Nginx and Node.js server - multiple tasks - javascript

UPDATE
I have a few questions about the combination of Nginx and Nodejs.
I've used Nodejs to create my server and now I'm facing with an issue about catching the server for an actions (writing, removing and etc..).
We are using Redis to lock the server when there are requests to the server, for example if a new user is doing a sign up action all the rest of the requests are waiting until the process is done, or if there is another process (longer one) all the other requests will wait longer.
We thought about creating a Load balancer (using Nginx) that will check if the server is locked, and if the server is locked it will open a new task and won't wait until the first process is done.
I used this tutorial and created a dummy server, then I've struggled with the idea of do this functionality of opening a new ports.
I'm new with load balancing implementation and I will be happy to hear your thoughts and help.
Thank you.

The gist of it is that your server needs to not crash if more than one connection attempt are made to it. Even if you use NGINX as a load balancer and have five different instances of your server running...what happens when six clients try to access your app at once?
I think you are thinking about load balancers slightly wrong. There are different load balancing methods, but the simplest one to think about is "round robin" in which each connection gets forwarded to the next server in the list (the rest are just more robust and complicated versions of this one). When there are no more servers to forward to, the next connection gets forwarded to the first server again (whether or not it is done with its last connection) and the circle starts over. Thus, load balancers aren't supposed to manage "unique connections" from clients...they are supposed to distribute connections among servers.
Your server doesn't necessarily need to accept connections and handle them all at once. But it needs to at least allow connections to queue up without crashing, and then accept and deal with each one by one.
You can go the route you are discussing. That is, you can fire up a unique instance of your server...via Heroku or other...for every single connection that is made to your app. But this is not efficient and will ultimately create more work for you in trying to architect a system that can do that well. Why not just fix your server?

Related

Event broadcast between servers in node

I have several node servers running on AWS (but they might be running anywhere).
An admin user can trigger a database save on one server (via an Express endpoint) which will in turn require all servers to reload that particular record. So, a particular server needs to be able to trigger an event onto N other servers.
Since the node processes are potentially on different servers, I can't use a Unix socket. And since I don't know in advance how many servers there are, I assume I will need to have one specific server which will "orchestrate" all of the other ones (see: each server "registers" and "pushes" events to that particular server).
What is the easiest, simplest solution to achieve this? I am talking about minimal amount of code and moving parts.

Prevent recursive calls of XmlHttpRequest to server

I've been googling for hours for this issue, but did not find any solution.
I am currently working on this app, built on Meteor.
Now the scenario is, after the website is opened and all the assets have been loaded in browser, the browser constantly makes recursive xhr calls to server. These calls are made at the regular interval of 25 seconds.
This can be seen in the Network tab of browser console. See the Pending request of the last row in image.
I can't figure out from where it originates, and why it is invoked automatically even when the user is idle.
Now the question is, How can I disable these automatic requests? I want to invoke the requests manually, i.e. when the menu item is selected, etc.
Any help will be appriciated.
[UPDATE]
In response to the Jan Dvorak's comment:
When I type "e" in the search box, the the list of events which has name starting with letter "e" will be displayed.
The request goes with all valid parameters and the Payload like this:
["{\"msg\":\"sub\",\"id\":\"8ef5e419-c422-429a-907e-38b6e669a493\",\"name\":\"event_Coll_Search_by_PromoterName\",\"params\":[\"e\"]}"]
And this is the response, which is valid.
a["{\"msg\":\"data\",\"subs\":[\"8ef5e419-c422-429a-907e-38b6e669a493\"]}"]
The code for this action is posted here
But in the case of automatic recursive requests, the request goes without the payload and the response is just a letter "h", which is strange. Isn't it? How can I get rid of this.?
Meteor has a feature called
Live page updates.
Just write your templates. They automatically update when data in the database changes. No more boilerplate redraw code to write. Supports any templating language.
To support this feature, Meteor needs to do some server-client communication behind the scenes.
Traditionally, HTTP was created to fetch dead data. The client tells the server it needs something, and it gets something. There is no way for the server to tell the client it needs something. Later, it became needed to push some data to the client. Several alternatives came to existence:
polling:
The client makes periodic requests to the server. The server responds with new data or says "no data" immediately. It's easy to implement and doesn't use much resources. However, it's not exactly live. It can be used for a news ticker but it's not exactly good for a chat application.
If you increase the polling frequency, you improve the update rate, but the resource usage grows with the polling frequency, not with the data transfer rate. HTTP requests are not exactly cheap. One request per second from multiple clients at the same time could really hurt the server.
hanging requests:
The client makes a request to the server. If the server has data, it sends them. If the server doesn't have data, it doesn't respond until it does. The changes are picked up immediately, no data is transferred when it doesn't need to be. It does have a few drawbacks, though:
If a web proxy sees that the server is silent, it eventually cuts off the connection. This means that even if there is no data to send, the server needs to send a keep-alive response anyways to make the proxies (and the web browser) happy.
Hanging requests don't use up (much) bandwidth, but they do take up memory. Nowadays' servers can handle multiple concurrent TCP connections, so it's less of an issue than it was before. What does need to be considered is the amount of memory associated with the threads holding on to these requests - especially when the connections are tied to specific threads serving them.
Browsers have hard limits on the number of concurrent requests per domain and in total. Again, this is less of a concern now than it was before. Thus, it seems like a good idea to have one hanging request per session only.
Managing hanging requests feels kinda manual as you have to make a new request after each response. A TCP handshake takes some time as well, but we can live with a 300ms (at worst) refractory period.
Chunked response:
The client creates a hidden iFrame with a source corresponding to the data stream. The server responds with an HTTP response header immediately and leaves the connection open. To send a message, the server wraps it in a pair of <script></script> tags that the browser executes when it receives the closing tag. The upside is that there's no connection reopening but there is more overhead with each message. Moreover, this requires a callback in the global scope that the response calls.
Also, this cannot be used with cross-domain requests as cross-domain iFrame communication presents its own set of problems. The need to trust the server is also a challenge here.
Web Sockets:
These start as a normal HTTP connection but they don't actually follow the HTTP protocol later on. From the programming point of view, things are as simple as they can be. The API is a classic open/callback style on the client side and the server just pushes messages into an open socket. No need to reopen anything after each message.
There still needs to be an open connection, but it's not really an issue here with the browser limits out of the way. The browser knows the connection is going to be open for a while, so it doesn't need to apply the same limits as to normal requests.
These seem like the ideal solution, but there is one major issue: IE<10 doesn't know them. As long as IE8 is alive, web sockets cannot be relied upon. Also, the native Android browser and Opera mini are out as well (ref.).
Still, web sockets seem to be the way to go once IE8 (and IE9) finally dies.
What you see are hanging requests with the timeout of 25 seconds that are used to implement the live update feature. As I already said, the keep-alive message ("h") is used so that the browser doesn't think it's not going to get a response. "h" simply means "nothing happens".
Chrome supports web sockets, so Meteor could have used them with a fallback to long requests, but, frankly, hanging requests are not at all bad once you've got them implemented (sure, the browser connection limit still applies).

Is there any good trick for server to handle more requests if I don't have to sent any data back?

I want to handle a lot of (> 100k/sec) POST requests from javascript clients with some kind of service server. Not many of this data will be stored, but I have to process all of them so I cannot spend my whole server power for serving requests only. All the processing need to be done in the same server instance, otherwise I'll need to use database for synchronization between servers which will be slower by orders of magnitude.
However I don't need to send any data back to the clients, and they don't even expect them.
So far my plan was to create few proxy servers instances which will be able to buffer the request and send them to main server in bigger packs.
For example let's say that I need to handle 200k requests / sec and each server can handle 40k. I can split load between 5 of them. Then each one will be buffering requests and sending them back to main server in packs of 100. This will result in 2k requests / sec on the main server (however, each message will be 100 times bigger - which probably means around 100-200kB). I could even send them back to the server using UDP to decrease amount of needed resources (then I need only one socket on main server, right?).
I'm just thinking if there is no other way to speed up the things. Especially, when as I said I don't need to send anything back. I have full control over javascript clients also, but unlucky javascript is unable to send data using UDP which probably would be solution for me (I don't even care if 0.1% of data will be lost).
Any ideas?
Edit in response to answers given me so far.
The problem isn't with server being to slow at processing events from the queue or with putting events in the queue itself. In fact I plan to use disruptor pattern (http://code.google.com/p/disruptor/) which was proven to process up to 6 million requests per second.
The only problem which I potentially can have is need to have 100, 200 or 300k sockets open at the same time, which cannot be handled by any of the mainstream servers. I know some custom solutions are possible (http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3) but I'm wondering if there is no way to even better utilization of fact that I don't have to replay to clients.
(For example some way to embed part of the data in initial TCP packet and handle TCP packets as they would be UDP. Or some other kind of magic ;))
Make a unique and fast (probably in C) function that get's all requests, from a very fast server (like nginx). The only job of this function is to store the requests in a very fast queue (like redis if you got enought ram).
In another process (or server), depop the queue and do the real work, processing request one by one.
If you have control of the clients, as you say, then your proxy server doesn't even need to be an HTTP server, because you can assume that all of the requests are valid.
You could implement it as a non-HTTP server that simply sends back a 200, reads the client request until it disconnects, and then queues the requests for processing.
I think what you're describing is an implementation of a Message Queue. You also will need something to hand off these requests to whatever queue you use (RabbitMQ is quite good, there are many alternatives).
You'll also need something else running which can do whatever processing you actually want on the requests. You haven't made that very clear, so I'm not too sure exactly what would be right for you. Essentially the idea will be that incoming requests are dumped as quickly as simply as possible into the queue by your web server, and then the web server is free to go back to serving more requests. When the system has some resources, it uses them to process the queue, but when it's busy the queue just keeps growing.
Not sure what platform you're on, but might want to look at something like Lighttpd for serving the POSTs. You might (if same-domain restrictions don't shoot you down) get away with having Lighttpd running on a subdomain of your application (so post.myapp.com). Failing that you could put a proper load balancer in front of your webservers altogether (so all requests go to www.myapp.com and the load balancer decides whether to forward them to the web server or the queue processor).
Hope that helps
Consider using MongoDB for persisting your requests, it's fire and forget mechanism can help your servers to response faster.

Moving node.js server javascript processing to the client

I'd like some opinions on the practical implications of moving processing that would traditionally be done on the server to be handled instead by the client in a node.js web app.
Example case study:
The user uploads a CSV file containing a years worth of their bank statement entries. We want to parse the file, categorise each entry and calculate cumulative values for each category so that we can store the newly categorised statement in a db and display spending analysis to the user.
The entries are categorised by matching strings in the descriptions. There are many categories and many entries and it takes a fair amount of time to process.
In our node.js server, we can happily free up the event loop whilst waiting for network responses and so on, but if there is any data crunching or similar processing, the server will be blocked from responding to requests, and this seems unavoidable.
Traditionally, the CSV file would be passed to the server, the server would process, save in db, and send back the output of the processing.
It seems to make sense in our single threaded node.js server that this processing is handled by the browser, and the output displayed and sent to server to be stored. Of course the client will have to wait while this is done, but their processing will not be preventing the server from responding to requests from other clients.
I'm interested to see if anyone has had experience build apps using this model.
So, the question is.. are there any issues in getting browsers rather than the server to handle, wherever possible, any processing that will block the event loop? Is this a good/sensible/viable approach to node.js application development?
I don't think trusting client processed data is a good idea.
Instead you should look into creating a work queue that a separate process listens on, separating the CPU intensive tasks from your node.js process handling HTTP requests.
My proposed data flow would be:
HTTP upload request
App server (save raw file somewhere the worker process can access)
Notification to 'csv' work queue
Worker processes uploaded csv file.
Although perfectly possible, simply shifting the processing to the client machine does not solve the basic problem.
Now the client's event loop is blocked, preventing the user from interacting with the browser. Browsers tend to detect this problem and stop execution of the page's script altogether. Something your users will certainly hate.
There is no way around either delegating or splitting up the work-load.
Using a second process (for example a 2nd node instance) for doing the number crunching server-side has the added benefit of allowing the operating system to use a 2nd CPU core. Ideally you run as many Node instances as you have CPU cores in the server and balance your work-load between them. Have a look at the diode module for some inspiration on how to implement multi-process communication in node.

Understanding mod_proxy and Apache 2 for writing a comet-server

I currently try to implement a simple HTTP-server for some kind of comet-technique (long polling XHR-requests). As JavaScript is very strict about crossdomain requests I have a few questions:
As I understood any apache worker is blocked while serving a request, so writing the "script" as a usual website would block the apache, when all workers having a request to serve. --> Does not work!
I came up with the idea writing a own simple HTTP server only for serving this long polling requests. This server should not be blocking, so each worker could handle many request at the same time. As my site also contains content / images etc and my server does not need to server content I started him on a different port then 80. The problem now is that I can't interact between my JavaScript delivered by my apache and my comet-server running on a different port, because of some crossdomain restrictions. --> Does not work!
Then I came up with the idea to use mod_proxy to map my server on a new subdomain. I really don't could figure out how mod_proxy works but I could imagine that I know have the same effect as on my first approach?
What would be the best way to create these kind of combination this kind of classic website and these long-polling XHR-requests? Do I need to implement content delivery on my server at my own?
I'm pretty sure using mod_proxy will block a worker while the request is being processed.
If you can use 2 IPs, there is a fairly easy solution.
Let's say IP A is 1.1.1.1 and IP B is 2.2.2.2, and let's say your domain is example.com.
This is how it will work:
-Configure Apache to listen on port 80, but ONLY on IP A.
-Start your other server on port 80, but only on IP B.
-Configure the XHR requests to be on a subdomain of your domain, but with the same port. So the cross-domain restrictions don't prevent them. So your site is example.com, and the XHR requests go to xhr.example.com, for example.
-Configure your DNS so that example.com resolves to IP A, and xhr.example.com resolves to IP B.
-You're done.
This solution will work if you have 2 servers and each one has its IP, and it will work as well if you have one server with 2 IPs.
If you can't use 2 IPs, I may have another solution, I'm checking if it's applicable to your case.
This is a difficult problem. Even if you get past the security issues you're running into, you'll end up having to hold a TCP connection open for every client currently looking at a web page. You won't be able to create a thread to handle each connection, and you won't be able to "select" on all the connections from a single thread. Having done this before, I can tell you it's not easy. You may want to look into libevent, which memcached uses to a similar end.
Up to a point you can probably get away with setting long timeouts and allowing Apache to have a huge number of workers, most of which will be idle most of the time. Careful choice and configuration of the Apache worker module will stretch this to thousands of concurrent users, I believe. At some point, however, it will not scale up any more.
I don't know what you're infrastructure looks like, but we have load balancing boxes in the network racks called F5s. These present a single external domain, but redirect the traffic to multiple internal servers based on their response times, cookies in the request headers, etc.. They can be configured to send requests for a certain path within the virtual domain to a specific server. Thus you could have example.com/xhr/foo requests mapped to a specific server to handle these comet requests. Unfortunately, this is not a software solution, but a rather expensive hardware solution.
Anyway, you may need some kind of load-balancing system (or maybe you have one already), and perhaps it can be configured to handle this situation better than Apache can.
I had a problem years ago where I wanted customers using a client-server system with a proprietary binary protocol to be able to access our servers on port 80 because they were continuously having problems with firewalls on the custom port that the system used. What I needed was a proxy that would live on port 80 and direct the traffic to either Apache or the app server depending on the first few bytes of what came across from the client. I looked for a solution and found nothing that fit. I considered writing an Apache module, a plugin for DeleGate, etc., but eventually rolled by own custom content-sensing proxy service. That, I think, is the worst-case scenario for what you're trying to do.
To answer the specific question about mod-proxy: yes, you can setup mod_proxy to serve content that is generated by a server (or service) that is not public facing (i.e. which is only available via an internal address or localhost).
I've done this in a production environment and it works very, very well. Apache forwarding some requests to Tomcat via AJP workers, and others to a GIS application server via mod proxy. As others have pointed out, cross-site security may stop you working on a sub-domain, but there is no reason why you can't proxy requests to mydomain.com/application
To talk about your specific problem - I think really you are getting bogged down in looking at the problem as "long lived requests" - i.e. assuming that when you make one of these requests that's it, the whole process needs to stop. It seems as though your are trying to solve an issue with application architecture via changes to system architecture. In-fact what you need to do is treat these background requests exactly as such; and multi-thread it:
Client makes the request to the remote service "perform task X with data A, B and C"
Your service receives the request: it passes it onto a scheduler which issues a unique ticket / token for the request. The service then returns this token to the client "thanks, your task is in a queue running under token Z"
The client then hangs onto this token, shows a "loading/please wait" box, and sets up a timer that fires say, for arguments, every second
When the timer fires, the client makes another request to the remote service "have you got the results for my task, it's token Z"
You background service can then check with your scheduler, and will likely return an empty document "no, not done yet" or the results
When the client gets the results back, it can simply clear the timer and display them.
So long as you're reasonably comfortable with threading (which you must be if you've indicated you're looking at writing your own HTTP server, this shouldn't be too complex - on top of the http listener part:
Scheduler object - singleton object, really that just wraps a "First in, First Out" stack. New tasks go onto the end of the stack, jobs can be pulled off from the beginning: just make sure that the code to issue a job is thread safe (less you get two works pulling the same job from the stack).
Worker threads can be quite simple - get access to the scheduler, ask for the next job: if there is one then do the work send the results, otherwise just sleep for a period, start over.
This way, you're never going to be blocking Apache for longer than needs be, as all you are doing is issues requests for "do x" or "give me results for x". You'll probably want to build some safety features in at a few points - such as handling tasks that fail, and making sure there is a time-out on the client side so it doesn't wait indefinitely.
For number 2: you can get around crossdomain restrictions by using JSONP.
Two Three alternatives:
Use nginx. This means you run 3 servers: nginx, Apache, and your own server.
Run your server on its own port.
Use Apache mod_proxy_http (as your own suggestion).
I've confirmed mod_proxy_http (Apache 2.2.16) works proxying a Comet application (powered by Atmosphere 0.7.1) running in GlassFish 3.1.1.
My test app with full source is here: https://github.com/ceefour/jsfajaxpush

Categories

Resources