Related
I have a single base abstract class that expects to be extended, which has defined a sole public method that uses a functionality expected from a subclass. Here, only fullSoundSentence is meant to be "public" - to be used by the outside world.
class Animal {
constructor(nickname){
this.nickname = nickname
}
fullSoundSentence(){
//expects this.composesound to exist
return `${this.nickname} ${this.composesound()}!`
}
}
I then have many classes extending it providing some core functionality (here they simply return a string but in reality they need access to this, modify properties of the object and so on)
class Dog extends Animal {
doessound(){
return "barks"
}
}
class Cat extends Animal {
doessound(){
return "meows"
}
}
Another family of subclasses then uses this functionality, all in a different way. Kind of
"modes" in which we use the Dog and Cat functionalities. Theese modes provide the function expected by the abstract base method (fullSoundSentence), but they need to be a specific animal.
class LoudAnimal extends Animal {
composesound(){
return `loudly ${this.doessound()}`
}
}
class CalmAnimal extends Animal {
composesound(){
return `calmly ${this.doessound()}`
}
}
Now, both cats and dogs can be both calm and loud. = any animal can be in any mode
Q: How do i create a calm dog or a loud cat and so on?
I could create by hand classes for each combination (CalmDog, LoudDog, CalmCat, ...) but if there are more animals and more modes, this is terrible
I could make the modes just object with functionalities that the abstract Animal would expect as an argument for example, but this is messy, especially if the mode also needs to modify properties and so on
Isn't there some better way?? I'm looking for ways to do this in JavaScript or TypeScript.
The next provided approach introduces a toolset of (a) context aware functions and function based mixins (which implement behavior that can not be provided in a meaningful way via a sub-typed class-hierarchy) and (b) an Animal base class, some more specific animal sub types and also a factory in order to show that mixin-based composition can be applied at any time during and at any level of an object creation process (or an object's lifetime).
All implemented functionality got derived from the OP's example code, decomposed and re-assembled while keeping the animal type specific property and method names.
From the OP's originally provided Animal and Dog/Cat extends Animal code, in order to justify the existence of a base Animal class, and also in order to DRY both subtypes (Dog and Cat), such a basic type has to not only feature its nickname but also its sound property and its accompanying doessound method. Dog and Cat both rely on super delegation and are good enough for just providing the default values.
The rest is up to either a mix of further sub typing and mixin composition or to e.g. a factory which does instantiate a class and does apply specific behavior to an instance via mixin composition as well.
Why is that?
Both code lines ...
class LoudAnimal extends Animal { composesound () { /* ... */ } }
... and ...
class CalmAnimal extends Animal { composesound () { /* ... */ } }
... make no sense at all.
A calm/loud animal type is nothing which should/could be described in a meaningful way like in form of an entity which features a nickname and a sound property and a doessound method whereas a dog/cat can be described and recognized by these animal specific keys.
But there can be loud dogs and/or calm cats and/or vice versa. Thus, such types need to acquire specific behavior/traits like being calm/loud or expressing itself calmly/loudly. And this is what mixins are for.
// sound-specific functions/methods (behavior) utilized by mixins.
function getBoundBehaviorDrivenSound(behavior) {
// expects `doessound` to exist but does
// handle it forgiving via optional chaining.
return `${ behavior } ${ this?.doessound?.() }`;
}
function getFullSound() {
// expects `nickname` and `composesound` to exist but
// handles the latter forgiving via optional chaining.
return `${ this.nickname } ${ this?.composesound?.() }!`;
}
// sound-specific function-based mixins (applicable behavior).
function withSoundingLoud() {
this.composesound =
getBoundBehaviorDrivenSound.bind(this, 'loudly');
return this;
}
function withSoundingCalm() {
this.composesound =
getBoundBehaviorDrivenSound.bind(this, 'calmly');
return this;
}
function withFullSound() {
this.fullSoundSentence = getFullSound;
return this;
}
// base-class and sub-typing
class Animal {
constructor({
nickname = 'beast',
sound = 'grmpf',
}) {
Object.assign(this, { nickname, sound });
}
doessound() {
return this.sound;
}
}
class Dog extends Animal {
constructor(nickname = 'Buster') {
super({ nickname, sound: 'barks' });
}
}
class Cat extends Animal {
constructor(nickname = 'Chloe') {
super({ nickname, sound: 'meows' });
}
}
// further sub-typing and mixin based composition.
class LoudDog extends Dog {
constructor(nickname) {
super(nickname);
// mixin at creation time at instance/object level.
withSoundingLoud.call(this);
// withFullSound.call(this);
}
}
// factory function featuring mixin based composition.
function createFullySoundingCalmCat(nickname) {
// mixin at creation time at instance/object level.
return withFullSound.call(
withSoundingCalm.call(
new Cat(nickname)
)
);
}
const smokey = createFullySoundingCalmCat('Smokey');
const cooper = new LoudDog('Cooper');
console.log({ smokey, cooper });
console.log('smokey.doessound() ...', smokey.doessound());
console.log('cooper.doessound() ...', cooper.doessound());
console.log('smokey.composesound() ...', smokey.composesound());
console.log('cooper.composesound() ...', cooper.composesound());
console.log('smokey.fullSoundSentence() ...', smokey.fullSoundSentence());
console.log('cooper?.fullSoundSentence?.() ...', cooper?.fullSoundSentence?.());
// ... one more ...
class FullySoundingLoudDog extends LoudDog {
constructor(nickname) {
super(nickname);
}
}
// prototype level aggregation / "class level mixin".
withFullSound.call(FullySoundingLoudDog.prototype);
const anotherDog = new FullySoundingLoudDog;
console.log({ anotherDog });
console.log('anotherDog.doessound() ...', anotherDog.doessound());
console.log('anotherDog.composesound() ...', anotherDog.composesound());
console.log('anotherDog.fullSoundSentence() ...', anotherDog.fullSoundSentence());
.as-console-wrapper { min-height: 100%!important; top: 0; }
I'm trying to inherit class "EventEmitter" and a pre defined class "Person", here is the code
class Person {
constructor(name, age) {
this.name = name;
this.age = age;
}
introduces() {
return `My name is ${this.name}. I am ${this.age} years old.`;
}
};
\\here comes the mixin part
function mix(...mixins) {
class Mix {}
for (let mixin of mixins) {
copyProperties(Mix, mixin);
copyProperties(Mix.prototype, mixin.prototype);
}
return Mix;
}
function copyProperties(target, source) {
for (let key of Reflect.ownKeys(source)) {
if (key !== "constructor" && key !== "prototype" && key !== "name") {
let desc = Object.getOwnPropertyDescriptor(source, key);
Object.defineProperty(target, key, desc);
}
}
}
I intend to create a new class 'PersonWithEmitter', and still call the constructor like below:
class PersonWithEmitter extends mix(Person,EventEmitter){
constructor(name,age){
super(name,age)
\\do something else
}
Here comes the issue, when I create a new instance of 'PersonWithEmitter' like this let someOne = new PersonWithEmitter("Tom",21), will not get what I what, In the new class, I want to use this.name and this.age, which is still undefined.
So how can I change my code, So the new class can both have its parent's methods and only class "Person"'s constructor?
Pardon me for my broken English.
In many cases multiple inheritance in JavaScript indicates wrong design decision. It may result in hacky objects that don't behave as they should. The way it is done should always be determined by particular objects. In some cases a shallow copy of own properties is needed, in another the entire prototype chain should be traversed. Composition over inheritance is often a better choice.
The problem in the code above is that class constructors are not called. Mix has empty constructor. This is the reason why PersonWithEmitter doesn't work as expected.
Multiple constructor function calls can generally be stacked like:
function Foo(...args) {
let _this = this;
_this = Bar.apply(_this, args);
_this = Baz.apply(_this, args);
return _this;
}
This won't work if Bar or Baz is ES6 class because it contains a mechanism that prevents it from being called without new. In this case they should be instantiated:
function Foo(...args) {
copyProperties(this, new Bar(...args));
copyProperties(this, new Baz(...args));
}
Static and prototype properties may also be copied to Foo like is shown in code above.
If the case is narrowed down to Node.js EventEmitter, it can be handled like a special case. Its implementation is certain and stable. It is already known that EventEmitter does initialization in constructor, it has a shallow prototype chain and property descriptors. So it likely should be:
class Foo extends Bar {
constructor(...args) {
super(...args)
EventEmitter.call(this);
// or
// EventEmitter.init.call(this);
}
copyProperties(Foo.prototype, EventEmitter.prototype);
Currently in ES5 many of us are using the following pattern in frameworks to create classes and class variables, which is comfy:
// ES 5
FrameWork.Class({
variable: 'string',
variable2: true,
init: function(){
},
addItem: function(){
}
});
In ES6 you can create classes natively, but there is no option to have class variables:
// ES6
class MyClass {
const MY_CONST = 'string'; // <-- this is not possible in ES6
constructor(){
this.MY_CONST;
}
}
Sadly, the above won't work, as classes only can contain methods.
I understand that I can this.myVar = true in constructor…but I don't want to 'junk' my constructor, especially when I have 20-30+ params for a bigger class.
I was thinking of many ways to handle this issue, but haven't yet found any good ones. (For example: create a ClassConfig handler, and pass a parameter object, which is declared separately from the class. Then the handler would attach to the class. I was thinking about WeakMaps also to integrate, somehow.)
What kind of ideas would you have to handle this situation?
2018 update:
There is now a stage 3 proposal - I am looking forward to make this answer obsolete in a few months.
In the meantime anyone using TypeScript or babel can use the syntax:
varName = value
Inside a class declaration/expression body and it will define a variable. Hopefully in a few months/weeks I'll be able to post an update.
Update: Chrome 74 now ships with this syntax working.
The notes in the ES wiki for the proposal in ES6 (maximally minimal classes) note:
There is (intentionally) no direct declarative way to define either prototype data properties (other than methods) class properties, or instance property
Class properties and prototype data properties need be created outside the declaration.
Properties specified in a class definition are assigned the same attributes as if they appeared in an object literal.
This means that what you're asking for was considered, and explicitly decided against.
but... why?
Good question. The good people of TC39 want class declarations to declare and define the capabilities of a class. Not its members. An ES6 class declaration defines its contract for its user.
Remember, a class definition defines prototype methods - defining variables on the prototype is generally not something you do.
You can, of course use:
constructor(){
this.foo = bar
}
In the constructor like you suggested. Also see the summary of the consensus.
ES7 and beyond
A new proposal for ES7 is being worked on that allows more concise instance variables through class declarations and expressions - https://esdiscuss.org/topic/es7-property-initializers
Just to add to Benjamin's answer — class variables are possible, but you wouldn't use prototype to set them.
For a true class variable you'd want to do something like the following:
class MyClass {}
MyClass.foo = 'bar';
From within a class method that variable can be accessed as this.constructor.foo (or MyClass.foo).
These class properties would not usually be accessible from to the class instance. i.e. MyClass.foo gives 'bar' but new MyClass().foo is undefined
If you want to also have access to your class variable from an instance, you'll have to additionally define a getter:
class MyClass {
get foo() {
return this.constructor.foo;
}
}
MyClass.foo = 'bar';
I've only tested this with Traceur, but I believe it will work the same in a standard implementation.
JavaScript doesn't really have classes. Even with ES6 we're looking at an object- or prototype-based language rather than a class-based language. In any function X () {}, X.prototype.constructor points back to X.
When the new operator is used on X, a new object is created inheriting X.prototype. Any undefined properties in that new object (including constructor) are looked up from there. We can think of this as generating object and class properties.
Babel supports class variables in ESNext, check this example:
class Foo {
bar = 2
static iha = 'string'
}
const foo = new Foo();
console.log(foo.bar, foo.iha, Foo.bar, Foo.iha);
// 2, undefined, undefined, 'string'
In your example:
class MyClass {
const MY_CONST = 'string';
constructor(){
this.MY_CONST;
}
}
Because of MY_CONST is primitive https://developer.mozilla.org/en-US/docs/Glossary/Primitive we can just do:
class MyClass {
static get MY_CONST() {
return 'string';
}
get MY_CONST() {
return this.constructor.MY_CONST;
}
constructor() {
alert(this.MY_CONST === this.constructor.MY_CONST);
}
}
alert(MyClass.MY_CONST);
new MyClass
// alert: string ; true
But if MY_CONST is reference type like static get MY_CONST() {return ['string'];} alert output is string, false. In such case delete operator can do the trick:
class MyClass {
static get MY_CONST() {
delete MyClass.MY_CONST;
return MyClass.MY_CONST = 'string';
}
get MY_CONST() {
return this.constructor.MY_CONST;
}
constructor() {
alert(this.MY_CONST === this.constructor.MY_CONST);
}
}
alert(MyClass.MY_CONST);
new MyClass
// alert: string ; true
And finally for class variable not const:
class MyClass {
static get MY_CONST() {
delete MyClass.MY_CONST;
return MyClass.MY_CONST = 'string';
}
static set U_YIN_YANG(value) {
delete MyClass.MY_CONST;
MyClass.MY_CONST = value;
}
get MY_CONST() {
return this.constructor.MY_CONST;
}
set MY_CONST(value) {
this.constructor.MY_CONST = value;
}
constructor() {
alert(this.MY_CONST === this.constructor.MY_CONST);
}
}
alert(MyClass.MY_CONST);
new MyClass
// alert: string, true
MyClass.MY_CONST = ['string, 42']
alert(MyClass.MY_CONST);
new MyClass
// alert: string, 42 ; true
Since your issue is mostly stylistic (not wanting to fill up the constructor with a bunch of declarations) it can be solved stylistically as well.
The way I view it, many class based languages have the constructor be a function named after the class name itself. Stylistically we could use that that to make an ES6 class that stylistically still makes sense but does not group the typical actions taking place in the constructor with all the property declarations we're doing. We simply use the actual JS constructor as the "declaration area", then make a class named function that we otherwise treat as the "other constructor stuff" area, calling it at the end of the true constructor.
"use strict";
class MyClass
{
// only declare your properties and then call this.ClassName(); from here
constructor(){
this.prop1 = 'blah 1';
this.prop2 = 'blah 2';
this.prop3 = 'blah 3';
this.MyClass();
}
// all sorts of other "constructor" stuff, no longer jumbled with declarations
MyClass() {
doWhatever();
}
}
Both will be called as the new instance is constructed.
Sorta like having 2 constructors where you separate out the declarations and the other constructor actions you want to take, and stylistically makes it not too hard to understand that's what is going on too.
I find it's a nice style to use when dealing with a lot of declarations and/or a lot of actions needing to happen on instantiation and wanting to keep the two ideas distinct from each other.
NOTE: I very purposefully do not use the typical idiomatic ideas of "initializing" (like an init() or initialize() method) because those are often used differently. There is a sort of presumed difference between the idea of constructing and initializing. Working with constructors people know that they're called automatically as part of instantiation. Seeing an init method many people are going to assume without a second glance that they need to be doing something along the form of var mc = MyClass(); mc.init();, because that's how you typically initialize. I'm not trying to add an initialization process for the user of the class, I'm trying to add to the construction process of the class itself.
While some people may do a double-take for a moment, that's actually the bit of the point: it communicates to them that the intent is part of construction, even if that makes them do a bit of a double take and go "that's not how ES6 constructors work" and take a second looking at the actual constructor to go "oh, they call it at the bottom, I see", that's far better than NOT communicating that intent (or incorrectly communicating it) and probably getting a lot of people using it wrong, trying to initialize it from the outside and junk. That's very much intentional to the pattern I suggest.
For those that don't want to follow that pattern, the exact opposite can work too. Farm the declarations out to another function at the beginning. Maybe name it "properties" or "publicProperties" or something. Then put the rest of the stuff in the normal constructor.
"use strict";
class MyClass
{
properties() {
this.prop1 = 'blah 1';
this.prop2 = 'blah 2';
this.prop3 = 'blah 3';
}
constructor() {
this.properties();
doWhatever();
}
}
Note that this second method may look cleaner but it also has an inherent problem where properties gets overridden as one class using this method extends another. You'd have to give more unique names to properties to avoid that. My first method does not have this problem because its fake half of the constructor is uniquely named after the class.
As Benjamin said in his answer, TC39 explicitly decided not to include this feature at least for ES2015. However, the consensus seems to be that they will add it in ES2016.
The syntax hasn't been decided yet, but there's a preliminary proposal for ES2016 that will allow you to declare static properties on a class.
Thanks to the magic of babel, you can use this today. Enable the class properties transform according to these instructions and you're good to go. Here's an example of the syntax:
class foo {
static myProp = 'bar'
someFunction() {
console.log(this.myProp)
}
}
This proposal is in a very early state, so be prepared to tweak your syntax as time goes on.
What about the oldschool way?
class MyClass {
constructor(count){
this.countVar = 1 + count;
}
}
MyClass.prototype.foo = "foo";
MyClass.prototype.countVar = 0;
// ...
var o1 = new MyClass(2); o2 = new MyClass(3);
o1.foo = "newFoo";
console.log( o1.foo,o2.foo);
console.log( o1.countVar,o2.countVar);
In constructor you mention only those vars which have to be computed.
I like prototype inheritance for this feature -- it can help to save a lot of memory(in case if there are a lot of never-assigned vars).
[Long thread, not sure if its already listed as an option...].
A simple alternative for contsants only, would be defining the const outside of class.
This will be accessible only from the module itself, unless accompanied with a getter.
This way prototype isn't littered and you get the const.
// will be accessible only from the module itself
const MY_CONST = 'string';
class MyClass {
// optional, if external access is desired
static get MY_CONST(){return MY_CONST;}
// access example
static someMethod(){
console.log(MY_CONST);
}
}
ES7 class member syntax:
ES7 has a solution for 'junking' your constructor function. Here is an example:
class Car {
wheels = 4;
weight = 100;
}
const car = new Car();
console.log(car.wheels, car.weight);
The above example would look the following in ES6:
class Car {
constructor() {
this.wheels = 4;
this.weight = 100;
}
}
const car = new Car();
console.log(car.wheels, car.weight);
Be aware when using this that this syntax might not be supported by all browsers and might have to be transpiled an earlier version of JS.
Bonus: an object factory:
function generateCar(wheels, weight) {
class Car {
constructor() {}
wheels = wheels;
weight = weight;
}
return new Car();
}
const car1 = generateCar(4, 50);
const car2 = generateCar(6, 100);
console.log(car1.wheels, car1.weight);
console.log(car2.wheels, car2.weight);
You can mimic es6 classes behaviour... and use your class variables :)
Look mum... no classes!
// Helper
const $constructor = Symbol();
const $extends = (parent, child) =>
Object.assign(Object.create(parent), child);
const $new = (object, ...args) => {
let instance = Object.create(object);
instance[$constructor].call(instance, ...args);
return instance;
}
const $super = (parent, context, ...args) => {
parent[$constructor].call(context, ...args)
}
// class
var Foo = {
classVariable: true,
// constructor
[$constructor](who){
this.me = who;
this.species = 'fufel';
},
// methods
identify(){
return 'I am ' + this.me;
}
}
// class extends Foo
var Bar = $extends(Foo, {
// constructor
[$constructor](who){
$super(Foo, this, who);
this.subtype = 'barashek';
},
// methods
speak(){
console.log('Hello, ' + this.identify());
},
bark(num){
console.log('Woof');
}
});
var a1 = $new(Foo, 'a1');
var b1 = $new(Bar, 'b1');
console.log(a1, b1);
console.log('b1.classVariable', b1.classVariable);
I put it on GitHub
Still you can't declare any classes like in another programming languages. But you can create as many class variables. But problem is scope of class object. So According to me, Best way OOP Programming in ES6 Javascript:-
class foo{
constructor(){
//decalre your all variables
this.MY_CONST = 3.14;
this.x = 5;
this.y = 7;
// or call another method to declare more variables outside from constructor.
// now create method level object reference and public level property
this.MySelf = this;
// you can also use var modifier rather than property but that is not working good
let self = this.MySelf;
//code .........
}
set MySelf(v){
this.mySelf = v;
}
get MySelf(v){
return this.mySelf;
}
myMethod(cd){
// now use as object reference it in any method of class
let self = this.MySelf;
// now use self as object reference in code
}
}
If its only the cluttering what gives the problem in the constructor why not implement a initialize method that intializes the variables. This is a normal thing to do when the constructor gets to full with unnecessary stuff. Even in typed program languages like C# its normal convention to add an Initialize method to handle that.
Just define a getter.
class MyClass
{
get MY_CONST () { return 'string'; }
constructor ()
{
console.log ("MyClass MY_CONST:", this.MY_CONST);
}
}
var obj = new MyClass();
The way I solved this, which is another option (if you have jQuery available), was to Define the fields in an old-school object and then extend the class with that object. I also didn't want to pepper the constructor with assignments, this appeared to be a neat solution.
function MyClassFields(){
this.createdAt = new Date();
}
MyClassFields.prototype = {
id : '',
type : '',
title : '',
createdAt : null,
};
class MyClass {
constructor() {
$.extend(this,new MyClassFields());
}
};
-- Update Following Bergi's comment.
No JQuery Version:
class SavedSearch {
constructor() {
Object.assign(this,{
id : '',
type : '',
title : '',
createdAt: new Date(),
});
}
}
You still do end up with 'fat' constructor, but at least its all in one class and assigned in one hit.
EDIT #2:
I've now gone full circle and am now assigning values in the constructor, e.g.
class SavedSearch {
constructor() {
this.id = '';
this.type = '';
this.title = '';
this.createdAt = new Date();
}
}
Why? Simple really, using the above plus some JSdoc comments, PHPStorm was able to perform code completion on the properties. Assigning all the vars in one hit was nice, but the inability to code complete the properties, imo, isn't worth the (almost certainly minuscule) performance benefit.
Well, you can declare variables inside the Constructor.
class Foo {
constructor() {
var name = "foo"
this.method = function() {
return name
}
}
}
var foo = new Foo()
foo.method()
Recent browsers as of 2021 (not IE, see MDN browser chart) implement Public class fields which seems to be what you're looking for:
class MyClass {
static foo = 3;
}
console.log(MyClass.foo);
However apparently it's not possible to make this a const: Declaring static constants in ES6 classes?
A static getter looks pretty close:
class MyClass {
static get CONST() {
return 3;
}
}
MyClass.CONST = 4; // property unaffected
console.log(MyClass.CONST);
This is a bit hackish combo of static and get works for me
class ConstantThingy{
static get NO_REENTER__INIT() {
if(ConstantThingy._NO_REENTER__INIT== null){
ConstantThingy._NO_REENTER__INIT = new ConstantThingy(false,true);
}
return ConstantThingy._NO_REENTER__INIT;
}
}
elsewhere used
var conf = ConstantThingy.NO_REENTER__INIT;
if(conf.init)...
Is it possible to extend a class in ES6 without calling the super method to invoke the parent class?
EDIT: The question might be misleading. Is it the standard that we have to call super() or am I missing something?
For example:
class Character {
constructor(){
console.log('invoke character');
}
}
class Hero extends Character{
constructor(){
super(); // exception thrown here when not called
console.log('invoke hero');
}
}
var hero = new Hero();
When I'm not calling super() on the derived class I'm getting a scope problem -> this is not defined
I'm running this with iojs --harmony in v2.3.0
The rules for ES2015 (ES6) classes basically come down to:
In a child class constructor, this cannot be used until super is called.
ES6 class constructors MUST call super if they are subclasses, or they must explicitly return some object to take the place of the one that was not initialized.
This comes down to two important sections of the ES2015 spec.
Section 8.1.1.3.4 defines the logic to decide what this is in the function. The important part for classes is that it is possible for this be in an "uninitialized" state, and when in this state, attempting to use this will throw an exception.
Section 9.2.2, [[Construct]], which defines the behavior of functions called via new or super. When calling a base class constructor, this is initialized at step #8 of [[Construct]], but for all other cases, this is uninitialized. At the end of construction, GetThisBinding is called, so if super has not been called yet (thus initializing this), or an explicit replacement object was not returned, the final line of the constructor call will throw an exception.
The new ES6 class syntax is only an other notation for "old" ES5 "classes" with prototypes. Therefore you cannot instantiate a specific class without setting its prototype (the base class).
Thats like putting cheese on your sandwich without making it. Also you cannot put cheese before making the sandwich, so...
...using this keyword before calling the super class with super() is not allowed, too.
// valid: Add cheese after making the sandwich
class CheeseSandwich extend Sandwich {
constructor() {
super();
this.supplement = "Cheese";
}
}
// invalid: Add cheese before making sandwich
class CheeseSandwich extend Sandwich {
constructor() {
this.supplement = "Cheese";
super();
}
}
// invalid: Add cheese without making sandwich
class CheeseSandwich extend Sandwich {
constructor() {
this.supplement = "Cheese";
}
}
If you don’t specify a constructor for a base class, the following definition is used:
constructor() {}
For derived classes, the following default constructor is used:
constructor(...args) {
super(...args);
}
EDIT: Found this on developer.mozilla.org:
When used in a constructor, the super keyword appears alone and must be used before the this keyword can be used.
Source
There have been multiple answers and comments stating that super MUST be the first line inside constructor. That is simply wrong. #loganfsmyth answer has the required references of the requirements, but it boil down to:
Inheriting (extends) constructor must call super before using this and before returning even if this isn't used
See fragment below (works in Chrome...) to see why it might make sense to have statements (without using this) before calling super.
'use strict';
var id = 1;
function idgen() {
return 'ID:' + id++;
}
class Base {
constructor(id) {
this.id = id;
}
toString() { return JSON.stringify(this); }
}
class Derived1 extends Base {
constructor() {
var anID = idgen() + ':Derived1';
super(anID);
this.derivedProp = this.baseProp * 2;
}
}
alert(new Derived1());
You can omit super() in your subclass, if you omit the constructor altogether in your subclass. A 'hidden' default constructor will be included automatically in your subclass. However, if you do include the constructor in your subclass, super() must be called in that constructor.
class A{
constructor(){
this.name = 'hello';
}
}
class B extends A{
constructor(){
// console.log(this.name); // ReferenceError
super();
console.log(this.name);
}
}
class C extends B{} // see? no super(). no constructor()
var x = new B; // hello
var y = new C; // hello
Read this for more information.
The answer by justyourimage is the easiest way, but his example is a little bloated. Here's the generic version:
class Base {
constructor(){
return this._constructor(...arguments);
}
_constructor(){
// just use this as the constructor, no super() restrictions
}
}
class Ext extends Base {
_constructor(){ // _constructor is automatically called, like the real constructor
this.is = "easy"; // no need to call super();
}
}
Don't extend the real constructor(), just use the fake _constructor() for the instantiation logic.
Note, this solution makes debugging annoying because you have to step into an extra method for every instantiation.
Just registered to post this solution since the answers here don't satisfy me the least since there is actually a simple way around this. Adjust your class-creation pattern to overwrite your logic in a sub-method while using only the super constructor and forward the constructors arguments to it.
As in you do not create an constructor in your subclasses per se but only reference to an method that is overridden in the respective subclass.
That means you set yourself free from the constructor functionality enforced upon you and refrain to a regular method - that can be overridden and doesn't enforce super() upon you letting yourself the choice if, where and how you want to call super (fully optional) e.g.:
super.ObjectConstructor(...)
class Observable {
constructor() {
return this.ObjectConstructor(arguments);
}
ObjectConstructor(defaultValue, options) {
this.obj = { type: "Observable" };
console.log("Observable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
class ArrayObservable extends Observable {
ObjectConstructor(defaultValue, options, someMoreOptions) {
this.obj = { type: "ArrayObservable" };
console.log("ArrayObservable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
class DomainObservable extends ArrayObservable {
ObjectConstructor(defaultValue, domainName, options, dependent1, dependent2) {
this.obj = super.ObjectConstructor(defaultValue, options);
console.log("DomainObservable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
var myBasicObservable = new Observable("Basic Value", "Basic Options");
var myArrayObservable = new ArrayObservable("Array Value", "Array Options", "Some More Array Options");
var myDomainObservable = new DomainObservable("Domain Value", "Domain Name", "Domain Options", "Dependency A", "Depenency B");
cheers!
#Bergi mentioned new.target.prototype, but I was looking for a concrete example proving that you can access this (or better, the reference to the object the client code is creating with new, see below) without having to call super() at all.
Talk is cheap, show me the code... So here is an example:
class A { // Parent
constructor() {
this.a = 123;
}
parentMethod() {
console.log("parentMethod()");
}
}
class B extends A { // Child
constructor() {
var obj = Object.create(new.target.prototype)
// You can interact with obj, which is effectively your `this` here, before returning
// it to the caller.
return obj;
}
childMethod(obj) {
console.log('childMethod()');
console.log('this === obj ?', this === obj)
console.log('obj instanceof A ?', obj instanceof A);
console.log('obj instanceof B ?', obj instanceof B);
}
}
b = new B()
b.parentMethod()
b.childMethod(b)
Which will output:
parentMethod()
childMethod()
this === obj ? true
obj instanceof A ? true
obj instanceof B ? true
So you can see that we are effectively creating an object of type B (the child class) which is also an object of type A (its parent class) and within the childMethod() of child B we have this pointing to the object obj which we created in B's constructor with Object.create(new.target.prototype).
And all this without caring about super at all.
This leverages the fact that in JS a constructor can return a completely different object when the client code constructs a new instance with new.
Hope this helps someone.
Try:
class Character {
constructor(){
if(Object.getPrototypeOf(this) === Character.prototype){
console.log('invoke character');
}
}
}
class Hero extends Character{
constructor(){
super(); // throws exception when not called
console.log('invoke hero');
}
}
var hero = new Hero();
console.log('now let\'s invoke Character');
var char = new Character();
Demo
I would recommend to use OODK-JS if you intend to develop following OOP concepts.
OODK(function($, _){
var Character = $.class(function ($, µ, _){
$.public(function __initialize(){
$.log('invoke character');
});
});
var Hero = $.extends(Character).class(function ($, µ, _){
$.public(function __initialize(){
$.super.__initialize();
$.log('invoke hero');
});
});
var hero = $.new(Hero);
});
Simple solution: I think its clear no need for explanation.
class ParentClass() {
constructor(skipConstructor = false) { // default value is false
if(skipConstructor) return;
// code here only gets executed when 'super()' is called with false
}
}
class SubClass extends ParentClass {
constructor() {
super(true) // true for skipping ParentClass's constructor.
// code
}
}
Is it possible to extend a class in ES6 without calling the super method to invoke the parent class?
EDIT: The question might be misleading. Is it the standard that we have to call super() or am I missing something?
For example:
class Character {
constructor(){
console.log('invoke character');
}
}
class Hero extends Character{
constructor(){
super(); // exception thrown here when not called
console.log('invoke hero');
}
}
var hero = new Hero();
When I'm not calling super() on the derived class I'm getting a scope problem -> this is not defined
I'm running this with iojs --harmony in v2.3.0
The rules for ES2015 (ES6) classes basically come down to:
In a child class constructor, this cannot be used until super is called.
ES6 class constructors MUST call super if they are subclasses, or they must explicitly return some object to take the place of the one that was not initialized.
This comes down to two important sections of the ES2015 spec.
Section 8.1.1.3.4 defines the logic to decide what this is in the function. The important part for classes is that it is possible for this be in an "uninitialized" state, and when in this state, attempting to use this will throw an exception.
Section 9.2.2, [[Construct]], which defines the behavior of functions called via new or super. When calling a base class constructor, this is initialized at step #8 of [[Construct]], but for all other cases, this is uninitialized. At the end of construction, GetThisBinding is called, so if super has not been called yet (thus initializing this), or an explicit replacement object was not returned, the final line of the constructor call will throw an exception.
The new ES6 class syntax is only an other notation for "old" ES5 "classes" with prototypes. Therefore you cannot instantiate a specific class without setting its prototype (the base class).
Thats like putting cheese on your sandwich without making it. Also you cannot put cheese before making the sandwich, so...
...using this keyword before calling the super class with super() is not allowed, too.
// valid: Add cheese after making the sandwich
class CheeseSandwich extend Sandwich {
constructor() {
super();
this.supplement = "Cheese";
}
}
// invalid: Add cheese before making sandwich
class CheeseSandwich extend Sandwich {
constructor() {
this.supplement = "Cheese";
super();
}
}
// invalid: Add cheese without making sandwich
class CheeseSandwich extend Sandwich {
constructor() {
this.supplement = "Cheese";
}
}
If you don’t specify a constructor for a base class, the following definition is used:
constructor() {}
For derived classes, the following default constructor is used:
constructor(...args) {
super(...args);
}
EDIT: Found this on developer.mozilla.org:
When used in a constructor, the super keyword appears alone and must be used before the this keyword can be used.
Source
There have been multiple answers and comments stating that super MUST be the first line inside constructor. That is simply wrong. #loganfsmyth answer has the required references of the requirements, but it boil down to:
Inheriting (extends) constructor must call super before using this and before returning even if this isn't used
See fragment below (works in Chrome...) to see why it might make sense to have statements (without using this) before calling super.
'use strict';
var id = 1;
function idgen() {
return 'ID:' + id++;
}
class Base {
constructor(id) {
this.id = id;
}
toString() { return JSON.stringify(this); }
}
class Derived1 extends Base {
constructor() {
var anID = idgen() + ':Derived1';
super(anID);
this.derivedProp = this.baseProp * 2;
}
}
alert(new Derived1());
You can omit super() in your subclass, if you omit the constructor altogether in your subclass. A 'hidden' default constructor will be included automatically in your subclass. However, if you do include the constructor in your subclass, super() must be called in that constructor.
class A{
constructor(){
this.name = 'hello';
}
}
class B extends A{
constructor(){
// console.log(this.name); // ReferenceError
super();
console.log(this.name);
}
}
class C extends B{} // see? no super(). no constructor()
var x = new B; // hello
var y = new C; // hello
Read this for more information.
The answer by justyourimage is the easiest way, but his example is a little bloated. Here's the generic version:
class Base {
constructor(){
return this._constructor(...arguments);
}
_constructor(){
// just use this as the constructor, no super() restrictions
}
}
class Ext extends Base {
_constructor(){ // _constructor is automatically called, like the real constructor
this.is = "easy"; // no need to call super();
}
}
Don't extend the real constructor(), just use the fake _constructor() for the instantiation logic.
Note, this solution makes debugging annoying because you have to step into an extra method for every instantiation.
Just registered to post this solution since the answers here don't satisfy me the least since there is actually a simple way around this. Adjust your class-creation pattern to overwrite your logic in a sub-method while using only the super constructor and forward the constructors arguments to it.
As in you do not create an constructor in your subclasses per se but only reference to an method that is overridden in the respective subclass.
That means you set yourself free from the constructor functionality enforced upon you and refrain to a regular method - that can be overridden and doesn't enforce super() upon you letting yourself the choice if, where and how you want to call super (fully optional) e.g.:
super.ObjectConstructor(...)
class Observable {
constructor() {
return this.ObjectConstructor(arguments);
}
ObjectConstructor(defaultValue, options) {
this.obj = { type: "Observable" };
console.log("Observable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
class ArrayObservable extends Observable {
ObjectConstructor(defaultValue, options, someMoreOptions) {
this.obj = { type: "ArrayObservable" };
console.log("ArrayObservable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
class DomainObservable extends ArrayObservable {
ObjectConstructor(defaultValue, domainName, options, dependent1, dependent2) {
this.obj = super.ObjectConstructor(defaultValue, options);
console.log("DomainObservable ObjectConstructor called with arguments: ", arguments);
console.log("obj is:", this.obj);
return this.obj;
}
}
var myBasicObservable = new Observable("Basic Value", "Basic Options");
var myArrayObservable = new ArrayObservable("Array Value", "Array Options", "Some More Array Options");
var myDomainObservable = new DomainObservable("Domain Value", "Domain Name", "Domain Options", "Dependency A", "Depenency B");
cheers!
#Bergi mentioned new.target.prototype, but I was looking for a concrete example proving that you can access this (or better, the reference to the object the client code is creating with new, see below) without having to call super() at all.
Talk is cheap, show me the code... So here is an example:
class A { // Parent
constructor() {
this.a = 123;
}
parentMethod() {
console.log("parentMethod()");
}
}
class B extends A { // Child
constructor() {
var obj = Object.create(new.target.prototype)
// You can interact with obj, which is effectively your `this` here, before returning
// it to the caller.
return obj;
}
childMethod(obj) {
console.log('childMethod()');
console.log('this === obj ?', this === obj)
console.log('obj instanceof A ?', obj instanceof A);
console.log('obj instanceof B ?', obj instanceof B);
}
}
b = new B()
b.parentMethod()
b.childMethod(b)
Which will output:
parentMethod()
childMethod()
this === obj ? true
obj instanceof A ? true
obj instanceof B ? true
So you can see that we are effectively creating an object of type B (the child class) which is also an object of type A (its parent class) and within the childMethod() of child B we have this pointing to the object obj which we created in B's constructor with Object.create(new.target.prototype).
And all this without caring about super at all.
This leverages the fact that in JS a constructor can return a completely different object when the client code constructs a new instance with new.
Hope this helps someone.
Try:
class Character {
constructor(){
if(Object.getPrototypeOf(this) === Character.prototype){
console.log('invoke character');
}
}
}
class Hero extends Character{
constructor(){
super(); // throws exception when not called
console.log('invoke hero');
}
}
var hero = new Hero();
console.log('now let\'s invoke Character');
var char = new Character();
Demo
I would recommend to use OODK-JS if you intend to develop following OOP concepts.
OODK(function($, _){
var Character = $.class(function ($, µ, _){
$.public(function __initialize(){
$.log('invoke character');
});
});
var Hero = $.extends(Character).class(function ($, µ, _){
$.public(function __initialize(){
$.super.__initialize();
$.log('invoke hero');
});
});
var hero = $.new(Hero);
});
Simple solution: I think its clear no need for explanation.
class ParentClass() {
constructor(skipConstructor = false) { // default value is false
if(skipConstructor) return;
// code here only gets executed when 'super()' is called with false
}
}
class SubClass extends ParentClass {
constructor() {
super(true) // true for skipping ParentClass's constructor.
// code
}
}