x - pts[first].x);
var x0 = pts[first].x;
var y0 = pts[first].y;
var iMax = first;
var max = -1;
var p, dy;
// Calculate vertical distance
for (var i = first + 1; i < last; i++) {
p = pts[i];
y = y0 + slope * (p.x - x0);
dy = Math.abs(p.y - y);
if (dy > max) {
max = dy;
iMax = i;
}
}
if (max < eps) {
return [pts[first]];
}
var p1 = ramerDouglasPeuckerRecursive(pts, first, iMax, eps);
var p2 = ramerDouglasPeuckerRecursive(pts, iMax, last, eps);
return p1.concat(p2);
}
var internalRamerDouglasPeucker = function (pts, eps) {
var p = ramerDouglasPeuckerRecursive(data, 0, pts.length - 1, eps);
return p.concat([pts[pts.length - 1]]);
}
var createRamerDouglasPeuckerData = function () {
var finalPointCount = Math.round(data.length / getPeriod());
var epsilon = getPeriod();
var pts = internalRamerDouglasPeucker(data, epsilon);
var iteration = 0;
// Iterate until the correct number of points is obtained
while (pts.length != finalPointCount && iteration++ < 20) {
epsilon *= Math.sqrt(pts.length / finalPointCount);
pts = internalRamerDouglasPeucker(data, epsilon);
}
return pts;
};
// Event handlers
btnReset.addEventListener('click', function () {
calculatedCount = 0;
clearGroup(grpRawData);
clearGroup(grpCalculatedData);
showRawData();
});
btnClearCalculated.addEventListener('click', function () {
calculatedCount = 0;
clearGroup(grpCalculatedData);
});
btnAddCalculated.addEventListener('click', function () {
switch (cmbMethod.value) {
case "Gaussian":
showPoints(grpCalculatedData, createGaussianKernelData(), 2, colors[calculatedCount++]);
break;
case "RDP":
showPoints(grpCalculatedData, createRamerDouglasPeuckerData(), 2, colors[calculatedCount++]);
return;
}
});
showRawData();
div
{
margin-bottom: 6px;
}
<div>
<button id="btnReset">Reset</button>
<select id="cmbMethod">
<option value="RDP">Ramer-Douglas-Peucker</option>
<option value="Gaussian">Gaussian kernel</option>
</select>
<label for="txtPeriod">Interval: </label>
<input id="txtPeriod" type="text" style="width: 36px;" value="7" />
</div>
<div>
<button id="btnAddCalculated">Add calculated points</button>
<button id="btnClearCalculated">Clear calculated points</button>
</div>
<svg id="svg1" width="765" height="450" viewBox="0 0 510 300">
<g id="graph1" transform="translate(0,300) scale(1,-1)">
<rect width="500" height="300" stroke="black" fill="#eee"></rect>
<g id="grpRawData"></g>
<g id="grpCalculatedData"></g>
</g>
</svg>
I am rewriting this question because my first one was quite vague. I am trying to conver the following javascript function using the map function into Swift 2.
Here is the javascript function.
function compute_correlations(timeseries, test_frequencies, sample_rate)
{
// 2pi * frequency gives the appropriate period to sine.
// timeseries index / sample_rate gives the appropriate time coordinate.
var scale_factor = 2 * Math.PI / sample_rate;
var amplitudes = test_frequencies.map
(
function(f)
{
var frequency = f.frequency;
// Represent a complex number as a length-2 array [ real, imaginary ].
var accumulator = [ 0, 0 ];
for (var t = 0; t < timeseries.length; t++)
{
accumulator[0] += timeseries[t] * Math.cos(scale_factor * frequency * t);
accumulator[1] += timeseries[t] * Math.sin(scale_factor * frequency * t);
}
return accumulator;
}
);
return amplitudes;
}
And here is my Swift function. I am getting an error and am not even sure I am doing it correctly. Error is noted in the code.
func compute_correlations(timeseries:[Double], test_frequencies:[NoteInfo], sample_rate:Double) -> [Double]
{
// 2pi * frequency gives the appropriate period to sine.
// timeseries index / sample_rate gives the appropriate time coordinate.
let scale_factor = 2 * pi / sample_rate;
let amplitudes: [Double] = test_frequencies.map { f in
let frequency = f.getFrequency()
// Represent a complex number as a length-2 array [ real, imaginary ].
var accumulator: [Double] = [ 0.0, 0.0 ]
for (var t = 0; t < timeseries.count; t++)
{
accumulator[0] += timeseries[t] * cos(scale_factor * frequency * Double(t))
accumulator[1] += timeseries[t] * sin(scale_factor * frequency * Double(t))
}
return accumulator //ERROR Cannot convert return expression of type '[Double]' to return type 'Double'
}
return amplitudes;
}
And if needed here is the NoteInfo class
class NoteInfo {
var frequency:Double!
var note_name:String!
init(theFrequency:Double, theNoteName:String){
frequency = theFrequency
note_name = theNoteName
}
func getFrequency()-> Double {
return frequency
}
func getNoteName()-> String {
return note_name
}
}
Here is where I am populating the test_frequencies
for (var i = 0; i < 30; i++)
{
let note_frequency = C2 * pow(2.0, Double(i) / 12.0)
let note_name = notes[i % 12]
let note = NoteInfo(theFrequency: note_frequency, theNoteName: note_name)
test_frequencies.append(note)
}
Your accumulator is a [Double], and so the result of your map becomes [[Double]]. You then try to assign it to a [Double].
You should either declare amplitudes accordingly:
let amplitudes: [[Double]] = test_frequencies.map { f in
or (depending on your needs) return only one of the accumulator fields inside your map, e.g.
return accumulator[0]
Say I have an array in this format:
var arr = [{lat: 123.123, lng: 321.321}, {lat: 567.567, lng: 765.765}]
Based on some map coordinates, how can I most effectively find the object with coordinates closest to the map coordinates?
A naive solution is to do:
var getClosestPoint = function(coord, coordArray) {
var bestDistance = null;
var bestCoord = null;
for (var i = 0; i < coordArray.length; ++i) {
var currentCoord = coordArray[i];
var distance = getDistance(coord, currentCoord);
if ((bestDistance == null) || (distance < bestDistance)) {
bestDistance = distance;
bestCoord = currentCoord;
}
}
return {'distance': bestDistance, 'coord':bestCoord};
};
// Based on the solution here:
// http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates
var getDistance = function(coordA, coordB) {
var R = 6371; // km
var dLat = (coordB.lat-coordA.lat).toRad();
var dLon = (coordB.lng-coordA.lng).toRad();
var lat1 = coordA.lat.toRad();
var lat2 = coordB.lat.toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return d;
};
In other words, the naive solution is to just iterate through all the points, updating the current best distance and the corresponding coordinate. If your list of points is small, this may be reasonable to do. However, a more effective solution is to use a tree structure, where each internal node in the tree is represented by the mean coordinate of all points under that node. You then search the tree by descending the node with the closest mean coordinate until you reach a leaf. This approach allows you to throw out a larger number of candidate points in each iteration, giving a logarithmic solution.
In other words, a more effective solution looks like:
var getClosestPoint = function(coord, coordNode) {
var children = coordNode.getChildren();
if (children.length == 0) {
return coordNode.getCenterCoord();
}
var closestChild = null;
var bestDistance = 0.0;
for (var i = 0; i < children.length; ++i) {
var currentCoord = children[i].getCenterCoord();
var distance = getDistance(coord, currentCoord);
if ((closestChild == null) || (distance < bestDistance)) {
closestChild = children[i];
bestDistance = distance;
}
}
return getClosestPoint(coord, closestChild);
}
Of course, this assumes that you've built up such a tree in the first place. If you are running "getClosestPoint()" repeatedly with the same set of points, then it is probably worthwhile to build up such a structure (if you only execute "getClosestPoint()" once for any given set of points, then the naive solution may be reasonable). The articles on K-D trees and quad trees may be of interest for further reading on this general approach and how to build up and partition the points into these trees.
I believe this should work on a square grid. If the values reset after a certain point, like on earth, there needs to be some adjustment to this solution.
function calculateDistance(x1, x2, y1, y2){
return Math.sqrt(Math.pow((x1 - x2), 2) + Math.pow((y1 - y2), 2));
}
var retrievedCoords = {lat: 12234, lng: 135};
var closestPoint = arr[0];
var distanceToClosestPoint = calculateDistance(retrievedCoords.lat, arr[0].lat, retrievedCoords.lng, arr[0].lng);
for (var i = 1; i < arr.length; i++){
var tempDist = calculateDistance(retrievedCoords.lat, arr[i].lat, retrievedCoords.lng, arr[i].lng);
if (tempDist > distanceToClosestPoint){
closestPoint = arr[i];
distanceToClosestPoint = tempDist;
}
}
I am developing a business directory site whose search will be driven by Google Maps. Users will be able to search for businesses in their area based on various criteria, but mainly the idea is that if you search for e.g. "plumbers in New Jersey", you'll get a result of all plumbers in New Jersey. However, if you search for "plumbers in Jersey Shore", you should get only the plumbers that operate in Jersey Shore, which for this example would be a suburb or other type of sub-division of greater New Jersey. As an aside, I'm stripping out "plumbers in", and only passing the actual geographic search term, so my actual google maps search is only "New Jersey" or "Jersey Shore". So don't focus on the actual search text itself.
This is my search snippet:
var latlng = results[0].geometry.location;//results is google maps search result for address
console.log(results[0]);
map.setCenter(latlng.lat(), latlng.lng());
map.addMarker({
lat: latlng.lat(),
lng: latlng.lng(),
icon: 'https://maps.google.com/mapfiles/kml/shapes/schools_maps.png'
});
var closestmarkers = [];
var MAXDISTANCE = 5;//radius of our search area in km
closestmarkers = find_n_closest_markers(latlng, n, MAXDISTANCE);//see below snippet for function definition
This is the javascript that figures out which markers are closest to the searched :
function find_n_closest_markers(latlng, n, MAXDISTANCE){
var lat = latlng.lat();
var lng = latlng.lng();
var R = 6371; // radius of earth in km
var distances = [];
var closest = -1;
for (i = 0; i < map.markers.length; i++) {
var mlat = map.markers[i].position.lat();
var mlng = map.markers[i].position.lng();
var dLat = rad(mlat - lat);
var dLong = rad(mlng - lng);
var a = Math.sin(dLat / 2)
* Math.sin(dLat / 2)
+ Math.cos(rad(lat))
* Math.cos(rad(lat))
* Math.sin(dLong / 2)
* Math.sin(dLong / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
distances[i] = { distance: d, index: i };
}
distances.sort(comparedistances);
//remove all distances greater than MAXDISTANCE
toofarindex = -1;
for (j = 0; j < distances.length; j++)
{
if(distances[j].distance >= MAXDISTANCE)
{
toofarindex = j;
break;
}
}
if (toofarindex != -1)
{
distances = distances.splice(0, toofarindex - 1);
}
//return first n + 1 items(the closest marker is the one indicating the user's current/preferred location. which doesn't count)
if (distances.length > n + 1)
{
distances = distances.splice(0, n + 1);
}
return distances;
}
I am not concerned about the actual function. That works 100%. What I'm looking for is how to figure out, based on the search term, what the value of MAXDISTANCE should be. 5 is just a good compromise constant for now, but I need to know that New Jersey is e.g. 20 miles in diameter, whereas Jersey Shore is only 5 miles (those figures come straight out of my ear, not an actual map).
The geocoder also returns a viewport and a bounds for the result. If you need a diameter, you can convert one of those to a distance (the width or the height of the bounds will give you a diameter, if not use that bounds to bound your search.