Hello i'm currently trying to draw a line through two long/lat lines to create a triangle. So far i have manged to draw a line through but the line is not perpendicular and looks skewed. Here is my code:
startPosition = [-0.17640, 51.426700];
endPosition = [0.17640, 51.796700];
triangleSizeY = (endPosition [1] - startPosition[1]) / 6;
/*subtract
end from start to work out direction and also use this divided by 6 to
get distance*/
triangleSize *= -1;
triangleSizeX = (endPosition [0] - startPosition[0]) / 6;
/*subtract
end from start to work out direction and also use this divided by 6 to
get distance*/
triangleSize *= -1;
var cx = (startPosition[0] + endPosition[0]) / 2;
var cy = (startPosition[1] + endPosition[1]) / 2;
var dx = (endPosition[0] - startPosition[0]) / 2;
var dy = (endPosition[1] - startPosition[1]) / 2;
positions[0] = [midPoint[0] + triangleSizeX, midPoint[1] +
triangleSizeY];
positions[1] = [cx - dy, cy + dx];
positions[2] = [cx + dy, cy - dx];
This is what it looks like:
First, lat/lon are angular so you can not do linear type distances. The steps you need to take to solve this:
Compute the distance between the 2 lat/lon pairs you want a perpendicular line from.
Take half the distance computed from the above step to get you the midpoint range.
Calculate the bearing between the 2 lat/lon pairs. (see reference below on computing a bearing from 2 lat/lon's)
With the half distance and bearing, you can compute the lat/lon of the midpoint. This is called computing a lat/lon based on a range and bearing. (See the reference below.)
Now you can go perpendicular from the midpoint by adding/subtracting 90 degrees from the bearing in step 3. Decide on a range you want to compute the new lat/lon from a range/bearing like in step 4.
This site (https://www.movable-type.co.uk/scripts/latlong.html) has the calculations you need to do this. Also, since the distance is relatively small, you can use the Equirectangular approximation over Haversine for distance calculation.
Related
I'm trying to use the answer provided here: Intersection of two Moving Objects with Latitude/Longitude Coordinates
But I have some questions..
What is this angle:
var angle = Math.PI + dir - target.dir
I was thinking that the angle that should be used in the law of cosines is already "alpha or target.dir".. What is that line doing? Also in these two steps:
var x = target.x + target.vel * time * Math.cos(target.dir);
var y = target.y + target.vel * time * Math.sin(target.dir);
Shouldn't the code be using the angle between x- or y-axis and the target velocity vector? Why is the author using alpha here?
What is this angle:
var angle = Math.PI + dir - target.dir
The variable named angle is indeed the angle alpha. Because the direction dir is the direction from chaser to target, and we need it the other way round for this calculation, we add π to it before we subtract target.dir.
Maybe using the word angle as a variable name was a bit vague; I'll change it to alpha, the name I used for this angle in the images.
Shouldn't the code be using the angle between x- or y-axis and the target velocity vector? Why is the author using alpha here?
var x = target.x + target.vel * time * Math.cos(target.dir);
var y = target.y + target.vel * time * Math.sin(target.dir);
We are indeed using target.dir, which is the direction of the target, i.e. the angle between the x-axis and the target vector, to calculate the coordinates of the interception point, and not the angle alpha.
I need to calculate the angle between 3 points. For this, I do the following:
Grab the 3 points (previous, current and next, it's within a loop)
Calculate the distance between the points with Pythagoras
Calculate the angle using Math.acos
This seems to work fine for shapes without angels of over 180 degrees, however if a shape has such an corner it calculates the short-side. Here's an illustration to show what I mean (the red values are wrong):
This is the code that does the calculations:
// Pythagoras for calculating distance between two points (2D)
pointDistance = function (p1x, p1y, p2x, p2y) {
return Math.sqrt((p1x - p2x)*(p1x - p2x) + (p1y - p2y)*(p1y - p2y));
};
// Get the distance between the previous, current and next points
// vprev, vcur and vnext are objects that look like this:
// { x:float, y:float, z:float }
lcn = pointDistance(vcur.x, vcur.z, vnext.x, vnext.z);
lnp = pointDistance(vnext.x, vnext.z, vprev.x, vprev.z);
lpc = pointDistance(vprev.x, vprev.z, vcur.x, vcur.z);
// Calculate and print the angle
Math.acos((lcn*lcn + lpc*lpc - lnp*lnp)/(2*lcn*lpc))*180/Math.PI
Is there something wrong in the code, did I forget to do something, or should it be done a completely different way?
HI there your math and calculations are perfect. Your running into the same problem most people do on calculators, which is orientation. What I would do is find out if the point lies to the left or right of the vector made by the first two points using this code, which I found from
Determine which side of a line a point lies
isLeft = function(ax,ay,bx,by,cx,cy){
return ((bx - ax)*(cy - ay) - (by - ay)*(cx - ax)) > 0;
}
Where ax and ay make up your first point bx by your second and cx cy your third.
if it is to the left just add 180 to your angle
I've got a working but not necessarily brief example of how this can work:
var point1x = 0, point1y = 0,
point2x = 10, point2y = 10,
point3x = 20, point3y = 10,
point4x = 10, point4y = 20;
var slope1 = Math.atan2(point2y-point1y,point2x-point1x)*180/Math.PI;
var slope2 = Math.atan2(point3y-point2y,point3x-point2x)*180/Math.PI;
var slope3 = Math.atan2(point4y-point3y,point4x-point3x)*180/Math.PI;
alert(slope1);
alert(slope2);
alert(slope3);
var Angle1 = slope1-slope2;
var Angle2 = slope2-slope3;
alert(180-Angle1);
alert(180-Angle2);
(see http://jsfiddle.net/ZUESt/1/)
To explain the multiple steps the slopeN variables are the slopes of the individual line segments. AngleN is the amount turned at each junction (ie point N+1). A positive angle is a right turn and a negative angle a left turn.
You can then subtract this angle from 180 to get the actual interior angle that you want.
It should be noted that this code can of course be compressed and that five lines are merely outputting variables to see what is going on. I'll let you worry about optimizing it for your own use with this being a proof of concept.
You need to check boundary conditions (apparently, if points are colinear) and apply the proper calculation to find the angle.
Also, a triangle can't have any (interior) angle greater than 180 degress. Sum of angle of triangle is 180 degrees.
I'm trying to find a point that is equal distance away from the middle of a perpendicular line. I want to use this point to create a Bézier curve using the start and end points, and this other point I'm trying to find.
I've calculated the perpendicular line, and I can plot points on that line, but the problem is that depending on the angle of the line, the points get further away or closer to the original line, and I want to be able to calculate it so it's always X units away.
Take a look at this JSFiddle which shows the original line, with some points plotted along the perpendicular line:
http://jsfiddle.net/eLxcB/1/.
If you change the start and end points, you can see these plotted points getting closer together or further away.
How do I get them to be uniformly the same distance apart from each other no matter what the angle is?
Code snippit below:
// Start and end points
var startX = 120
var startY = 150
var endX = 180
var endY = 130
// Calculate how far above or below the control point should be
var centrePointX = ((startX + endX) / 2);
var centrePointY = ((startY + endY) / 2);
// Calculate slopes and Y intersects
var lineSlope = (endY - startY) / (endX - startX);
var perpendicularSlope = -1 / lineSlope;
var yIntersect = centrePointY - (centrePointX * perpendicularSlope);
// Draw a line between the two original points
R.path('M '+startX+' '+startY+', L '+endX+' '+endY);
Generally you can get the coordinates of a normal of a line like this:
P1 = {r * cos(a) + Cx, -r * sin(a) + Cy},
P2 = {-r * cos(a) + Cx, r * sin(a) + Cy}.
A demo applying this to your case at jsFiddle.
I'm trying to develop a small application using html5 and canvas/KineticJS. I'd like to trace a number of rays that start from a 2d point to infinite, just setting a custom angle degree. For example, if I set 90° the app should render four rays (two straight lines, one vertical and one horizontal that meet in my 2d point). If I set 60° I should see 3 straight lines, like an asterisk *
The longest line you'll ever have to draw is the size of the canvas's diagonal:
var r = Math.sqrt(Math.pow(canvas.width, 2) + Math.pow(canvas.height, 2));
Use sin and cos to calculate each of your end points at that radius:
var theta = delta * Math.PI / 180.0;
var dx = r * Math.cos(n * theta);
var dy = r * Math.sin(n * theta);
Then, just draw lines from (x, y) to (x + dx, y + dy). Simples.
BACKGROUND:
The app allows users to upload a photo of themselves and then place a pair of glasses over their face to see what it looks like. For the most part, it is working fine. After the user selects the location of the 2 pupils, I auto zoom the image based on the ratio between the distance of the pupils and then already known distance between the center points of the glasses. All is working fine there, but now I need to automatically place the glasses image over the eyes.
I am using KinectJS, but the problem is not with regards to that library or javascript.. it is more of an algorithm requirement
WHAT I HAVE TO WORK WITH:
Distance between pupils (eyes)
Distance between pupils (glasses)
Glasses width
Glasses height
Zoom ratio
SOME CODE:
//.. code before here just zooms the image, etc..
//problem is here (this is wrong, but I need to know what is the right way to calculate this)
var newLeftEyeX = self.leftEyePosition.x * ratio;
var newLeftEyeY = self.leftEyePosition.y * ratio;
//create a blue dot for testing (remove later)
var newEyePosition = new Kinetic.Circle({
radius: 3,
fill: "blue",
stroke: "blue",
strokeWidth: 0,
x: newLeftEyeX,
y: newLeftEyeY
});
self.pointsLayer.add(newEyePosition);
var glassesWidth = glassesImage.getWidth();
var glassesHeight = glassesImage.getHeight();
// this code below works perfect, as I can see the glasses center over the blue dot created above
newGlassesPosition.x = newLeftEyeX - (glassesWidth / 4);
newGlassesPosition.y = newLeftEyeY - (glassesHeight / 2);
NEEDED
A math genius to give me the algorithm to determine where the new left eye position should be AFTER the image has been resized
UPDATE
After researching this for the past 6 hours or so, I think I need to do some sort of "translate transform", but the examples I see only allow setting this by x and y amounts.. whereas I will only know the scale of the underlying image. Here's the example I found (which cannot help me):
http://tutorials.jenkov.com/html5-canvas/transformation.html
and here is something which looks interesting, but it is for Silverlight:
Get element position after transform
Is there perhaps some way to do the same in Html5 and/or KinectJS? Or perhaps I am going down the wrong road here... any ideas people?
UPDATE 2
I tried this:
// if zoomFactor > 1, then picture got bigger, so...
if (zoomFactor > 1) {
// if x = 10 (for example) and if zoomFactor = 2, that means new x should be 5
// current x / zoomFactor => 10 / 2 = 5
newLeftEyeX = self.leftEyePosition.x / zoomFactor;
// same for y
newLeftEyeY = self.leftEyePosition.y / zoomFactor;
}
else {
// else picture got smaller, so...
// if x = 10 (for example) and if zoomFactor = 0.5, that means new x should be 20
// current x * (1 / zoomFactor) => 10 * (1 / 0.5) = 10 * 2 = 20
newLeftEyeX = self.leftEyePosition.x * (1 / zoomFactor);
// same for y
newLeftEyeY = self.leftEyePosition.y * (1 / zoomFactor);
}
that didn't work, so then I tried an implementation of Rody Oldenhuis' suggestion (thanks Rody):
var xFromCenter = self.leftEyePosition.x - self.xCenter;
var yFromCenter = self.leftEyePosition.y - self.yCenter;
var angle = Math.atan2(yFromCenter, xFromCenter);
var length = Math.hypotenuse(xFromCenter, yFromCenter);
var xNew = zoomFactor * length * Math.cos(angle);
var yNew = zoomFactor * length * Math.sin(angle);
newLeftEyeX = xNew + self.xCenter;
newLeftEyeY = yNew + self.yCenter;
However, that is still not working as expected. So, I am not sure what the issue is currently. If anyone has worked with KinectJS before and has an idea of what the issue may be, please let me know.
UPDATE 3
I checked Rody's calculations on paper and they seem fine, so there is obviously something else here messing things up.. I got the coordinates of the left pupil at zoom factors 1 and 2. With those coordinates, maybe someone can figure out what the issue is:
Zoom Factor 1: x = 239, y = 209
Zoom Factor 2: x = 201, y = 133
OK, since it's an algorithmic question, I'm going to keep this generic and only write pseudo code.
I f I understand you correctly, What you want is the following:
Transform all coordinates such that the origin of your coordinate system is at the zoom center (usually, central pixel)
Compute the angle a line drawn from this new origin to a point of interest makes with the positive x-axis. Compute also the length of this line.
The new x and y coordinates after zooming are defined by elongating this line, such that the new line is the zoom factor times the length of the original line.
Transform the newly found x and y coordinates back to a coordinate system that makes sense to the computer (e.g., top left pixel = 0,0)
Repeat for all points of interest.
In pseudo-code (with formulas):
x_center = image_width/2
y_center = image_height/2
x_from_zoom_center = x_from_topleft - x_center
y_from_zoom_center = y_from_topleft - y_center
angle = atan2(y_from_zoom_center, x_from_zoom_center)
length = hypot(x_from_zoom_center, y_from_zoom_center)
x_new = zoom_factor * length * cos(angle)
y_new = zoom_factor * length * sin(angle)
x_new_topleft = x_new + x_center
y_new_topleft = y_new + y_center
Note that this assumes the number of pixels used for length and width stays the same after zooming. Note also that some rounding should take place (keep everything double precision, and only round to int after all calculations)
In the code above, atan2 is the four-quadrant arctangent, available in most programming languages, and hypot is simply sqrt(x*x + y*y), but then computed more carefully (e.g., to avoid overflow etc.), also available in most programing languages.
Is this indeed what you were after?