When I start so code
import Promise from 'bluebird';
const mongodb = Promise.promisifyAll(require('mongodb'));
const MongoClient = mongodb.MongoClient;
MongoClient.connect(url).then((db) => {
return Promise.all([new WorkerService(db)]);
}).spread((workerService) => (
Promise.all([new WorkerRouter(workerService)])
)).spread((workerRouter) => {
app.use('/worker', workerRouter);
}).then(() => {
httpServer.start(config.get('server.port'));
}).catch((err) => {
console.log(err);
httpServer.finish();
});
I see so error
}).spread(function (workerService) {
^
TypeError: MongoClient.connect(...).then(...).spread is not a function
Please help me. What am I doing wrong?
I see several things wrong here:
The root cause here is that MongoClient.connect(...).then(...) is not returning a Bluebird promise, thus, there is no .spread() method. When you promisify an interface with Bluebird, it does NOT change the existing methods at all. Instead, it adds new methods with the "Async" suffix on it.
So, unless you've somehow told Mongo to create only Bluebird promises, then
`MongoClient.connect(...).then(...)`
will just be returning whatever kind of promise Mongo has built in. You will need to use the new promisified methods:
MongoClient.connectAsync(...).then(...).spread(...)
Some other issues I see in your code:
1) Promise.all() expects you to pass it an array of promises. But when you do this: Promise.all([new WorkerRouter(workerService)]), you're passing it an array of a single object which unless that object is a promise itself, is just wrong.
2) In this code:
}).spread((workerService) => (
Promise.all([new WorkerRouter(workerService)])
))
you need to return the resulting promise in order to link it into the chain:
}).spread((workerService) => (
return Promise.all([new WorkerRouter(workerService)])
))
3) But, there's no reason to use Promise.all() on a single element array. If it was a promise, then just return it.
4) It also looks like you're trying to use promises for different steps of synchronous code too. Besides just complicating the heck out of things, there's just no reason to do that as this:
}).spread((workerService) => (
Promise.all([new WorkerRouter(workerService)])
)).spread((workerRouter) => {
app.use('/worker', workerRouter);
}).then(() => {
httpServer.start(config.get('server.port'));
})...
can be combined to this:
)).spread((workerService) => {
app.use('/worker', new WorkerRouter(workerService));
httpServer.start(config.get('server.port'));
})...
And, can probably be condensed even further since new WorkerService(db) probably also doesn't return a promise.
5) And, then we can't really tell why you're even attempting to use .spread() in the first place. It is useful only when you have an array of results that you want to turn into multiple named arguments, but you don't need to have an array of results (since there was no reason to use Promise.all() with a single item and in modern version of node.js, there's really no reason to use .spread() any more because you can use ES6 destructing of an array function argument to accomplish the same thing with the regular .then().
I don't claim to follow exactly what you're trying to do with every line, but you may be able to do this:
import Promise from 'bluebird';
const mongodb = Promise.promisifyAll(require('mongodb'));
const MongoClient = mongodb.MongoClient;
MongoClient.connectAsync(url).then((db) => {
let service = new WorkerService(db);
app.use('/worker', new WorkerRouter(service));
// since httpServer.start() is async and there's no promise returning here,
// this promise chain will not wait for the server to start
httpServer.start(config.get('server.port'));
}).catch((err) => {
console.log(err);
httpServer.finish();
});
Related
I have an array of objects that I get from database.
const users = await User.findAll();
To each of them, I want to call an async function user.getDependency() to get another related table, and devolve it nested in the object to a final format like this:
[
User {
attr1: value,
attr2: value,
...
Dependency: {
attr1: value,
...
}
},
User {
...
and so on
Now, I get my problem. The only possibilities I am being able to think involving async and loops are 2:
Option 1: mapping them and getting the promise back:
users.forEach((user) => {
user.dependency= user.getDependency();
});
With this I get similar to the desired outcome in terms of format, only that instead of the resolved thing i get obviously Dependency: Promise { <pending> }, that is, the promises all nested inside each user object of the array. And I don't know how to procceed with it. How to loop through all the user objects and resolve this promises they have inside?
Option 2: return the promises to be resolved in Promise.all
const dependencies = Promise.all(users.map((user) => {
return user.getDependency();
}));
This give me a separated array with all the dependecies I want, but that's it, separated. I get one array with the objects users and another with the objects dependencies.
What is bugging me specially is that I am thinking that there must be a simple straightforward way to do it and I am missing. Anyone have an idea? Much thanks
To build some intuition, here is your forEach example converted with a push in the right direction.
users.forEach((user) => {
user.getDependency().then(dependency => {
user.dependency = dependency
})
})
The above reads "for each user, start off the dependency fetching, then add the dependency to the user once resolved." I don't imagine the above is very useful, however, as you would probably like to be able to do something with the users once all the dependencies have finished fetching. In such a case like that, you could use Promise.all along side .map
const usersWithResolvedDependencies = await Promise.all(
users.map(user => user.getDependency().then(dependency => {
user.dependency = dependency
return user
}))
)
// do stuff with users
I should mention I wrote a library that simplifies async, and could certainly work to simplify this issue as well. The following is equivalent to the above. map and assign are from my library, rubico
const usersWithResolvedDependencies = map(assign({
dependency: user => user.getDependency()
}))(users)
I guess the best way is to do like this. Mapping users, updating every object (better to do this without mutation), and using Promise.all
const pupulatedUsers = await Promise.all(users.map(async (user) => ({
...user,
dependency: await getDependency(user.dependency_id)
// or something like getDependency
// function that fires async operation to get needed data
}));
you're right there is a straightforward way to resolve the promise
as the users variable is not a promise waiting to be resolved, you should try
users.then((userList) => {
// function logic here
})
the userList in the then function should be iterable and contain the desired user list
also you can also handle the rejected part of the promise, if at all the query fails and the promise returns an error:
users.then((error) => {
// error handling
})
you should give this document a glance to get more info about handling promises to further know what goes on in that query when it returns a promise
This question already has answers here:
How do I return the response from an asynchronous call?
(41 answers)
Closed 5 years ago.
I have an es6 class, with an init() method responsible for fetching data, transforming it, then update the class's property this.data with newly transformed data.
So far so good.
The class itself has another getPostById() method, to just do what it sounds like. Here is the code for the class:
class Posts {
constructor(url) {
this.ready = false
this.data = {}
this.url = url
}
async init() {
try {
let res = await fetch( this.url )
if (res.ok) {
let data = await res.json()
// Do bunch of transformation stuff here
this.data = data
this.ready = true
return data
}
}
catch (e) {
console.log(e)
}
}
getPostById(id){
return this.data.find( p => p.id === id )
}
}
Straightforward, except I have an async/await mechanism in the init() method.
Now, this code will work correctly:
let allPosts = new Posts('https://jsonplaceholder.typicode.com/posts')
allPosts.init()
.then( d => console.log(allPosts.getPostById(4)) )
// resulting Object correctly logged in console
but it only gets printed into the console:
How could I use allPosts.getPostById(4) as a return of a function ?
Like:
let myFunc = async () => {
const postId = 4
await allPosts.init() // I need to wait for this to finish before returning
// This is logging correct value
console.log( 'logging: ' + JSON.stringify(allPosts.getPostById( postId ), null, 4) )
// How can I return the RESULT of allPosts.getPostById( postId ) ???
return allPosts.getPostById( postId )
}
myFunc() returns a Promise but not the final value. I have read several related posts on the subject but they all give example of logging, never returning.
Here is a fiddle that includes two ways of handling init(): using Promise and using async/await. No matter what I try, I can't manage to USE the FINAL VALUE of getPostById(id).
The question of this post is: how can I create a function that will RETURN the VALUE of getPostById(id) ?
EDIT:
A lot of good answers trying to explain what Promises are in regards to the main execution loop.
After a lot of videos and other good reads, here is what I understand now:
my function init() correctly returns. However, within the main event loop: it returns a Promise, then it is my job to catch the result of this Promise from within a kinda parallel loop (not a new real thread). In order to catch the result from the parallel loop there are two ways:
use .then( value => doSomethingWithMy(value) )
use let value = await myAsyncFn(). Now here is the foolish hiccup:
await can only be used within an async function :p
thus itself returning a Promise, usable with await which should be embed in an async function, which will be usable with await etc...
This means we cannot really WAIT for a Promise: instead we should catch parallel loop indefinitely: using .then() or async/await.
Thanks for the help !
As for your comment; I'll add it as answer.
The code you write in JavaScript is run on one thread, that means that if your code could actually wait for something it will block any of your other code from getting executed. The event loop of JavaScript is explained very well in this video and if you like to read in this page.
A good example of blocking code in the browser is alert("cannot do anything until you click ok");. Alert blocks everything, the user can't even scroll or click on anything in the page and your code also blocks from executing.
Promise.resolve(22)
.then(x=>alert("blocking")||"Hello World")
.then(
x=>console.log(
"does not resolve untill you click ok on the alert:",
x
)
);
Run that in a console and you see what I mean by blocking.
This creates a problem when you want to do something that takes time. In other frameworks you'd use a thread or processes but there is no such thing in JavaScript (technically there is with web worker and fork in node but that's another story and usually far more complicated than using async api's).
So when you want to make a http request you can use fetch but fetch takes some time to finish and your function should not block (has to return something as fast as possible). This is why fetch returns a promise.
Note that fetch is implemented by browser/node and does run in another thread, only code you write runs in one thread so starting a lot of promises that only run code you write will not speed up anything but calling native async api's in parallel will.
Before promises async code used callbacks or would return an observable object (like XmlHttpRequest) but let's cover promises since you can convert the more traditional code to a promise anyway.
A promise is an object that has a then function (and a bunch of stuff that is sugar for then but does the same), this function takes 2 parameters.
Resolve handler: A function that will be called by the promise when the promise resolves (has no errors and is finished). The function will be passed one argument with the resolve value (for http requests this usually is the response).
Reject handler: A function that will be called by the promise when the promise rejects (has an error). This function will be passed one argument, this is usually the error or reason for rejection (can be a string, number or anything).
Converting callback to promise.
The traditional api's (especially nodejs api's) use callbacks:
traditionalApi(
arg
,function callback(err,value){
err ? handleFail(err) : processValue(value);
}
);
This makes it difficult for the programmer to catch errors or handle the return value in a linear way (from top to bottom). It gets even more impossible to try and do things parallel or throttled parallel with error handling (impossible to read).
You can convert traditional api's to promises with new Promise
const apiAsPromise = arg =>
new Promise(
(resolve,reject)=>
traditionalApi(
arg,
(err,val) => (err) ? reject(err) : resolve(val)
)
)
async await
This is what's called syntax sugar for promises. It makes promise consuming functions look more traditional and easier to read. That is if you like to write traditional code, I would argue that composing small functions is much easier to read. For example, can you guess what this does?:
const handleSearch = search =>
compose([
showLoading,
makeSearchRequest,
processRespose,
hideLoading
])(search)
.then(
undefined,//don't care about the resolve
compose([
showError,
hideLoading
])
);
Anayway; enough ranting. The important part is to understand that async await doesn't actually start another thread, async functions always return a promise and await doesn't actually block or wait. It's syntax sugar for someFn().then(result=>...,error=>...) and looks like:
async someMethod = () =>
//syntax sugar for:
//return someFn().then(result=>...,error=>...)
try{
const result = await someFn();
...
}catch(error){
...
}
}
The examples allways show try catch but you don't need to do that, for example:
var alwaysReject = async () => { throw "Always returns rejected promise"; };
alwaysReject()
.then(
x=>console.log("never happens, doesn't resolve")
,err=>console.warn("got rejected:",err)
);
Any error thrown or await returning a rejected promise will cause the async function to return a rejected promise (unless you try and catch it). Many times it is desirable to just let it fail and have the caller handle errors.
Catching errors could be needed when you want the promise to succeed with a special value for rejected promises so you can handle it later but the promise does not technically reject so will always resolve.
An example is Promise.all, this takes an array of promises and returns a new promise that resolves to an array of resolved values or reject when any one of them rejects. You may just want to get the results of all promises back and filter out the rejected ones:
const Fail = function(details){this.details=details;},
isFail = item => (item && item.constructor)===Fail;
Promise.all(
urls.map(//map array of urls to array of promises that don't reject
url =>
fetch(url)
.then(
undefined,//do not handle resolve yet
//when you handle the reject this ".then" will return
// a promise that RESOLVES to the value returned below (new Fail([url,err]))
err=>new Fail([url,err])
)
)
)
.then(
responses => {
console.log("failed requests:");
console.log(
responses.filter(//only Fail type
isFail
)
);
console.log("resolved requests:");
console.log(
responses.filter(//anything not Fail type
response=>!isFail(response)
)
);
}
);
Your question and the comments suggest you could use a little intuition nudge about the way the event loop works. It really is confusing at first, but after a while it becomes second nature.
Rather than thinking about the FINAL VALUE, think about the fact that you have a single thread and you can't stop it — so you want the FUTURE VALUE -- the value on the next or some future event loop. Everything you write that is not asynchronous is going to happen almost immediately — functions return with some value or undefined immediately. There's nothing you can do about. When you need something asynchronously, you need to setup a system that is ready to deal with the async values when they return sometime in the future. This is what events, callbacks, promises (and async/await) all try to help with. If some data is asynchronous, you simply can not use it in the same event loop.
So what do you do?
If you want a pattern where you create an instance, call init() and then some function that further process it, you simply need to setup a system that does the processing when the data arrives. There are a lot of ways to do this. Here's one way that's a variation on your class:
function someAsync() {
console.log("someAsync called")
return new Promise(resolve => {
setTimeout(() => resolve(Math.random()), 1000)
})
}
class Posts {
constructor(url) {
this.ready = false
this.data = "uninitilized"
this.url = url
}
init() {
this.data = someAsync()
}
time100() {
// it's important to return the promise here
return this.data.then(d => d * 100)
}
}
let p = new Posts()
p.init()
processData(p)
// called twice to illustrate point
processData(p)
async function processData(posts) {
let p = await posts.time100()
console.log("randomin * 100:", p)
}
init() saves the promise returned from someAsync(). someAsync() could be anything that returns a promise. It saves the promise in an instance property. Now you can call then() or use async/await to get the value. It will either immediately return the value if the promise has already resolved or it will deal with it when it has resolved. I called processData(p) twice just to illustrate that it doesn't calle the someAsync() twice.
That's just one pattern. There are a lot more — using events, observables, just using then() directly, or even callbacks which are unfashionable, but still can be useful.
NOTE: Wherever you use await it has to be inside an async function.
Check out the UPDATED FIDDLE
You need to use await myFunc() to get the value you expect from getPostById because an async function always returns a promise.
This sometimes is very frustrating as the whole chain needs to be converted into async functions but that's the price you pay for converting it to a synchronous code, I guess. I am not sure if that can be avoided but am interested in hearing from people who have more experience on this.
Try out the below code in your console by copying over the functions and then accessing final and await final.
NOTE:
An async function CAN contain an await expression.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
There is no rule that is must have await in order to even declare an async function.
The example below uses an async function without await just to show that an async function always returns a promise.
const sample = async () => {
return 100;
}
// sample() WILL RETURN A PROMISE AND NOT 100
// await sample() WILL RETURN 100
const init = async (num) => {
return new Promise((resolve, reject) => {
resolve(num);
});
}
const myFunc = async (num) => {
const k = await init(num);
return k;
}
// const final = myFunc();
// final; This returns a promise
// await final; This returns the number you provided to myFunc
I'm new to Nodejs and having trouble understand this issue: I tried to run a describe function against an array, and the AWS function seems to run after the main function has finished.
Here's the main function: (loop thru a list of ACM ARNs and check the status)
var checkCertStatus = function(resolveObj){
var promise = new Promise(function(resolve, reject){
console.log('1');
var retObj='';
resolveObj.Items.forEach(function(element) {
var certDescribeParams = {
CertificateArn: element.sslCertId
};
console.log('2');
acm.describeCertificate(certDescribeParams, function(err, data) {
if(err) reject(new Error(err));
else {
console.log(data.Certificate.DomainName + ': ' + data.Certificate.Status);
retObj+=data;
}
});
});
console.log('3');
resolve(retObj);
return promise;
})
}
Based on the debug log, assuming there are 2 items need to be processed, what I got:
1
2
2
3
example.com: ISSUED
example2.com: ISSUED
Basically, I need to pass this result to the next function in the chain (with promise and stuff).
Welcome to Node.js! Speaking generally, it might be helpful to study up on the asynchronous programming style. In particular, you seem to be mixing Promises and callbacks, which may make this example more confusing than it needs to be. I suggest using the AWS SDK's built-in feature to convert responses to Promises.
The first thing I notice is that you are manually constructing a Promise with a resolve/reject function. This is often a red flag unless you are creating a library. Most other libraries support Promises which you can simply use and chain. (This includes AWS SDK, as mentioned above.)
The second thing I notice is that your checkCertStatus function does not return anything. It creates a Promise but does not return it at the end. Your return promise; line is actually inside the callback function used to create the Promise.
Personally, when working with Promises, I prefer to use the Bluebird library. It provides more fully-featured Promises than native, including methods such as map. Conveniently, the AWS SDK can be configured to work with an alternative Promise constructor via AWS.config.setPromisesDependency() as documented here.
To simplify your logic, you might try something along these lines (untested code):
const Promise = require('bluebird');
AWS.config.setPromisesDependency(Promise);
const checkCertStatus = (resolveObj) => {
const items = resolveObj.Items;
console.log(`Mapping ${items.length} item(s)`);
return Promise.resolve(items)
.map((item) => {
const certDescribeParams = {
CertificateArn: item.sslCertId,
};
console.log(`Calling describeCertificate for ${item.sslCertId}`);
return acm.describeCertificate(certDescribeParams)
.promise()
.then((data) => {
console.log(`${data.Certificate.DomainName}: ${data.Certificate.Status}`);
return data;
});
});
};
We're defining checkCertStatus as a function which takes in resolveObj and returns a Promise chain starting from resolveObj.Items. (I apologize if you are not yet familiar with Arrow Functions.) The first and only step in this chain is to map the items array to a new array of Promises returned from the acm.describeCertificate method. If any one of these individual Promises fails, the top-level Promise chain will reject as well. Otherwise, the top-level Promise chain will resolve to an array of the results. (Note that I included an inessential .then step just to log the individual results, but you could remove that clause entirely.)
Hope this helps, and I apologize if I left any mistakes in the code.
I have a function that reads a directory and copies and creates a new file within that directory.
function createFiles (countryCode) {
fs.readdir('./app/data', (err, directories) => {
if (err) {
console.log(err)
} else {
directories.forEach((directory) => {
fs.readdir(`./app/data/${directory}`, (err, files) => {
if (err) console.log(err)
console.log(`Creating ${countryCode}.yml for ${directory}`)
fs.createReadStream(`./app/data/${directory}/en.yml`).pipe(fs.createWriteStream(`./app/data/${directory}/${countryCode}.yml`))
})
})
}
})
}
How do I do this using promises or Promise All to resolve when it's complete?
First, you need to wrap each file stream in a promise that resolves when the stream emits the finish event:
new Promise((resolve, reject) => {
fs.createReadStream(`./app/data/${directory}/en.yml`).pipe(
fs.createWriteStream(`./app/data/${directory}/${countryCode}.yml`)
).on('finish', resolve);
});
The you need to collect these promises in an array. This is done by using map() instead of forEach() and returning the promise:
var promises = directories.map((directory) => {
...
return new Promise((resolve, reject) => {
fs.createReadStream( ...
...
});
});
Now you have a collection of promises that you can wrap with Promise.all() and use with a handler when all the wrapped promises have resolved:
Promise.all(promises).then(completeFunction);
In recent versions of Node (8.0.0 and later), there's a new util.promisify function you can use to get a promise. Here's how we might use it:
// Of course we'll need to require important modules before doing anything
// else.
const util = require('util')
const fs = require('fs')
// We use the "promisify" function to make calling promisifiedReaddir
// return a promise.
const promisifiedReaddir = util.promisify(fs.readdir)
// (You don't need to name the variable util.promisify promisifiedXYZ -
// you could just do `const readdir = util.promisify(fs.readdir)` - but
// I call it promisifiedReaddir here for clarity.
function createFiles(countryCode) {
// Since we're using our promisified readdir function, we'll be storing
// a Promise inside of the readdirPromise variable..
const readdirPromise = promisifiedReaddir('./app/data')
// ..then we can make something happen when the promise finishes (i.e.
// when we get the list of directories) by using .then():
return readdirPromise.then(directories => {
// (Note that we only get the parameter `directories` here, with no `err`.
// That's because promises have their own way of dealing with errors;
// try looking up on "promise rejection" and "promise error catching".)
// We can't use a forEach loop here, because forEach doesn't know how to
// deal with promises. Instead we'll use a Promise.all with an array of
// promises.
// Using the .map() method is a great way to turn our list of directories
// into a list of promises; read up on "array map" if you aren't sure how
// it works.
const promises = directory.map(directory => {
// Since we want an array of promises, we'll need to `return` a promise
// here. We'll use our promisifiedReaddir function for that; it already
// returns a promise, conveniently.
return promisifiedReaddir(`./app/data/${directory}`).then(files => {
// (For now, let's pretend we have a "copy file" function that returns
// a promise. We'll actually make that function later!)
return copyFile(`./app/data/${directory}/en.yml`, `./app/data/${directory}/${countryCode}.yml`)
})
})
// Now that we've got our array of promises, we actually need to turn them
// into ONE promise, that completes when all of its "children" promises
// are completed. Luckily there's a function in JavaScript that's made to
// do just that - Promise.all:
const allPromise = Promies.all(promises)
// Now if we do a .then() on allPromise, the function we passed to .then()
// would only be called when ALL promises are finished. (The function
// would get an array of all the values in `promises` in order, but since
// we're just copying files, those values are irrelevant. And again, don't
// worry about errors!)
// Since we've made our allPromise which does what we want, we can return
// it, and we're done:
return allPromise
})
}
Okay, but, there's probably still a few things that might be puzzling you..
What about errors? I kept saying that you don't need to worry about them, but it is good to know a little about them. Basically, in promise-terms, when an error happens inside of a util.promisify'd function, we say that that promise rejects. Rejected promises behave mostly the same way you'd expect errors to; they throw an error message and stop whatever promise they're in. So if one of our promisifiedReaddir calls rejects, it'll stop the whole createFiles function.
What about that copyFile function? Well, we have two options:
Use somebody else's function. No need to re-invent the wheel! quickly-copy-file looks to be a good module (plus, it returns a promise, which is useful for us).
Program it ourselves.
Programming it ourselves isn't too hard, actually, but it takes a little bit more than simply using util.promisify:
function copyFile(from, to) {
// Hmm.. we want to copy a file. We already know how to do that in normal
// JavaScript - we'd just use a createReadStream and pipe that into a
// createWriteStream. But we need to return a promise for our code to work
// like we want it to.
// This means we'll have to make our own hand-made promise. Thankfully,
// that's not actually too difficult..
return new Promise((resolve, reject) => {
// Yikes! What's THIS code mean?
// Well, it literally says we're returning a new Promise object, with a
// function given to it as an argument. This function takes two arguments
// of its own: "resolve" and "reject". We'll look at them separately
// (but maybe you can guess what they mean already!).
// We do still need to create our read and write streams like we always do
// when copying files:
const readStream = fs.createReadStream(from)
const writeStream = fs.createWriteStream(to)
// And we need to pipe the read stream into the write stream (again, as
// usual):
readStream.pipe(writeStream)
// ..But now we need to figure out how to tell the promise when we're done
// copying the files.
// Well, we'll start by doing *something* when the pipe operation is
// finished. That's simple enough; we'll just set up an event listener:
writeStream.on('close', () => {
// Remember the "resolve" and "reject" functions we got earlier? Well, we
// can use them to tell the promise when we're done. So we'll do that here:
resolve()
})
// Okay, but what about errors? What if, for some reason, the pipe fails?
// That's simple enough to deal with too, if you know how. Remember how we
// learned a little on rejected promises, earlier? Since we're making
// our own Promise object, we'll need to create that rejection ourself
// (if anything goes wrong).
writeStream.on('error', err => {
// We'll use the "reject" argument we were given to show that something
// inside the promise failed. We can specify what that something is by
// passing the error object (which we get passed to our event listener,
// as usual).
reject(err)
})
// ..And we'll do the same in case our read stream fails, just in case:
readStream.on('error', err => {
reject(err)
})
// And now we're done! We've created our own hand-made promise-returning
// function, which we can use in our `createFiles` function that we wrote
// earlier.
})
}
..And here's all the finished code, so that you can review it yourself:
const util = require('util')
const fs = require('fs')
const promisifiedReaddir = util.promisify(fs.readdir)
function createFiles(countryCode) {
const readdirPromise = promisifiedReaddir('./app/data')
return readdirPromise.then(directories => {
const promises = directory.map(directory => {
return promisifiedReaddir(`./app/data/${directory}`).then(files => {
return copyFile(`./app/data/${directory}/en.yml`, `./app/data/${directory}/${countryCode}.yml`)
})
})
const allPromise = Promies.all(promises)
return allPromise
})
}
function copyFile(from, to) {
return new Promise((resolve, reject) => {
const readStream = fs.createReadStream(from)
const writeStream = fs.createWriteStream(to)
readStream.pipe(writeStream)
writeStream.on('close', () => {
resolve()
})
writeStream.on('error', err => {
reject(err)
})
readStream.on('error', err => {
reject(err)
})
})
}
Of course, this implementation isn't perfect. You could improve it by looking at other implementations - for example this one destroys the read and write streams when an error occurs, which is a bit cleaner than our method (which doesn't do that). The most reliable way would probably to go with the module I linked earlier!
I highly recommend you watch funfunfunction's video on promises. It explains how promises work in general, how to use Promise.all, and more; and he's almost certainly better at explaining this whole concept than I am!
First, create a function that returns a promise:
function processDirectory(directory) {
return new Promise((resolve, reject) => {
fs.readdir(`./app/data/${directory}`, (err, files) => {
if (err) reject(err);
console.log(`Creating ${countryCode}.yml for ${directory}`);
fs.createReadStream(`./app/data/${directory}/en.yml`)
.pipe(fs.createWriteStream(`./app/data/${directory}/${countryCode}.yml`))
.on('finish', resolve);
});
});
}
Then use Promise.all:
Promise.all(directories.map(processDirectory))
.then(...)
.catch(...);
Background
I have a nodejs server running and I installed the promise package which follows the promise api specs.
Since I succeeded in making denodeify(fn, length) work, I am now in the process of chaining promises, but I am failing to grasp the main concepts.
What I tried
By reading the documentation example on the specification page, I reached the following code:
let Promise = require("promise");
let write = Promise.denodeify(jsonfile.writeFile);
let read = Promise.denodeify(jsonfile.readFile);
read("dataFile.txt").then( () => {
write("./testFile.txt", "hello_World", TABS_FORMATTING).then(console.log("file complete"));
});
Which is quite different from the examples I see, for example, in the Solutions Optimist tutorial:
loadDeparture( user )
.then( loadFlight )
.then( loadForecast );
Objective
My objective is to make my code as beautiful as the example I showed before, but I don't understand how I can make as concise as it is right now.
Question
1 - What changes do I need to perform in my code to achieve that level?
The given example uses named function to make it look as good as it can get, but that can be a bit redundant because then you're creating functions for every little thing in the chain. You must pick and choose when to use named functions over anonymous functions.
One thing you must also realize is that to chain promises you must return them.
So to make it a proper chain you must return the write method so it is passed down to the next step.
Also make sure that the catch() method is used at the bottom of every promise chain so that errors aren't silently swallowed.
Note that in the example here I'm using the ES2015 arrow functions to return the write() method as that makes it looks better(which seemed to be the purpose of your question).
let Promise = require("promise");
let write = Promise.denodeify(jsonfile.writeFile);
let read = Promise.denodeify(jsonfile.readFile);
read("dataFile.txt")
.then(() => write("./testFile.txt", "hello_World", TABS_FORMATTING))
.then(results => console.log("file complete", results))
.catch(error => console.error(err));
I'd recommend reading this article for some best practices.
Nesting promises kind of defeats the purpose because it creates pyramid code (just like callbacks).
The main concept that may be escaping you is that you can return inside a then and the returned value (can be a promise or a value) can then be accessed in a chained then:
read("dataFile.txt").then( () => {
return write("./testFile.txt", "hello_World", TABS_FORMATTING);
}).then( () => {
console.log("file complete");
});
Now, you can extract the functions:
function writeTheFile() {
return write("./testFile.txt", "hello_World", TABS_FORMATTING);
}
function consoleLog() {
console.log("file complete");
}
read("dataFile.txt")
.then(writeTheFile)
.then(consoleLog);