React-Native - recursing through nested object crashing - javascript

I have the following function taken from (Iterate through Nested JavaScript Objects) implemented in a plain CRNA project:
var findObjectByLabel = function(obj, label) {
if(obj.label === label) { return obj; }
for(var i in obj) {
if(obj.hasOwnProperty(i)){
var foundLabel = findObjectByLabel(obj[i], label);
if(foundLabel) { return foundLabel; }
}
}
return null;
};
When i try to execute this code in the constructor or any lifecycle method, the app crashes with Maximum Call Stack Size exceeded. Is this something that is not allowed in RN? Will I have to convert this into an iterative version?

If you consider the following scenario for your above function, you can see why it is breaking:
type Node = { link: Node; value: number; };
const x: Node = { link: null, value: 0 };
const y: Node = { link: x, value: 1 };
x.link = y;
findObjectByLabel(x, 'foo');
Because there is a circular reference, your recursion is going to go on infinitely and you will hit the max call stack size.
It is likely that there is some sort of circular reference within your object structure that is running you up against this problem.
If you can guarantee that all hit objects will have a non-null label and that labels are unique you could keep track of seenLabels and not recursive into an object that you've already seen the label of.

Related

How to access array outside of a function in javascript

I'm just wondering how to figure this strange security/scope question out:
function vector() {
var array = [];
return {
append: function append(v) {
array.push(v);
},
get: function get(i) {
return array[i];
},
store: function store(i,v) {
array[i] = v;
}
};
}
This is the question asked:
Can you spot any security concerns with this approach? Mainly, can we get access to the array outside of vector? Note*: the issue has nothing to do with prototypes and we can assume that global prototypes cannot be altered. Hint*: Think about using this in a method invocation. Can we override a method of vector?
Example
var v = vector();
v.append(1);
v.append(2);
var internalData = exploitVector(v); // [1, 2]
My attempts + thoughts
Pretty sure I'm supposed to use the this keyword somehow as the hint says.
I'm a beginner at javascript so I don't fully understand the context that well. This code is written in a file with other functions on the text editor Atom, not a browser.
function exploitVector(v) {
v.get = function() {
return this.array;
};
console.log(v.get());
return v.get();
}
Also, this is just a fun exercise I saw on a github repo.
Vector.store() can be abused to modify the array methods (e.g. array.push), followed by a v.append() to trigger the modified array.push method. The modified push method can for example either do something like window.visiblearray=this after which, visiblearray can be accessed globally.
Or as in the example below, store this (Array instance) to visiblearray of local scope, and then return it.
function vector() {
var array = [];
return {
append: function append(v) {
array.push(v);
},
get: function get(i) {
return array[i];
},
store: function store(i,v) {
array[i] = v;
}
};
}
var v = vector();
v.append(1);
v.append(2);
var internalData = exploitVector(v); // [1, 2]
function exploitVector(v) {
var visible_array;
v.store('push', function(x){visible_array=this}) // modify array push
v.append(12) // trigger the modified array push
console.log(visible_array);
return visible_array
}

JS-Interpreter - changing “this” context

JS-Interpreter is a somewhat well-known JavaScript Interpreter. It has security advantages in that it can completely isolate your code from document and allows you to detect attacks such as infinite loops and memory bombs. This allows you to run externally defined code safely.
I have an object, say o like this:
let o = {
hidden: null,
regex: null,
process: [
"this.hidden = !this.visible;",
"this.regex = new RegExp(this.validate, 'i');"
],
visible: true,
validate: "^[a-z]+$"
};
I'd like to be able to run the code in process through JS-Interpreter:
for (let i = 0; i < o.process.length; i++)
interpretWithinContext(o, o.process[i]);
Where interpretWithinContext will create an interpreter using the first argument as the context, i.e. o becomes this, and the second argument is the line of code to run. After running the above code, I would expect o to be:
{
hidden: false,
regex: /^[a-z]+$/i,
process: [
"this.hidden = !this.visible;",
"this.regex = new RegExp(this.validate, 'i');"
],
visible: true,
validate: '^[a-z]+$'
}
That is, hidden and regex are now set.
Does anyone know if this is possible in JS-Interpreter?
I’ve spent a while messing around with the JS-Interpreter now, trying to figure out from the source how to place an object into the interpreter’s scope that can be both read and modified.
Unfortunately, the way this library is built, all the useful internal things are minified so we cannot really utilize the internal things and just put an object inside. Attempts to add a proxy object also failed failed since the object just wasn’t used in a “normal” way.
So my original approach to this was to just fall back to providing simple utility functions to access the outside object. This is fully supported by the library and probably the safest way of interacting with it. It does require you to change the process code though, in order to use those functions. But as a benefit, it does provide a very clean interface to communicate with “the outside world”. You can find the solution for this in the following hidden snippet:
function createInterpreter (dataObj) {
function initialize (intp, scope) {
intp.setProperty(scope, 'get', intp.createNativeFunction(function (prop) {
return intp.nativeToPseudo(dataObj[prop]);
}), intp.READONLY_DESCRIPTOR);
intp.setProperty(scope, 'set', intp.createNativeFunction(function (prop, value) {
dataObj[prop] = intp.pseudoToNative(value);
}), intp.READONLY_DESCRIPTOR);
}
return function (code) {
const interpreter = new Interpreter(code, initialize);
interpreter.run();
return interpreter.value;
};
}
let o = {
hidden: null,
regex: null,
process: [
"set('hidden', !get('visible'));",
"set('regex', new RegExp(get('validate'), 'i'));"
],
visible: true,
validate: "^[a-z]+$"
};
const interprete = createInterpreter(o);
for (const process of o.process) {
interprete(process);
}
console.log(o.hidden); // false
console.log(o.regex); // /^[a-z]+$/i
<script src="https://neil.fraser.name/software/JS-Interpreter/acorn_interpreter.js"></script>
However, after posting above solution, I just couldn’t stop thinking about this, so I dug deeper. As I learned, the methods getProperty and setProperty are not just used to set up the initial sandbox scope, but also as the code is being interpreted. So we can use this to create a proxy-like behavior for our object.
My solution here is based on code I found in an issue comment about doing this by modifying the Interpreter type. Unfortunately, the code is written in CoffeeScript and also based on some older versions, so we cannot use it exactly as it is. There’s also still the problem of the internals being minified, which we’ll get to in a moment.
The overall idea is to introduce a “connected object” into the scope which we will handle as a special case inside the getProperty and setProperty to map to our actual object.
But for that, we need to overwrite those two methods which is a problem because they are minified and received different internal names. Fortunately, the end of the source contains the following:
// Preserve top-level API functions from being pruned/renamed by JS compilers.
// …
Interpreter.prototype['getProperty'] = Interpreter.prototype.getProperty;
Interpreter.prototype['setProperty'] = Interpreter.prototype.setProperty;
So even if a minifier mangles the names on the right, it won’t touch the ones on the left. So that’s how the author made particular functions available for public use. But we want to overwrite them, so we cannot just overwrite the friendly names, we also need to replace the minified copies! But since we have a way to access the functions, we can also search for any other copy of them with a mangled name.
So that’s what I’m doing in my solution at the beginning in patchInterpreter: Define the new methods we’ll overwrite the existing ones with. Then, look for all the names (mangled or not) that refer to those functions, and replace them all with the new definition.
In the end, after patching the Interpreter, we just need to add a connected object into the scope. We cannot use the name this since that’s already used, but we can just choose something else, for example o:
function patchInterpreter (Interpreter) {
const originalGetProperty = Interpreter.prototype.getProperty;
const originalSetProperty = Interpreter.prototype.setProperty;
function newGetProperty(obj, name) {
if (obj == null || !obj._connected) {
return originalGetProperty.call(this, obj, name);
}
const value = obj._connected[name];
if (typeof value === 'object') {
// if the value is an object itself, create another connected object
return this.createConnectedObject(value);
}
return value;
}
function newSetProperty(obj, name, value, opt_descriptor) {
if (obj == null || !obj._connected) {
return originalSetProperty.call(this, obj, name, value, opt_descriptor);
}
obj._connected[name] = this.pseudoToNative(value);
}
let getKeys = [];
let setKeys = [];
for (const key of Object.keys(Interpreter.prototype)) {
if (Interpreter.prototype[key] === originalGetProperty) {
getKeys.push(key);
}
if (Interpreter.prototype[key] === originalSetProperty) {
setKeys.push(key);
}
}
for (const key of getKeys) {
Interpreter.prototype[key] = newGetProperty;
}
for (const key of setKeys) {
Interpreter.prototype[key] = newSetProperty;
}
Interpreter.prototype.createConnectedObject = function (obj) {
const connectedObject = this.createObject(this.OBJECT);
connectedObject._connected = obj;
return connectedObject;
};
}
patchInterpreter(Interpreter);
// actual application code
function createInterpreter (dataObj) {
function initialize (intp, scope) {
// add a connected object for `dataObj`
intp.setProperty(scope, 'o', intp.createConnectedObject(dataObj), intp.READONLY_DESCRIPTOR);
}
return function (code) {
const interpreter = new Interpreter(code, initialize);
interpreter.run();
return interpreter.value;
};
}
let o = {
hidden: null,
regex: null,
process: [
"o.hidden = !o.visible;",
"o.regex = new RegExp(o.validate, 'i');"
],
visible: true,
validate: "^[a-z]+$"
};
const interprete = createInterpreter(o);
for (const process of o.process) {
interprete(process);
}
console.log(o.hidden); // false
console.log(o.regex); // /^[a-z]+$/i
<script src="https://neil.fraser.name/software/JS-Interpreter/acorn_interpreter.js"></script>
And that’s it! Note that while that new implementation does already work with nested objects, it may not work with every type. So you should probably be careful what kind of objects you pass into the sandbox. It’s probably a good idea to create separate and explicitly safe objects with only basic or primitive types.
Have not tried JS-Interpreter. You can use new Function() and Function.prototype.call() to achieve requirement
let o = {
hidden: null,
regex: null,
process: [
"this.hidden = !this.visible;",
"this.regex = new RegExp(this.validate, 'i');"
],
visible: true,
validate: "^[a-z]+$"
};
for (let i = 0; i < o.process.length; i++)
console.log(new Function(`return ${o.process[i]}`).call(o));
Hi may be interpretWithinContext look like something like that ?
let interpretWithinContext = (function(o, p){
//in dunno for what you use p because all is on object o
o.hidden = (o.hidden === null) ? false : o.hidden;
o.regex = (o.regex === null) ? '/^[a-z]+$/i' : o.regex;
console.log(o);
return o;
});
https://codepen.io/anon/pen/oGwyra?editors=1111

checking thruthness of overwritten valueOf not working

I want to create a similar construction in my code.
var inList = findItem(list, data);
if(!inList) {
var item = inList.item;
}
function findItem(list, data) {
var item = list.find("[data-day='"+data.day+"']")
// more code.
// conditional return
return {item: item, valueOf:function(){return false}};
}
But it doesn't work because overwriting valueOf doesn't play nicely with a simple truthfull check (in the way that I want it to work).
and having code like if(inList == false){} looks less clean imo. Is there a way to make this work?
Boolean checks don't invoke valueOf - all objects are considered truthy. If you want to circumvent that, you'll have to invoke it yourself explicitly:
if (!inList.valueOf()) …
You should not depend on code that uses valueOf,
if you wanted to do something where you are returning an object,
just add another property instead.
var findResult = findItem(list, data);
if(!findResult.found) {
var item = findResult.item;
}
function findItem(list, data) {
var item = list.find("[data-day='"+data.day+"']");
// more code.
// conditional return
return {item: item, found: false};
}
Then again, I forgot what I was doing 5 years ago.

Handling Complex Dependencies Between Object Properties (Auto Update Dependent Properties)

I have a tree structure of objects, and their properties have very complicated dependencies on surrounding objects determined by where they are in the tree. I have hard coded a lot of these dependencies, and tried to create some sort of update loop (where if a property gets updated, based on the design, all of the properties that depend on it get updated, and in the correct order), but I want to handle it in a more generic/abstract way, instead of hard coding a bunch of update calls to different objects.
Let's say, for example, I have 1 superclass, and 3 subclasses, and then a separate container object.
Shape
properties: parentContainer, index, left, top, width, height
methods: updateLeft(), updateTop(), updateWidth(), updateHeight()
Square inherits from Shape
Triangle inherits from Shape
Circle inherits from Shape
ShapeContainer
properties: shapes
methods: addShape(shape, index), removeShape(index)
I'll give a pseudocode example update method to illustrate how these dependencies crop up:
Square.updateTop() {
var prevShape = null;
if (this.index != 0) {
prevShape = this.parentContainer.shapes[this.index - 1];
}
var nextSquareInContainer = null;
for (var i = this.index; i < this.parentContainer.shapes.length; i++) {
var shape = this.parentContainer.shapes[i];
if(shape instanceof Square) {
nextSquareInContainer = shape;
break;
}
}
var top = 0;
if (prevShape != null && nextSquareInContainer != null) {
top = prevShape.top + nextSquareInContainer.width;
} else {
top = 22;
}
this.top = top;
}
So, any square objects added to the shapeConatiner will depend on the previous shape's top value and the next square found in the container's width value for its top value.
Here is some code to set up an example shape container:
var shapeContainer = new ShapeContainer();
var triangle = new Triangle();
var circle = new Circle();
var square1 = new Square();
var square2 = new Square();
shapeContainer.addShape(triangle, 0);
shapeContainer.addShape(circle, 1);
shapeContainer.addShape(square1, 2);
shapeContainer.addShape(square2, 3);
So, I guess the crux of the issue is, if I update the above circle's top value, I want the top value of square1 to be automatically updated (because there is a one way dependency between square1's top value, and circle's top value). So one way I can do this (the way I've been doing it, in combination with some other specific knowledge of my problem domain to simplify the calls), is to add the code similar to the following to Circle's updateTop method (really it would have to be added to each shape's updateTop method):
Circle.updateTop() {
// Code to actually calculate and update Circle's top value, note this
// may depend on its own set of dependencies
var nextShape = this.parentContainer.shapes[this.index + 1];
if (nextShape instanceof Square) {
nextShape.updateTop();
}
}
This type of design is fine for a few simple dependencies between objects, but my project has dozens of types of objects with probably hundreds of dependencies between their properties. I've coded it this way, but it is very difficult to reason about when trying to add new features, or troubleshoot a bug.
Is there some sort of design pattern out there to set up dependencies between object properties, and then when one property is updated, it updates all of the properties on other objects that depend on it (which may then trigger further updating of properties that depend on the now newly updated properties)? Some sort of declarative syntax for specifying these dependencies would probably be best for readability/maintainability.
Another issue is, a property may have several dependencies, that ALL must be updated before I want that property to update itself.
I've been looking into a pub/sub type of solution, but I thought this was a complicated enough problem to reach out for help. As a side note, I'm working in javascript.
Here is the hackish solution I came up with. I create a wrapper class, that you pass in anonymous functions for getter/setter/updaters. Then you make a call of prop1.dependsOn(prop2) to declaratively set up dependencies. It involves setting up a directed acyclic graph of the dependencies between object properties, and then when a property value is updated, explicitly making a call to resolve the related dependencies using a topological sort. I didn't put much thought into efficiency, and I bet somebody could come up with a much more robust/performant solution, but I think this will do for now. Sorry for the code dump, but I thought it could be of some help to somebody trying to solve a similar problem down the road. If somebody wants to make this syntactically cleaner, be my guest.
// This is a class that will act as a wrapper for all properties
// that we want to tie to our dependency graph.
function Property(initialValue, ctx) {
// Each property will get a unique id.
this.id = (++Property.id).toString();
this.value = initialValue;
this.isUpdated = false;
this.context = ctx;
Property.dependsOn[this.id] = [];
Property.isDependedOnBy[this.id] = [];
Property.idMapping[this.id] = this;
}
// Static properties on Property function.
Property.id = 0;
Property.dependsOn = {};
Property.isDependedOnBy = {};
Property.idMapping = {};
// Calling this updates all dependencies from the node outward.
Property.resolveDependencies = function (node) {
node = node.id;
var visible = [];
// Using Depth First Search to mark visibility (only want to update dependencies that are visible).
var depthFirst = function (node) {
visible.push(node);
for (var i = 0; i < Property.isDependedOnBy[node].length; i++) {
depthFirst(Property.isDependedOnBy[node][i]);
}
};
depthFirst(node);
// Topological sort to make sure updates are done in the correct order.
var generateOrder = function (inbound) {
var noIncomingEdges = [];
for (var key in inbound) {
if (inbound.hasOwnProperty(key)) {
if (inbound[key].length === 0) {
// Only call update if visible.
if (_.indexOf(visible, key) !== -1) {
Property.idMapping[key].computeValue();
}
noIncomingEdges.push(key);
delete inbound[key];
}
}
}
for (var key in inbound) {
if (inbound.hasOwnProperty(key)) {
for (var i = 0; i < noIncomingEdges.length; i++) {
inbound[key] = _.without(inbound[key], noIncomingEdges[i]);
}
}
}
// Check if the object has anymore nodes.
for (var prop in inbound) {
if (Object.prototype.hasOwnProperty.call(inbound, prop)) {
generateOrder(inbound);
}
}
};
generateOrder(_.clone(Property.dependsOn));
};
Property.prototype.get = function () {
return this.value;
}
Property.prototype.set = function (value) {
this.value = value;
}
Property.prototype.computeValue = function () {
// Call code that updates this.value.
};
Property.prototype.dependsOn = function (prop) {
Property.dependsOn[this.id].push(prop.id);
Property.isDependedOnBy[prop.id].push(this.id);
}
function PropertyFactory(methodObject) {
var self = this;
var PropType = function (initialValue) {
Property.call(this, initialValue, self);
}
PropType.prototype = Object.create(Property.prototype);
PropType.prototype.constructor = PropType;
if (methodObject.get !== null) {
PropType.prototype.get = methodObject.get;
}
if (methodObject.set !== null) {
PropType.prototype.set = methodObject.set;
}
if (methodObject.computeValue !== null) {
PropType.prototype.computeValue = methodObject.computeValue;
}
return new PropType(methodObject.initialValue);
}
And here is an example of what setting up a property looks like:
function MyClassContainer() {
this.children = [];
this.prop = PropertyFactory.call(this, {
initialValue: 0,
get: null,
set: null,
computeValue: function () {
var self = this.context;
var updatedVal = self.children[0].prop.get() + self.children[1].prop.get();
this.set(updatedVal);
}
});
}
MyClassContainer.prototype.addChildren = function (child) {
if (this.children.length === 0 || this.children.length === 1) {
// Here is the key line. This line is setting up the dependency between
// object properties.
this.prop.dependsOn(child.prop);
}
this.children.push(child);
}
function MyClass() {
this.prop = PropertyFactory.call(this, {
initialValue: 5,
get: null,
set: null,
computeValue: null
});
}
var c = new MyClassContainer();
var c1 = new MyClass();
var c2 = new MyClass();
c.addChildren(c1);
c.addChildren(c2);
And here is an example of actually updating a property once all of this infrastructure is set up:
c1.prop.set(3);
Property.resolveDependencies(c1.prop);
I feel like this is a pretty powerful pattern for programs that require really complicated dependencies. Knockout JS has something similar, with computedObservables (and they use a wrapper in a similar fashion), but you can only tie the computed property to other properties on the same object from what I can tell. The above pattern allows you to arbitrarily associate object properties as dependencies.

How can I make Ember.js handlebars #each iterate over objects?

I'm trying to make the {{#each}} helper to iterate over an object, like in vanilla handlebars. Unfortunately if I use #each on an object, Ember.js version gives me this error:
Assertion failed: The value that #each loops over must be an Array. You passed [object Object]
I wrote this helper in attempt to remedy this:
Ember.Handlebars.helper('every', function (context, options) {
var oArray = [];
for (var k in context) {
oArray.push({
key : k,
value : context[k]
})
}
return Ember.Handlebars.helpers.each(oArray, options);
});
Now, when I attempt to use {{#every}}, I get the following error:
Assertion failed: registerBoundHelper-generated helpers do not support use with Handlebars blocks.
This seems like a basic feature, and I know I'm probably missing something obvious. Can anyone help?
Edit:
Here's a fiddle: http://jsfiddle.net/CbV8X/
Use {{each-in}} helper. You can use it like like {{each}} helper.
Example:
{{#each-in modelWhichIsObject as |key value|}}
`{{key}}`:`{{value}}`
{{/each-in}}
JS Bin demo.
After fiddling with it for a few hours, I came up with this hacky way:
Ember.Handlebars.registerHelper('every', function(context, options) {
var oArray = [], actualData = this.get(context);
for (var k in actualData) {
oArray.push({
key: k,
value: actualData[k]
})
}
this.set(context, oArray);
return Ember.Handlebars.helpers.each.apply(this,
Array.prototype.slice.call(arguments));
});
I don't know what repercussions this.set has, but this seems to work!
Here's a fiddle: http://jsfiddle.net/CbV8X/1/
I've been after similar functionality, and since we're sharing our hacky ways, here's my fiddle for the impatient: http://jsfiddle.net/L6axcob8/1/
This fiddle is based on the one provided by #lxe, with updates by #Kingpin2k, and then myself.
Ember: 1.9.1, Handlebars: 2.0.0, jQuery 2.1.3
Here we are adding a helper called every which can iterate over objects and arrays.
For example this model:
model: function() {
return {
properties: {
foo: 'bar',
zoo: 'zar'
}
};
}
can be iterated with the following handlebars template:
<ul class="properties">
{{#every p in properties}}
<li>{{p.key}} : {{p.value}}</li>
{{/every}}
</ul>
every helper works by creating an array from the objects keys, and then coordinating changes to Ember by way of an ArrayController. Yeah, hacky. This does however, let us add/remove properties to/from an object provided that object supports observation of the [] property.
In my use case I have an Ember.Object derived class which notifies [] when properties are added/removed. I'd recommend looking at Ember.Set for this functionality, although I see that Set been recently deprecated. As this is slightly out of this questions scope I'll leave it as an exercise for the reader. Here's a tip: setUnknownProperty
To be notified of property changes we wrap non-object values in what I've called a DataValueObserver which sets up (currently one way) bindings. These bindings provide a bridge between the values held by our internal ArrayController and the object we are observing.
When dealing with objects; we wrap those in ObjectProxy's so that we can introduce a 'key' member without the need to modify the object itself. Why yes, this does imply that you could use #every recursively. Another exercise for the reader ;-)
I'd recommend having your model be based around Ember.Object to be consistent with the rest of Ember, allowing you to manipulate your model via its get & set handlers. Alternatively, as demonstrated in the fiddle, you can use Em.Get/Em.set to access models, as long as you are consistent in doing so. If you touch your model directly (no get/set), then every won't be notified of your change.
Em.set(model.properties, 'foo', 'asdfsdf');
For completeness here's my every helper:
var DataValueObserver = Ember.Object.extend({
init: function() {
this._super();
// one way binding (for now)
Em.addObserver(this.parent, this.key, this, 'valueChanged');
},
value: function() {
return Em.get(this.parent, this.key);
}.property(),
valueChanged: function() {
this.notifyPropertyChange('value');
}
});
Handlebars.registerHelper("every", function() {
var args = [].slice.call(arguments);
var options = args.pop();
var context = (options.contexts && options.contexts[0]) || this;
Ember.assert("Must be in the form #every foo in bar ", 3 == args.length && args[1] === "in");
options.hash.keyword = args[0];
var property = args[2];
// if we're dealing with an array we can just forward onto the collection helper directly
var p = this.get(property);
if (Ember.Array.detect(p)) {
options.hash.dataSource = p;
return Ember.Handlebars.helpers.collection.call(this, Ember.Handlebars.EachView, options);
}
// create an array that we will manage with content
var array = Em.ArrayController.create();
options.hash.dataSource = array;
Ember.Handlebars.helpers.collection.call(this, Ember.Handlebars.EachView, options);
//
var update_array = function(result) {
if (!result) {
array.clear();
return;
}
// check for proxy object
var result = (result.isProxy && result.content) ? result.content : result;
var items = result;
var keys = Ember.keys(items).sort();
// iterate through sorted array, inserting & removing any mismatches
var i = 0;
for ( ; i < keys.length; ++i) {
var key = keys[i];
var value = items[key];
while (true) {
var old_obj = array.objectAt(i);
if (old_obj) {
Ember.assert("Assume that all objects in our array have a key", undefined !== old_obj.key);
var c = key.localeCompare(old_obj.key);
if (0 === c) break; // already exists
if (c < 0) {
array.removeAt(i); // remove as no longer exists
continue;
}
}
// insert
if (typeof value === 'object') {
// wrap object so we can give it a key
value = Ember.ObjectProxy.create({
content: value,
isProxy: true,
key: key
});
array.insertAt(i, value);
} else {
// wrap raw value so we can give it a key and observe when it changes
value = DataValueObserver.create({
parent: result,
key: key,
});
array.insertAt(i, value);
}
break;
}
}
// remove any trailing items
while (array.objectAt(i)) array.removeAt(i);
};
var should_display = function() {
return true;
};
// use bind helper to call update_array if the contents of property changes
var child_properties = ["[]"];
var preserve_context = true;
return Ember.Handlebars.bind.call(context, property, options, preserve_context, should_display, update_array, child_properties);
});
Inspired by:
How can I make Ember.js handlebars #each iterate over objects?
http://mozmonkey.com/2014/03/ember-getting-the-index-in-each-loops/
https://github.com/emberjs/ember.js/issues/4365
https://gist.github.com/strathmeyer/1371586
Here's that fiddle again if you missed it:
http://jsfiddle.net/L6axcob8/1/

Categories

Resources