How to call a constructor function on an object in javascript? - javascript

So I was searching for a way to deep clone an object in javascript and found this solution :
function keepCloning(objectpassed) {
if (objectpassed === null || typeof objectpassed !== 'object') {
return objectpassed;
}
// give temporary-storage the original obj's constructor
var temporary_storage = objectpassed.constructor();
for (var key in objectpassed) {
temporary_storage[key] = keepCloning(objectpassed[key]);
}
return temporary_storage;
}
var employeeDetailsOriginal = { name: 'Manjula', age: 25, Profession: 'Software Engineer' };
var employeeDetailsDuplicate = (keepCloning(employeeDetailsOriginal));
employeeDetailsOriginal.name = "NameChanged";
console.log(employeeDetailsOriginal);
console.log(employeeDetailsDuplicate);
My question was that shouldn't we be using new with the constructor?
var temporary_storage = new objectpassed.constructor();
Then I realised that the object passed is made using object literals{} and have constructor as Object();
I made a first class constructor function Person()
function Person(name, age, profession){
this.name=name;
this.age=age;
this.profession=profession;
}
var employeeDetailsOriginal = new Person('Manjula', 25,'Software Engineer');
var employeeDetailsDuplicate (keepCloning(employeeDetailsOriginal));
Now when I used the keepCloning method, it threw an error that temporary_storage is undefined meaning that
objectpassed.constructor();
must have returned undefined!
So I want to know that do we or do we not use the new keyword before constructor?
I googled it but didn't found any satisfactory explanation!
2) In the same context of the question
function A(){
}
var a = new A(); //1
var a1= A.prototype.constructor(); //2
var a1 = new A.prototype.constructor(); //3
Which of the (2) and (3) is the exactly similar method to (1) for constructing an object of A?

new constructor();
is equal to
(function(){
const obj = Object.create(constructor.prototype);
constructor.call(obj);
return obj;
})()
So with new it returns a new object, without it just calls the constructor function, and as it returns nothing its undefined. So yes its mandatory.
new A() === new A.prototype.constructor();
A() === A.prototype.constructor();

Related

Any way to reseat a Function object's "this" reference BEFORE constructor invocation?

Trying to implement a Javascript sandboxing scheme and now I've run into a bit of a wrinkle. I need to pass a "context" parameter to the code which will essentially serve as a handle to the "global" object, but so far no luck.
To illustrate the problem with a simple example, consider this bit of code:
var foo = new Function(" this.baz = this.mux; return this ");
foo.mux = "mux";
foo.call();
console.log(foo.baz);
console.log(foo.toString());
Output:
$> undefined
$> function anonymous() { this.mux; return this; }
It obviously doesn't work because the Function object doesn't seem to get it's own this like ordinary functions created with new.
So...is there any way to "reseat" a Function's this to point to itself beforehand (or just any other way around the issue)?
EDIT
Okay, so from what I understand from the comments section I'm going to need a constructed object.
var foo = new Function(" return new function(){ this.baz /* = ?? */; return this; } ");
Is there a way to somehow access the enclosing anonymous function's properties? Like "this.mux = foo.mux" (except of course "foo" isn't visible from that scope)?
I think your getting confused on what new Function( does,. It does not create an instance of an object, it just create a function. So like any object instances you will also need to use new on these.
So you need 2 steps..
create the function that you will be creating an object from..
with this function create an instance using new..
Below is a simple example..
var fcreate =
new Function('global', "this.global = global");
var f = new fcreate("hello");
console.log(f.global);
If your not bothered about instances, we can forget about this altogether, and just create a captured scope as a parameter..
eg..
var f = new Function("global", "console.log(global)");
f("This is a global to function");
f("This is another one");
You can pass foo as a parameter of call:
var foo = new Function(" this.baz = this.mux; return this ");
foo.mux = "mux";
foo.call(foo); // <-- this
Edit: Although the code above works, I wouldn't recommend it. You will be better off creating the function/class foo:
var Foo = function(mux){
this.baz = mux;
}
var foo = new Foo("mux");
console.log(foo.baz);
The best I could come up with that actually works.
var foo = new Function(" this.baz = this.mux; return this ");
var context = { mux: "mux" };
foo = foo.bind(context);
foo();
// context.baz == "mux"
Alright so this is in fact doable, and it's basically an extension of Keith's answer:
function verify(condition)
{
console.log(condition === true ? "pass" : "fail");
}
function test()
{
if(!(this instanceof test))
return new test();
var foo = new Function("mux", "return new function(){ this.baz = mux; return this; } ");
var bar = new foo(null);
verify(bar.baz === null);
var zim = new foo(this);
verify(zim.baz === this);
var qud = new foo(global);
verify(qud.baz === global);
};
test();
Output:
pass
pass
pass
A sincere thanks to everyone for helping me figure this one out - cheers!
* EDIT *
As per Keith's comments, the correct implementation would simply be:
function verify(condition)
{
console.log(condition === true ? "pass" : "fail");
}
function test()
{
if(!(this instanceof test))
return new test();
var foo = new Function("mux", "this.baz = mux; return this; ");
var bar = new foo(null);
verify(bar.baz === null);
var zim = new foo(this);
verify(zim.baz === this);
var qud = new foo(global);
verify(qud.baz === global);
};
test();

undefined result using prototype [javascript]

So I'm learning prototype using javascript, and tried some code :
function Employee(name) { this.name= name; }
var m = new Employee("Bob");
var working= { isWorking: true };
Employee.prototype = working;
alert(m.isWorking);
Unfortunately, I get an undefined message, instead of the true value. Is there a reason to this result?
I have made several tests. I've concluded that reassigning the prototype object causes any previously created instances of the Employee class to be unable to access any properties found inside the newly assigned prototype. Is this accurate?
Changing the prototype will not affect an already created object. It will only affect the objects created based on that object.
There is a property __proto__ which could be used to change the prototype, but its implementation is not required. ES6 does define setPrototypeOf method to change the prototype, but since it's only in ES6 the support may vary.
First off, you have created an instance of Employee before you set the prototype, so that object will not have inherited the new prototype values.
Next, any objects created after you have set the prototype will inherit the new prototype object.
Lastly, the object will have the isWorking property, rather than a working property.
So to redo your example:
function Employee(name) { this.name= name; };
var m1 = new Employee("Bob");
var working= { isWorking: true };
Employee.prototype = working;
var m2 = new Employee("Sam");
alert(m1.isWorking); // undefined
alert(m2.isWorking); // true
Simple fix is to properly assign it.
function Employee(name) {
this.name = name;
}
var m = new Employee("Bob");
var working = {
isWorking: true
};
Employee.prototype.working = working;
alert(m.working.isWorking);
A better fix for MULTIPLE employees is to make a class, then create instances of that: play around with it here: http://jsfiddle.net/MarkSchultheiss/p6jyqbgv/1/
"use strict";
function makeClassStrict() {
var isInternal, instance;
var constructor = function(args) {
if (this instanceof constructor) {
if (typeof this.init == "function") {
this.init.apply(this, isInternal ? args : arguments);
}
} else {
isInternal = true;
instance = new constructor(arguments);
isInternal = false;
return instance;
}
};
return constructor;
}
var EmployeeClass = makeClassStrict();
EmployeeClass.prototype.init = function(employeeName, isWorking) {
var defaultName = 'notbob';
this.name = employeeName ? employeeName : defaultName;
this.working = !!isWorking;
};
// call this to get the name property
EmployeeClass.prototype.getName = function() {
return this.name
};
//note no "new" needed due to the makeClassStrict that does that
var m = EmployeeClass("Bob");
alert(m.working +":"+ m.name);
m.working = true;
alert(m.working +":"+ m.name);
var notbob = EmployeeClass("Charlie",false);
alert(notbob.working +":"+ notbob.name);
alert(notbob.getName()+ m.getName());
You cannot override the entire prototype property and expect already existing instances to work. JavaScript doesn't work that way. But you can loop through the prototype object and unset anything already set, then loop through your new object, and set it to something else.
function Employee(name) { this.name= name; }
var m = new Employee("Bob");
var working= { isWorking: true };
for(var j in Employee.prototype){delete Employee.prototype[j];}//unset all properties, the same as setting to {}
for(j in working){Employee.prototype[j]=working[j];}//set the properties
alert(m.isWorking);

What is the difference between members on prototype object and on constructor function?

My question is not about the difference between object's members and prototype members. I understand that. I think it is similar like C# object members and static members on the class.
My question is about difference between members on constructor function and on prototype object. Comparing to C# they both are "static". So what is the difference? I only observed, that prototype members can be called the same way on instances directly, or on Constructor.prototype. The constructor function members can be called only on constructor function.
When to use which approach?
To illustrate this, imagine I need count of Persons.
Example using constructor function members:
function Person () {
Person.countOfCreatedPersons = (Person.countOfCreatedPersons || 0) + 1;
}
Person.Count = function () {
return Person.countOfCreatedPersons;
}
var p = new Person();
alert(Person.Count());
Example using prototype members:
function Person () {
Person.prototype.countOfCreatedPersons = (Person.prototype.countOfCreatedPersons || 0) + 1;
}
Person.prototype = {
Count: function () {
return this.countOfCreatedPersons;
}
}
var p = new Person();
alert(Person.prototype.Count()); // or p.Count()
When you add a property to the prototype of an object, every object that inherits from that prototype has the property:
function Ob(){};
Ob.prototype.initialised = true;
var ob1 = new Ob();
alert(ob1.initialised); //true!
alert(Ob.initialised); //undefined;
If you add it to the constructor, is like a static property. Instances won't have acces to them.
function Ob2(){};
Ob2.initialised = true;
var ob2 = new Ob2();
alert(ob2.initialised); //undefined
alert(Ob2.initialised); //true
Besides, if you add a method to the prototype, the this variable inside the method will point to your object (the instance of the class you've created with new). This is not true for class methods:
function Obj() {
this.value = 1;
}
Obj.prototype.getValue = function() {
return this.value;
};
Obj.getValue = function() {
return this.value;
};
var ob3 = new Obj();
alert(ob3.getValue()); //'1'!
alert(Obj.getValue()); //undefined!
Hope this explains.

Pass array into google.maps.LatLng via apply() [duplicate]

In JavaScript, I want to create an object instance (via the new operator), but pass an arbitrary number of arguments to the constructor. Is this possible?
What I want to do is something like this (but the code below does not work):
function Something(){
// init stuff
}
function createSomething(){
return new Something.apply(null, arguments);
}
var s = createSomething(a,b,c); // 's' is an instance of Something
The Answer
From the responses here, it became clear that there's no built-in way to call .apply() with the new operator. However, people suggested a number of really interesting solutions to the problem.
My preferred solution was this one from Matthew Crumley (I've modified it to pass the arguments property):
var createSomething = (function() {
function F(args) {
return Something.apply(this, args);
}
F.prototype = Something.prototype;
return function() {
return new F(arguments);
}
})();
With ECMAScript5's Function.prototype.bind things get pretty clean:
function newCall(Cls) {
return new (Function.prototype.bind.apply(Cls, arguments));
// or even
// return new (Cls.bind.apply(Cls, arguments));
// if you know that Cls.bind has not been overwritten
}
It can be used as follows:
var s = newCall(Something, a, b, c);
or even directly:
var s = new (Function.prototype.bind.call(Something, null, a, b, c));
var s = new (Function.prototype.bind.apply(Something, [null, a, b, c]));
This and the eval-based solution are the only ones that always work, even with special constructors like Date:
var date = newCall(Date, 2012, 1);
console.log(date instanceof Date); // true
edit
A bit of explanation:
We need to run new on a function that takes a limited number of arguments. The bind method allows us to do it like so:
var f = Cls.bind(anything, arg1, arg2, ...);
result = new f();
The anything parameter doesn't matter much, since the new keyword resets f's context. However, it is required for syntactical reasons. Now, for the bind call: We need to pass a variable number of arguments, so this does the trick:
var f = Cls.bind.apply(Cls, [anything, arg1, arg2, ...]);
result = new f();
Let's wrap that in a function. Cls is passed as argument 0, so it's gonna be our anything.
function newCall(Cls /*, arg1, arg2, ... */) {
var f = Cls.bind.apply(Cls, arguments);
return new f();
}
Actually, the temporary f variable is not needed at all:
function newCall(Cls /*, arg1, arg2, ... */) {
return new (Cls.bind.apply(Cls, arguments))();
}
Finally, we should make sure that bind is really what we need. (Cls.bind may have been overwritten). So replace it by Function.prototype.bind, and we get the final result as above.
Here's a generalized solution that can call any constructor (except native constructors that behave differently when called as functions, like String, Number, Date, etc.) with an array of arguments:
function construct(constructor, args) {
function F() {
return constructor.apply(this, args);
}
F.prototype = constructor.prototype;
return new F();
}
An object created by calling construct(Class, [1, 2, 3]) would be identical to an object created with new Class(1, 2, 3).
You could also make a more specific version so you don't have to pass the constructor every time. This is also slightly more efficient, since it doesn't need to create a new instance of the inner function every time you call it.
var createSomething = (function() {
function F(args) {
return Something.apply(this, args);
}
F.prototype = Something.prototype;
return function(args) {
return new F(args);
}
})();
The reason for creating and calling the outer anonymous function like that is to keep function F from polluting the global namespace. It's sometimes called the module pattern.
[UPDATE]
For those who want to use this in TypeScript, since TS gives an error if F returns anything:
function construct(constructor, args) {
function F() : void {
constructor.apply(this, args);
}
F.prototype = constructor.prototype;
return new F();
}
If your environment supports ECMA Script 2015's spread operator (...), you can simply use it like this
function Something() {
// init stuff
}
function createSomething() {
return new Something(...arguments);
}
Note: Now that the ECMA Script 2015's specifications are published and most JavaScript engines are actively implementing it, this would be the preferred way of doing this.
You can check the Spread operator's support in few of the major environments, here.
Suppose you've got an Items constructor which slurps up all the arguments you throw at it:
function Items () {
this.elems = [].slice.call(arguments);
}
Items.prototype.sum = function () {
return this.elems.reduce(function (sum, x) { return sum + x }, 0);
};
You can create an instance with Object.create() and then .apply() with that instance:
var items = Object.create(Items.prototype);
Items.apply(items, [ 1, 2, 3, 4 ]);
console.log(items.sum());
Which when run prints 10 since 1 + 2 + 3 + 4 == 10:
$ node t.js
10
In ES6, Reflect.construct() is quite convenient:
Reflect.construct(F, args)
#Matthew
I think it's better to fix the constructor property also.
// Invoke new operator with arbitrary arguments
// Holy Grail pattern
function invoke(constructor, args) {
var f;
function F() {
// constructor returns **this**
return constructor.apply(this, args);
}
F.prototype = constructor.prototype;
f = new F();
f.constructor = constructor;
return f;
}
You could move the init stuff out into a separate method of Something's prototype:
function Something() {
// Do nothing
}
Something.prototype.init = function() {
// Do init stuff
};
function createSomething() {
var s = new Something();
s.init.apply(s, arguments);
return s;
}
var s = createSomething(a,b,c); // 's' is an instance of Something
An improved version of #Matthew's answer. This form has the slight performance benefits obtained by storing the temp class in a closure, as well as the flexibility of having one function able to be used to create any class
var applyCtor = function(){
var tempCtor = function() {};
return function(ctor, args){
tempCtor.prototype = ctor.prototype;
var instance = new tempCtor();
ctor.prototype.constructor.apply(instance,args);
return instance;
}
}();
This would be used by calling applyCtor(class, [arg1, arg2, argn]);
This answer is a little late, but figured anyone who sees this might be able to use it. There is a way to return a new object using apply. Though it requires one little change to your object declaration.
function testNew() {
if (!( this instanceof arguments.callee ))
return arguments.callee.apply( new arguments.callee(), arguments );
this.arg = Array.prototype.slice.call( arguments );
return this;
}
testNew.prototype.addThem = function() {
var newVal = 0,
i = 0;
for ( ; i < this.arg.length; i++ ) {
newVal += this.arg[i];
}
return newVal;
}
testNew( 4, 8 ) === { arg : [ 4, 8 ] };
testNew( 1, 2, 3, 4, 5 ).addThem() === 15;
For the first if statement to work in testNew you have to return this; at the bottom of the function. So as an example with your code:
function Something() {
// init stuff
return this;
}
function createSomething() {
return Something.apply( new Something(), arguments );
}
var s = createSomething( a, b, c );
Update: I've changed my first example to sum any number of arguments, instead of just two.
I just came across this problem, and I solved it like this:
function instantiate(ctor) {
switch (arguments.length) {
case 1: return new ctor();
case 2: return new ctor(arguments[1]);
case 3: return new ctor(arguments[1], arguments[2]);
case 4: return new ctor(arguments[1], arguments[2], arguments[3]);
//...
default: throw new Error('instantiate: too many parameters');
}
}
function Thing(a, b, c) {
console.log(a);
console.log(b);
console.log(c);
}
var thing = instantiate(Thing, 'abc', 123, {x:5});
Yeah, it's a bit ugly, but it solves the problem, and it's dead simple.
if you're interested in an eval-based solution
function createSomething() {
var q = [];
for(var i = 0; i < arguments.length; i++)
q.push("arguments[" + i + "]");
return eval("new Something(" + q.join(",") + ")");
}
This works!
var cls = Array; //eval('Array'); dynamically
var data = [2];
new cls(...data);
See also how CoffeeScript does it.
s = new Something([a,b,c]...)
becomes:
var s;
s = (function(func, args, ctor) {
ctor.prototype = func.prototype;
var child = new ctor, result = func.apply(child, args);
return Object(result) === result ? result : child;
})(Something, [a, b, c], function(){});
This constructor approach works both with and without the new keyword:
function Something(foo, bar){
if (!(this instanceof Something)){
var obj = Object.create(Something.prototype);
return Something.apply(obj, arguments);
}
this.foo = foo;
this.bar = bar;
return this;
}
It assumes support for Object.create but you could always polyfill that if you're supporting older browsers. See the support table on MDN here.
Here's a JSBin to see it in action with console output.
Solution without ES6 or polyfills:
var obj = _new(Demo).apply(["X", "Y", "Z"]);
function _new(constr)
{
function createNamedFunction(name)
{
return (new Function("return function " + name + "() { };"))();
}
var func = createNamedFunction(constr.name);
func.prototype = constr.prototype;
var self = new func();
return { apply: function(args) {
constr.apply(self, args);
return self;
} };
}
function Demo()
{
for(var index in arguments)
{
this['arg' + (parseInt(index) + 1)] = arguments[index];
}
}
Demo.prototype.tagged = true;
console.log(obj);
console.log(obj.tagged);
output
Demo {arg1: "X", arg2: "Y", arg3: "Z"}
... or "shorter" way:
var func = new Function("return function " + Demo.name + "() { };")();
func.prototype = Demo.prototype;
var obj = new func();
Demo.apply(obj, ["X", "Y", "Z"]);
edit:
I think this might be a good solution:
this.forConstructor = function(constr)
{
return { apply: function(args)
{
let name = constr.name.replace('-', '_');
let func = (new Function('args', name + '_', " return function " + name + "() { " + name + "_.apply(this, args); }"))(args, constr);
func.constructor = constr;
func.prototype = constr.prototype;
return new func(args);
}};
}
You can't call a constructor with a variable number of arguments like you want with the new operator.
What you can do is change the constructor slightly. Instead of:
function Something() {
// deal with the "arguments" array
}
var obj = new Something.apply(null, [0, 0]); // doesn't work!
Do this instead:
function Something(args) {
// shorter, but will substitute a default if args.x is 0, false, "" etc.
this.x = args.x || SOME_DEFAULT_VALUE;
// longer, but will only put in a default if args.x is not supplied
this.x = (args.x !== undefined) ? args.x : SOME_DEFAULT_VALUE;
}
var obj = new Something({x: 0, y: 0});
Or if you must use an array:
function Something(args) {
var x = args[0];
var y = args[1];
}
var obj = new Something([0, 0]);
Matthew Crumley's solutions in CoffeeScript:
construct = (constructor, args) ->
F = -> constructor.apply this, args
F.prototype = constructor.prototype
new F
or
createSomething = (->
F = (args) -> Something.apply this, args
F.prototype = Something.prototype
return -> new Something arguments
)()
function createSomething() {
var args = Array.prototype.concat.apply([null], arguments);
return new (Function.prototype.bind.apply(Something, args));
}
If your target browser doesn't support ECMAScript 5 Function.prototype.bind, the code won't work. It is not very likely though, see compatibilty table.
modified #Matthew answer. Here I can pass any number of parameters to function as usual (not array). Also 'Something' is not hardcoded into:
function createObject( constr ) {
var args = arguments;
var wrapper = function() {
return constr.apply( this, Array.prototype.slice.call(args, 1) );
}
wrapper.prototype = constr.prototype;
return new wrapper();
}
function Something() {
// init stuff
};
var obj1 = createObject( Something, 1, 2, 3 );
var same = new Something( 1, 2, 3 );
This one-liner should do it:
new (Function.prototype.bind.apply(Something, [null].concat(arguments)));
While the other approaches are workable, they're unduly complex. In Clojure you generally create a function that instantiates types/records and use that function as the mechanism for instantiation. Translating this to JavaScript:
function Person(surname, name){
this.surname = surname;
this.name = name;
}
function person(surname, name){
return new Person(surname, name);
}
By taking this approach you avoid the use of new except as described above. And this function, of course, has no issues working with apply or any number of other functional programming features.
var doe = _.partial(person, "Doe");
var john = doe("John");
var jane = doe("Jane");
By using this approach, all of your type constructors (e.g. Person) are vanilla, do-nothing constructors. You just pass in arguments and assign them to properties of the same name. The hairy details go in the constructor function (e.g. person).
It is of little bother having to create these extra constructor functions since they are a good practice anyhow. They can be convenient since they allow you to potentially have several constructor functions with different nuances.
It's also intresting to see how the issue of reusing the temporary F() constructor, was addressed by using arguments.callee, aka the creator/factory function itself:
http://www.dhtmlkitchen.com/?category=/JavaScript/&date=2008/05/11/&entry=Decorator-Factory-Aspect
Any function (even a constructor) can take a variable number of arguments. Each function has an "arguments" variable which can be cast to an array with [].slice.call(arguments).
function Something(){
this.options = [].slice.call(arguments);
this.toString = function (){
return this.options.toString();
};
}
var s = new Something(1, 2, 3, 4);
console.log( 's.options === "1,2,3,4":', (s.options == '1,2,3,4') );
var z = new Something(9, 10, 11);
console.log( 'z.options === "9,10,11":', (z.options == '9,10,11') );
The above tests produce the following output:
s.options === "1,2,3,4": true
z.options === "9,10,11": true
Here is my version of createSomething:
function createSomething() {
var obj = {};
obj = Something.apply(obj, arguments) || obj;
obj.__proto__ = Something.prototype; //Object.setPrototypeOf(obj, Something.prototype);
return o;
}
Based on that, I tried to simulate the new keyword of JavaScript:
//JavaScript 'new' keyword simulation
function new2() {
var obj = {}, args = Array.prototype.slice.call(arguments), fn = args.shift();
obj = fn.apply(obj, args) || obj;
Object.setPrototypeOf(obj, fn.prototype); //or: obj.__proto__ = fn.prototype;
return obj;
}
I tested it and it seems that it works perfectly fine for all scenarios. It also works on native constructors like Date. Here are some tests:
//test
new2(Something);
new2(Something, 1, 2);
new2(Date); //"Tue May 13 2014 01:01:09 GMT-0700" == new Date()
new2(Array); //[] == new Array()
new2(Array, 3); //[undefined × 3] == new Array(3)
new2(Object); //Object {} == new Object()
new2(Object, 2); //Number {} == new Object(2)
new2(Object, "s"); //String {0: "s", length: 1} == new Object("s")
new2(Object, true); //Boolean {} == new Object(true)
Yes we can, javascript is more of prototype inheritance in nature.
function Actor(name, age){
this.name = name;
this.age = age;
}
Actor.prototype.name = "unknown";
Actor.prototype.age = "unknown";
Actor.prototype.getName = function() {
return this.name;
};
Actor.prototype.getAge = function() {
return this.age;
};
when we create an object with "new" then our created object INHERITS getAge(), But if we used apply(...) or call(...) to call Actor, then we are passing an object for "this" but the object we pass WON'T inherit from Actor.prototype
unless, we directly pass apply or call Actor.prototype but then.... "this" would point to "Actor.prototype" and this.name would write to: Actor.prototype.name. Thus affecting all other objects created with Actor...since we overwrite the prototype rather than the instance
var rajini = new Actor('Rajinikanth', 31);
console.log(rajini);
console.log(rajini.getName());
console.log(rajini.getAge());
var kamal = new Actor('kamal', 18);
console.log(kamal);
console.log(kamal.getName());
console.log(kamal.getAge());
Let's try with apply
var vijay = Actor.apply(null, ["pandaram", 33]);
if (vijay === undefined) {
console.log("Actor(....) didn't return anything
since we didn't call it with new");
}
var ajith = {};
Actor.apply(ajith, ['ajith', 25]);
console.log(ajith); //Object {name: "ajith", age: 25}
try {
ajith.getName();
} catch (E) {
console.log("Error since we didn't inherit ajith.prototype");
}
console.log(Actor.prototype.age); //Unknown
console.log(Actor.prototype.name); //Unknown
By passing Actor.prototype to Actor.call() as the first argument, when the Actor() function is ran, it executes this.name=name, Since "this" will point to Actor.prototype, this.name=name; means Actor.prototype.name=name;
var simbhu = Actor.apply(Actor.prototype, ['simbhu', 28]);
if (simbhu === undefined) {
console.log("Still undefined since the function didn't return anything.");
}
console.log(Actor.prototype.age); //simbhu
console.log(Actor.prototype.name); //28
var copy = Actor.prototype;
var dhanush = Actor.apply(copy, ["dhanush", 11]);
console.log(dhanush);
console.log("But now we've corrupted Parent.prototype in order to inherit");
console.log(Actor.prototype.age); //11
console.log(Actor.prototype.name); //dhanush
Coming back to orginal question how to use new operator with apply, here is my take....
Function.prototype.new = function(){
var constructor = this;
function fn() {return constructor.apply(this, args)}
var args = Array.prototype.slice.call(arguments);
fn.prototype = this.prototype;
return new fn
};
var thalaivar = Actor.new.apply(Parent, ["Thalaivar", 30]);
console.log(thalaivar);
since ES6 this is possible through the Spread operator, see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator#Apply_for_new
This answer was already, sort of given in comment https://stackoverflow.com/a/42027742/7049810, but seems to have been missed by most
Actually the simplest method is:
function Something (a, b) {
this.a = a;
this.b = b;
}
function createSomething(){
return Something;
}
s = new (createSomething())(1, 2);
// s == Something {a: 1, b: 2}
A revised solution from #jordancpaul's answer.
var applyCtor = function(ctor, args)
{
var instance = new ctor();
ctor.prototype.constructor.apply(instance, args);
return instance;
};
Make an anonymous prototype and apply the Something prototype to it using the arguments and then create a new instance of that anonymous prototype. The one disadavantage of this is it will not pass the s instanceof Something check, though it is identical, it is basically an instance of a clone.
function Something(){
// init stuff
}
function createSomething(){
return new (function(){Something.apply(this, arguments)});
}
var s = createSomething(a,b,c); // 's' is an instance of Something
function FooFactory() {
var prototype, F = function(){};
function Foo() {
var args = Array.prototype.slice.call(arguments),
i;
for (i = 0, this.args = {}; i < args.length; i +=1) {
this.args[i] = args[i];
}
this.bar = 'baz';
this.print();
return this;
}
prototype = Foo.prototype;
prototype.print = function () {
console.log(this.bar);
};
F.prototype = prototype;
return Foo.apply(new F(), Array.prototype.slice.call(arguments));
}
var foo = FooFactory('a', 'b', 'c', 'd', {}, function (){});
console.log('foo:',foo);
foo.print();

Getting the type of an object in Javascript when its prototype is assigned an instance of another object

I must have some sort of fundamental misunderstanding of how objects work in Javascript because I am unable to figure out why the following outputs what it does. You can see the jsfiddle of the following code here: http://jsfiddle.net/VivekVish/8Qvkn/1/
Note that is uses the getName function defined here: How do I get the name of an object's type in JavaScript?
Object.prototype.getName = function()
{
var funcNameRegex = /function (.{1,})\(/;
var results = (funcNameRegex).exec((this).constructor.toString());
return (results && results.length > 1) ? results[1] : "";
};
function ContentProvider()
{
}
function LessonProvider()
{
console.log(this.getName());
}
lessonProvider1 = new LessonProvider();
LessonProvider.prototype = new ContentProvider();
lessonProvider2 = new LessonProvider();
The above code outputs the following to the console:
LessonProvider
ContentProvider
But why isn't it LessonProvider in both cases and how can one make it LessonProvider in both cases?
If you don't reset the pointer to the constructor, the all the children will report that the parent object is their constructor.
LessonProvider.prototype.constructor = LessonProvider;
You may want to try using a function like below for inheritance:
function inherit(C, P) {
//empty function used as a proxy
var F = function() {};
//set F's prototype equal to P's prototype
F.prototype = P.prototype;
//C will only inherit properties from the F's prototype
C.prototype = new F();
//set access to the parents (P's) prototype if needed
C.uber = P.prototype;
//Set the constructor back to C
C.prototype.constructor = C;
}
inherit(LessonProvider, ContentProvider);
if you insist-
LessonProvider.prototype = new ContentProvider()
LessonProvider.prototype.constructor=LessonProvider;

Categories

Resources