function birthdayCakeCandles(n, ar) {
// Complete this function
ar.sort();
var biggestNo = ar[(ar.length - 1)];
var total = 0;
for (var i = 0; i < ar.length; i++) {
if (ar[i] === biggestNo)
total++;
}
return total;
}
Here's the problem - https://www.hackerrank.com/challenges/birthday-cake-candles/problem
There is no need to sort the array, you can do the problem in O(n) times
function birthdayCakeCandles(arr, n) {
var total = 0;
var len = arr.length;
for (var i = 0; i < len; i++) {
if (ar[i] === n)
total++;
}
return total;
Related
Here is my code sans input
// Check if three addends equal sum and return the product if so
let result;
function addNumbers(first,second,third,sum) {
if (first + second + third === sum) {
result = first * second * third;
return (first * second * third);
}
};
// find three numbers in list that add up to specific number
function testResult(list,sum) {
let firstAddend;
let secondAddend;
let thirdAddend;
for (let i = 0; i < list.length; i++) {
firstAddend = list.shift();
for (let j = 0; j < list.length; j++) {
secondAddend = list[j];
for (let k = 1; k < list.length; k++) {
thirdAddend = list[k];
addNumbers(firstAddend,secondAddend,thirdAddend,sum);
}
}
}
};
What I want is testResult() to return the result from addNumbers() when it returns the product. I want to get rid of let result; and result = ... in addNumbers(). I've been confused about scope but I think I'm starting to understand. Does each for loop contain the scope of the previous? If anyone is interested this is from Advent of Code Day 1. I am not certain if having the data is necessary here. If it is let me know and I will edit accordingly.
Does each for loop contain the scope of the previous?
Yes, it does. Whenever you create a sub-scope, all the variables in the previous scope are available. So, you don't actually have to declare firstAddend and secondAddend and thirdAddend ahead of time:
function testResult(list,sum) {
for (let i = 0; i < list.length; i++) {
let firstAddend = list.shift();
for (let j = 0; j < list.length; j++) {
let secondAddend = list[j];
for (let k = 1; k < list.length; k++) {
let thirdAddend = list[k];
addNumbers(firstAddend,secondAddend,thirdAddend,sum);
}
}
}
}
Next, the return means that when you call the function, it takes on the value that you return. So, you don't need a global result variable, as you can just utilize the return value. However, you should move the if statement out of the addNumbers function and into the testResult function, as you need to know when to return, not just what to return. In fact, the addNumbers function is simply enough to where it should just go directly into testResult:
function testResult(list,sum) {
for (let i = 0; i < list.length; i++) {
let firstAddend = list.shift();
for (let j = 0; j < list.length; j++) {
let secondAddend = list[j];
for (let k = 1; k < list.length; k++) {
let thirdAddend = list[k];
if (firstAddend + secondAddend + thirdAddend === sum) {
return firstAddend * secondAddend * thirdAddend;
}
}
}
}
}
For practice, if you want the function, you could do something like the following:
function addNumbers(first,second,third,sum) {
if (first + second + third === sum) {
return (first * second * third);
} else {
return null; // return some value so the calling function knows that no sum was found
}
}
function testResult(list,sum) {
for (let i = 0; i < list.length; i++) {
let firstAddend = list.shift();
for (let j = 0; j < list.length; j++) {
let secondAddend = list[j];
for (let k = 1; k < list.length; k++) {
let thirdAddend = list[k];
let result = addNumbers(firstAddend, secondAddend, thirdAddend, sum);
if (result !== null) {
return result;
}
}
}
}
}
The algorithm is taken from LeetCode: https://leetcode.com/problems/maximum-product-of-word-lengths/description/
Here is the jsperf I created (I have some local tests which gives the same result): https://jsperf.com/maximum-product-of-word-lengths
Here is the first "slow" implementation:
function maxProduct (words) {
if (!words || !words.length) return 0;
let len = words.length;
let values = [];
// console.log(values)
for (let i = 0; i < len; ++i) {
let tmp = words[i];
let num = 0, len = tmp.length;
for (let j = 0; j < len; ++j) {
num |= 1 << (tmp.charCodeAt(j) - 'a'.charCodeAt(0));
}
values[i] = {
num: num,
len: tmp.length
};
}
let maxProduct = 0;
for (let i = 0; i < len; ++i) {
for (let j = 0; j < len; ++j) {
if ((values[i].num & values[j].num) == 0) {
maxProduct = Math.max(maxProduct, values[i].len * values[j].len);
}
}
}
return maxProduct;
};
Here is the "fast" implementation:
function maxProductFast (words) {
var temp = [];
for(var i = 0; i < words.length; i++){
var tempObj = {};
tempObj.item = words[i];
var num = 0;
for(var j = 0; j < words[i].length; j++){
num |= 1 << (words[i].charCodeAt(j) - 97);
}
tempObj.num = num;
temp.push(tempObj);
}
var res = 0;
for(var i = 0; i < temp.length; i++){
for(var j = i + 1; j < temp.length; j++){
var item1 = temp[i];
var item2 = temp[j];
if((item1.num & item2.num) == 0) {
res = Math.max(res, item1.item.length * item2.item.length);
}
}
}
return res;
}
They're not the same. The second algorithm has a loop with a complexity of (n*(n+1))/2 where each progressive step is from i+1 to the length of temp. the first algorithm has a two nested for loops each with a cost of n^2. the complexity of both will reduce to O(n^2). I believe that both of these will have a similar performance with a significantly large enough set.
The reason you would do n+1 for each sub iteration is because you are trying to find the max of any pair of items. if you place your elements in a grid you will notice that any diagonal pair a_3 * a_2 = a_2 * a_3 produces the same value. you can basically halve the collection and save a few cycles.
I have written a function and called another function inside but my tests show that it is not time optimized. How can I make the following code faster?
function maxSum(arr, range) {
function sumAll(array1, myrange) {
var total = 0;
if (Array.isArray(myrange)) {
for (var i = myrange[0]; i <= myrange[1]; i++) {
total += array1[i];
}
return total;
} else return array1[myrange];
}
var mylist = [];
var l = range.length;
for (var n = 0; n < l; n++) {
mylist.push(sumAll(arr, range[n]));
}
return Math.max.apply(null, mylist);
}
Algorithmic optimization: create new array with cumulative sums from index 0 to every index
cumsum[0] = 0;
for (var i = 1; i <= arr.Length; i++) {
cumsum[i] = cumsum[i-1] + arr[i-1]
Now you don't need to calculate sums for every range - just get difference
sum for range (i..j) = cumsum[j+1] - cumsum[i];
in your terms:
function sumAll(array1, myrange) {
return cumsum[myrange[1]+1] - cumsum[myrange[0]];
}
example:
arr = [1,2,3,4]
cumsum = [0,1,3,6,10]
sum for range 1..2 = 6 - 1 = 5
P.S. If your array might be updated, consider Fenwick tree data structure
1) You can define the function sumAll outside of the function maxSum because every time you call maxSum the javascript engine is recreating a fresh new function sumAll.
2) You can define myrange[1] as a variable in the initialiser part to avoid javascript to look for myrange[1] at each iteration.
for (var i = myrange[0]; i <= myrange[1]; i++) {
total += array1[i];
}
become this:
for (var i = myrange[0], len = myrange[1]; i <= len; i++) {
total += array1[i];
}
Full working code based on #MBo's excellent optimization. This passes all the tests at https://www.codewars.com/kata/the-maximum-sum-value-of-ranges-challenge-version/train/javascript, which I gather is where this problem comes from.
function maxSum(arr, ranges) {
var max = null;
var sums = [];
var sofar = 0;
for (var i = 0; i <= arr.length; i++) {
sums[i] = sofar;
sofar += arr[i];
}
for (var i = 0; i < ranges.length; i++) {
var sum = sums[ranges[i][1]+1] - sums[ranges[i][0]];
if (max === null || sum > max) {
max = sum;
}
}
return max;
}
I have the following function to get all of the substrings from a string in JavaScript. I know it's not correct but I feel like I am going about it the right way. Any advice would be great.
var theString = 'somerandomword',
allSubstrings = [];
getAllSubstrings(theString);
function getAllSubstrings(str) {
var start = 1;
for ( var i = 0; i < str.length; i++ ) {
allSubstrings.push( str.substring(start,i) );
}
}
console.log(allSubstrings)
Edit: Apologies if my question is unclear. By substring I mean all combinations of letters from the string (do not have to be actual words) So if the string was 'abc' you could have [a, ab, abc, b, ba, bac etc...] Thank you for all the responses.
You need two nested loop for the sub strings.
function getAllSubstrings(str) {
var i, j, result = [];
for (i = 0; i < str.length; i++) {
for (j = i + 1; j < str.length + 1; j++) {
result.push(str.slice(i, j));
}
}
return result;
}
var theString = 'somerandomword';
console.log(getAllSubstrings(theString));
.as-console-wrapper { max-height: 100% !important; top: 0; }
A modified version of Accepted Answer. In order to give the minimum string length for permutation
function getAllSubstrings(str, size) {
var i, j, result = [];
size = (size || 0);
for (i = 0; i < str.length; i++) {
for (j = str.length; j - i >= size; j--) {
result.push(str.slice(i, j));
}
}
return result;
}
var theString = 'somerandomword';
console.log(getAllSubstrings(theString, 6));
Below is a recursive solution to the problem
let result = [];
function subsetsOfString(str, curr = '', index = 0) {
if (index == str.length) {
result.push(curr);
return result;
}
subsetsOfString(str, curr, index + 1);
subsetsOfString(str, curr + str[index], index + 1);
}
subsetsOfString("somerandomword");
console.log(result);
An answer with the use of substring function.
function getAllSubstrings(str) {
var res = [];
for (let i = 0; i < str.length; i++) {
for (let j = i + 1; j <= str.length; j++) {
res.push(str.substring(i, j));
}
}
return res;
}
var word = "randomword";
console.log(getAllSubstrings(word));
function generateALlSubstrings(N,str){
for(let i=0; i<N; i++){
for(let j=i+1; j<=N; j++){
console.log(str.substring(i, j));
}
}
}
Below is a simple approach to find all substrings
var arr = "abcde";
for(let i=0; i < arr.length; i++){
for(let j=i; j < arr.length; j++){
let bag ="";
for(let k=i; k<j; k++){
bag = bag + arr[k]
}
console.log(bag)
}
}
function getSubstrings(s){
//if string passed is null or undefined or empty string
if(!s) return [];
let substrings = [];
for(let length = 1 ; length <= s.length; length++){
for(let i = 0 ; (i + length) <= s.length ; i++){
substrings.push(s.substr(i, length));
}
}
return substrings;
}
I'm having a little trouble with my attempt at this problem. Code Below:
function pasc(n){
var result = [[1]];
for (var row = 1; row < n; row++){
for (var col = 1; col <= row; col++){
result[row][col] = result[row - 1][col] + result[row - 1][col - 1];
}
}
return result;
}
pasc(10)
for (var i = 0; i < result.length; i++){
document.write(result[i]+"<br>");
}
It seems the problem hinges on assigning values to an array using an expression like myArray[1][1] = "foo"
I'm confused about this because I can do this: var myArray = []; myArray[4] = "foo" which seems to suggest that an element can be created at an arbitrary position in a 1 dimensional array, but not with 2 dimensions.
Any help with clearing up my misconceptions appreciated.
The Pascal's Triangle can be printed using recursion
Below is the code snippet that works recursively.
We have a recursive function pascalRecursive(n, a) that works up till the number of rows are printed. Each row is a element of the 2-D array ('a' in this case)
var numRows = 10,
triangle,
start,
stop;
// N is the no. of rows/tiers
// a is the 2-D array consisting of the row content
function pascalRecursive(n, a) {
if (n < 2) return a;
var prevRow = a[a.length-1];
var curRow = [1];
for (var i = 1; i < prevRow.length; i++) {
curRow[i] = prevRow[i] + prevRow[i-1];
}
curRow.push(1);
a.push(curRow);
return pascalRecursive(n-1, a); // Call the function recursively
}
var triangle = pascalRecursive(numRows, [[1]]);
for(var i = 0; i < triangle.length; i++)
console.log(triangle[i]+"\n");
JavaScript doesn't have two-dimensional arrays. What it does have is arrays that happen to contain other arrays. So, yes, you can assign a value to any arbitrary position in an array, and the array will magically make itself big enough, filling in any gaps with 'undefined'... but you can't assign a value to any position in a sub-array that you haven't explicitly created yet. You have to assign sub-arrays to the positions of the first array before you can assign values to the positions of the sub-arrays.
Replacing
for (var row = 1; row < n; row++){
for (var col = 1; col <= row; col++){
with
for (var row = 1; row < n; row++){
result[row] = [];
for (var col = 1; col <= row; col++){
should do it. Assuming all of your indexing logic is correct, anyway. You've got some problems there, too, since your initial array only contains a single value, so result[row][col] = result[row - 1][col] + result[row - 1][col - 1]; is accessing at least one cell that has never been defined.
Thanks Logan R. Kearsley. I have now solved it:
function pasc(n){
var result = [];
result[0] = [1];
result[1] = [1,1];
for (var row = 2; row < n; row++){
result[row] = [1];
for (var col = 1; col <= row -1; col++){
result[row][col] = result[row-1][col] + result[row-1][col-1];
result[row].push(1);
}
}
return result;
}
for (var i = 0; i < pasc(10).length; i++){
document.write(pasc(10)[i]+"<br>");
console.log(pasc(10)[i]+"<br>");
}
you can create Pascal's triangle using below code:
function pascal(n) {
var arr = [];
if (n == 1) {
arr[0] = [];
arr[0][0] = 1;
} else if (n == 2) {
arr[0] = [];
arr[0][0] = 1;
arr[1] = [];
arr[1][0] = 1;
arr[1][1] = 1;
} else if (n > 2) {
arr[0] = [];
arr[1] = [];
arr[0][0] = 1;
arr[1][0] = 1;
arr[1][1] = 1;
for (i = 2; i < n; i++) {
arr[i] = [];
arr[i][0] = 1;
for (j = 1; j < i; j++) {
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
}
arr[i][j] = 1;
}
}
console.log(arr);
for (i = 0; i < arr.length; i++) {
console.log(arr[i].join(' '))
}
}
function pascal(n) {
var arr = [];
if (n == 1) {
arr[0] = [];
arr[0][0] = 1;
} else if (n == 2) {
arr[0] = [];
arr[0][0] = 1;
arr[1] = [];
arr[1][0] = 1;
arr[1][1] = 1;
} else if (n > 2) {
arr[0] = [];
arr[1] = [];
arr[0][0] = 1;
arr[1][0] = 1;
arr[1][1] = 1;
for (i = 2; i < n; i++) {
arr[i] = [];
arr[i][0] = 1;
for (j = 1; j < i; j++) {
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
}
arr[i][j] = 1;
}
}
console.log(arr);
for (i = 0; i < arr.length; i++) {
console.log(arr[i].join(' '))
}
}
pascal(5)
This function will calculate Pascal's Triangle for "n" number of rows. It will create an object that holds "n" number of arrays, which are created as needed in the second/inner for loop.
function getPascalsTriangle(n) {
var arr = {};
for(var row = 0; row < n; row++) {
arr[row] = [];
for(var col = 0; col < row+1; col++) {
if(col === 0 || col === row) {
arr[row][col] = 1;
} else {
arr[row][col] = arr[row-1][col-1] + arr[row-1][col];
}
}
}
return arr;
}
console.log(getPascalsTriangle(5));
Floyd triangle
You can try the following code for a Floyd triangle
var prevNumber=1,i,depth=10;
for(i=0;i<depth;i++){
tempStr = "";j=0;
while(j<= i){
tempStr = tempStr + " " + prevNumber;
j++;
prevNumber++;
}
console.log(tempStr);
}
You can create arbitrary 2d arrays and store it in there and return the correct Pascal.
JavaScript does not have a special syntax for creating multidimensional arrays. A common workaround is to create an array of arrays in nested loops.
source
Here is my version of the solution
function pascal(input) {
var result = [[1], [1,1]];
if (input < 0) {
return [];
}
if (input === 0) {
return result[0];
}
for(var j = result.length-1; j < input; j++) {
var newArray = [];
var firstItem = result[j][0];
var lastItem = result[j][result[j].length -1];
newArray.push(firstItem);
for (var i =1; i <= j; i++) {
console.log(result[j][i-1], result[j][i]);
newArray.push(sum(result[j][i-1], result[j][i]));
}
newArray.push(lastItem);
result.push(newArray);
}
return result[input];
}
function sum(one, two) {
return one + two;
}
Here is the code i created for pascal triangle in javascript
'use strict'
let noOfCoinFlipped = 5
let probabiltyOfnoOfHead = 2
var dataStorer = [];
for(let i=0;i<=noOfCoinFlipped;i++){
dataStorer[i]=[];
for(let j=0;j<=i;j++){
if(i==0){
dataStorer[i][j] = 1;
}
else{
let param1 = (j==0)?0:dataStorer[i-1][j-1];
let param2 = dataStorer[i-1][j]?dataStorer[i-1][j]:0;
dataStorer[i][j] = param1+param2;
}
}
}
let totalPoints = dataStorer[noOfCoinFlipped].reduce((s,n)=>{return s+n;})
let successPoints = dataStorer[noOfCoinFlipped][probabiltyOfnoOfHead];
console.log(successPoints*100/totalPoints)
Here is the link as well
http://rextester.com/TZX59990
This is my solve:
function pascalTri(n){
let arr=[];
let c=0;
for(let i=1;i<=n;i++){
arr.push(1);
let len=arr.length;
if(i>1){
if(i>2){
for(let j=1;j<=(i-2);j++){
let idx=(len-(2*i)+j+2+c);
let val=arr[idx]+arr[idx+1];
arr.push(val);
}
c++;
}
arr.push(1);
}
}
return arr;
}
let pascalArr=pascalTri(7);
console.log(pascalArr);
here is the pattern for n = 3
#
##
###
here is js code to print this.
function staircase(n) {
for(var i=0 ; i<n ; i++) {
for(var j=n-1 ; j>i ; j--)
process.stdout.write(" ");
for(var k=0 ; k<=i; k++) {
process.stdout.write("#");
}
process.stdout.write("\n");
}
}
class PascalTriangle {
constructor(n) {
this.n = n;
}
factoriel(m) {
let result = 1;
if (m === 0) {
return 1;
}
while (m > 0) {
result *= m;
m--;
}
return result;
}
fill() {
let arr = [];
for (let i = 0; i < this.n; i++) {
arr.push([]);
}
for (let i = 0; i < arr.length; i++) {
for (let j = 0; j <= i; j++) {
arr[i].push(this.factoriel(i) / (this.factoriel(j) * this.factoriel(i - j)));
}
}
return arr;
}
}
var m = prompt("enter number:");
var arrMain = new Array();
for (var i = 0; i < m; i++) {
arrMain[i] = [];
}
for (var i = 0; i < m; i++) {
if (i == 0) {
arrMain[i] = [1];
} else if (i == 1) {
(arrMain[i]) = [1, 1];
} else {
for (var j = 0; j <= i; j++) {
if (j == 0 || j == arrMain[i - 1].length) {
arrMain[i][j] = 1;
} else {
arrMain[i][j] = arrMain[i - 1][j] + arrMain[i - 1][j - 1];
}
}
}
document.write(arrMain[i] + "<br>");
}
This is my take on this problem by gaining access to the previous row.
const generate = numRows => {
const triangle = [[1]]
for (let i = 1; i < numRows; i++) {
// Previous row
const previous = triangle[i - 1]
// Current row
const current = new Array(i + 1).fill(1)
// Populate the current row with the previous
// row's values
for (let j = 1; j < i; j++) {
current[j] = previous[j - 1] + previous[j]
}
// Add to triangle result
triangle.push(current)
}
return triangle
}