Circle line segment collision - javascript

I need to detect collision circle with any line. I have array with verticles of polygon (x, y) and draw this polygon in loop. For detection I use algorithm, which calculate triangle height. Then I check if this height < 0, then circle collided with line.
The picture, that describe this method:
But I have unexpected result. My circle collide with transparent line (what?). I can't explain how it happens.
Demo at jsfiddle: https://jsfiddle.net/f458rdz6/1/
Function, which check the collisions and response it:
var p = polygonPoints;
for (var i = 0, n = p.length; i < n; i++) {
var start = i;
var end = (i + 1) % n;
var x0 = p[start].x;
var y0 = p[start].y;
var x1 = p[end].x;
var y1 = p[end].y;
// detection collision
var dx = x1 - x0;
var dy = y1 - y0;
var len = Math.sqrt(dx * dx + dy * dy);
var dist = (dx * (this.y - y0) - dy * (this.x - x0)) / len;
if (dist < this.radius) {
continue;
}
// calculate reflection, because collided
var wallAngle = Math.atan2(dy, dx);
var wallNormalX = Math.sin(wallAngle);
var wallNormalY = -Math.cos(wallAngle);
var d = 2 * (this.velocityX * wallNormalX + this.velocityY * wallNormalY);
this.x -= d * wallNormalX;
this.y -= d * wallNormalY;
}
var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
var polygonPoints = [
{
x: 240,
y: 130
},
{
x: 140,
y: 100
},
{
x: 180,
y: 250
},
{
x: 320,
y: 280
},
{
x: 400,
y: 50
}
];
var game = {
ball: new Ball()
};
function Ball() {
this.x = canvas.width / 2;
this.y = canvas.height - 100;
this.oldX = this.x - 1;
this.oldY = this.y + 1;
this.velocityX = 0;
this.velocityY = 0;
this.radius = 8;
};
Ball.prototype.draw = function() {
ctx.beginPath();
ctx.arc(this.x, this.y, this.radius, 0, Math.PI * 2);
ctx.fillStyle = '#0095DD';
ctx.fill();
ctx.closePath();
};
Ball.prototype.update = function() {
var x = this.x;
var y = this.y;
this.velocityX = this.x - this.oldX;
this.velocityY = this.y - this.oldY;
this.x += this.velocityX;
this.y += this.velocityY;
this.oldX = x;
this.oldY = y;
};
Ball.prototype.collision = function() {
var p = polygonPoints;
for (var i = 0, n = p.length; i < n; i++) {
var start = i;
var end = (i + 1) % n;
var x0 = p[start].x;
var y0 = p[start].y;
var x1 = p[end].x;
var y1 = p[end].y;
// detection collision
var dx = x1 - x0;
var dy = y1 - y0;
var len = Math.sqrt(dx * dx + dy * dy);
var dist = (dx * (this.y - y0) - dy * (this.x - x0)) / len;
if (dist < this.radius) {
continue;
}
// calculate reflection, because collided
var wallAngle = Math.atan2(dy, dx);
var wallNormalX = Math.sin(wallAngle);
var wallNormalY = -Math.cos(wallAngle);
var d = 2 * (this.velocityX * wallNormalX + this.velocityY * wallNormalY);
this.x -= d * wallNormalX;
this.y -= d * wallNormalY;
}
};
function drawBall() {
ctx.beginPath();
ctx.arc(x, y, ballRadius, 0, Math.PI*2);
ctx.fillStyle = "#0095DD";
ctx.fill();
ctx.closePath();
}
function drawPolygon() {
ctx.beginPath();
ctx.strokeStyle = '#333';
ctx.moveTo(polygonPoints[0].x, polygonPoints[0].y);
for (var i = 1, n = polygonPoints.length; i < n; i++) {
ctx.lineTo(polygonPoints[i].x, polygonPoints[i].y);
}
ctx.lineTo(polygonPoints[0].x, polygonPoints[0].y);
ctx.stroke();
ctx.closePath();
}
function render() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawPolygon();
game.ball.draw();
game.ball.update();
game.ball.collision();
window.requestAnimationFrame(render);
}
render();
canvas {
border: 1px solid #333;
}
<canvas id="myCanvas" width="480" height="320"></canvas>
What the problem? Maybe I need use other method for detect collision? I tried to use this one, but if my circle has high speed this method not working.
Thank you.

Circle line segment intercept
UPDATE
This answer includes line line intercept, moving a line along its normal, distance point (circle) to line, and circle line intercept.
The circle is
var circle = {
radius : 500,
center : point(1000,1000),
}
The line segment is
var line = {
p1 : point(500,500),
p2 : point(2000,1000),
}
A point is
var point = {
x : 100,
y : 100,
}
Thus the function to find the intercept of a line segment width a circle
The function returns an array of up to two point on the line segment. If no points found returns an empty array.
function inteceptCircleLineSeg(circle, line){
var a, b, c, d, u1, u2, ret, retP1, retP2, v1, v2;
v1 = {};
v2 = {};
v1.x = line.p2.x - line.p1.x;
v1.y = line.p2.y - line.p1.y;
v2.x = line.p1.x - circle.center.x;
v2.y = line.p1.y - circle.center.y;
b = (v1.x * v2.x + v1.y * v2.y);
c = 2 * (v1.x * v1.x + v1.y * v1.y);
b *= -2;
d = Math.sqrt(b * b - 2 * c * (v2.x * v2.x + v2.y * v2.y - circle.radius * circle.radius));
if(isNaN(d)){ // no intercept
return [];
}
u1 = (b - d) / c; // these represent the unit distance of point one and two on the line
u2 = (b + d) / c;
retP1 = {}; // return points
retP2 = {}
ret = []; // return array
if(u1 <= 1 && u1 >= 0){ // add point if on the line segment
retP1.x = line.p1.x + v1.x * u1;
retP1.y = line.p1.y + v1.y * u1;
ret[0] = retP1;
}
if(u2 <= 1 && u2 >= 0){ // second add point if on the line segment
retP2.x = line.p1.x + v1.x * u2;
retP2.y = line.p1.y + v1.y * u2;
ret[ret.length] = retP2;
}
return ret;
}
UPDATE
Line line intercept.
Returns a point if found else returns undefined.
function interceptLines(line,line1){
var v1, v2, c, u;
v1 = {};
v2 = {};
v3 = {};
v1.x = line.p2.x - line.p1.x; // vector of line
v1.y = line.p2.y - line.p1.y;
v2.x = line1.p2.x - line1.p1.x; //vector of line2
v2.y = line1.p2.y - line1.p1.y;
var c = v1.x * v2.y - v1.y * v2.x; // cross of the two vectors
if(c !== 0){
v3.x = line.p1.x - line1.p1.x;
v3.y = line.p1.y - line1.p1.y;
u = (v2.x * v3.y - v2.y * v3.x) / c; // unit distance of intercept point on this line
return {x : line.p1.x + v1.x * u, y : line.p1.y + v1.y * u};
}
return undefined;
}
Lift Line
Move line along its normal
function liftLine(line,dist){
var v1,l
v1 = {};
v1.x = line.p2.x - line.p1.x; // convert line to vector
v1.y = line.p2.y - line.p1.y;
l = Math.sqrt(v1.x * v1.x + v1.y * v1.y); // get length;
v1.x /= l; // Assuming you never pass zero length lines
v1.y /= l;
v1.x *= dist; // set the length
v1.y *= dist;
// move the line along its normal the required distance
line.p1.x -= v1.y;
line.p1.y += v1.x;
line.p2.x -= v1.y;
line.p2.y += v1.x;
return line; // if needed
}
Distance circle (or point) to a line segment
Returns the closest distance to the line segment. It is just the circle center that I am using. So you can replace circle with a point
function circleDistFromLineSeg(circle,line){
var v1, v2, v3, u;
v1 = {};
v2 = {};
v3 = {};
v1.x = line.p2.x - line.p1.x;
v1.y = line.p2.y - line.p1.y;
v2.x = circle.center.x - line.p1.x;
v2.y = circle.center.y - line.p1.y;
u = (v2.x * v1.x + v2.y * v1.y) / (v1.y * v1.y + v1.x * v1.x); // unit dist of point on line
if(u >= 0 && u <= 1){
v3.x = (v1.x * u + line.p1.x) - circle.center.x;
v3.y = (v1.y * u + line.p1.y) - circle.center.y;
v3.x *= v3.x;
v3.y *= v3.y;
return Math.sqrt(v3.y + v3.x); // return distance from line
}
// get distance from end points
v3.x = circle.center.x - line.p2.x;
v3.y = circle.center.y - line.p2.y;
v3.x *= v3.x; // square vectors
v3.y *= v3.y;
v2.x *= v2.x;
v2.y *= v2.y;
return Math.min(Math.sqrt(v2.y + v2.x), Math.sqrt(v3.y + v3.x)); // return smaller of two distances as the result
}

Related

Collision detection between ball and arc, and between arc and arc

I'm making a pong style game in JavaScript where the paddle is curved. I already have collision between 2 balls but I seem to be having trouble with the ball and arc.
I've looked at this thread already:
Collision detection of a ball with an arc
But I can't seem to make the answer there work for me. Perhaps because I draw the arc differently.
Here's my variables as well as how the paddle is being drawn onto the canvas. When the player presses a key, the angles for the paddle are incremented so it revolves around the player.
If anyone can help I would appreciate it.
https://i.stack.imgur.com/kz0ZV.png
function Player(name, radius, innerColour, outerColour, x, y)
{
this.prop = {
name: name,
innerColour: innerColour,
outerColour: outerColour
};
this.phys = {
x: x,
y: y,
dx: 0,
dy: 0,
mass: radius ** 3,
radius: radius
};
this.padd = {
innerRadius: 65,
outerRadius: 85,
active: true,
startAngle: 225,
centerAngle: 270,
endAngle: 315,
rotation: false
};
this.draw = function()
{
var inR = this.padd.innerRadius;
var outR = this.padd.outerRadius;
var inC = Math.sqrt((inR ** 2) * 2);
var outC = Math.sqrt((outR ** 2) * 2);
var sAng = this.padd.startAngle;
var cAng = this.padd.centerAngle;
var eAng = this.padd.endAngle;
//Draw paddle
ctx.beginPath();
ctx.moveTo(this.rotatePoint(inR, sAng, "x"), this.rotatePoint(inR, sAng, "y"));
ctx.arcTo (this.rotatePoint(inC, cAng, "x"), this.rotatePoint(inC, cAng, "y"),
this.rotatePoint(inR, eAng, "x"), this.rotatePoint(inR, eAng, "y"), inR);
ctx.lineTo(this.rotatePoint(outR, eAng, "x"), this.rotatePoint(outR, eAng, "y"))
ctx.arcTo (this.rotatePoint(outC, cAng, "x"), this.rotatePoint(outC, cAng, "y"),
this.rotatePoint(outR, sAng, "x"), this.rotatePoint(outR, sAng, "y"), outR);
ctx.lineTo(this.rotatePoint(inR, sAng, "x"), this.rotatePoint(inR, sAng, "y"));
ctx.fillStyle = this.prop.outerColour;
ctx.fill();
ctx.closePath();
};
this.rotatePoint = function(radius, angle, axis)
{
var x = this.phys.x;
var y = this.phys.y;
var radians = angle * (Math.PI / 180.0);
var x1 = x + radius;
var newX = Math.cos(radians) * (x1 - x) + x;
var newY = Math.sin(radians) * (x1 - x) + y;
if (axis == "x")
{
return newX;
}
else if (axis == "y")
{
return newY;
}
};
}
Edit: Sorry I forgot to add my attempt at the collision code.
I run it every frame but it doesn't seem to detect when they're colliding.
The objects array is both every ball on the screen and the 2 players, and the players array just contains the 2 players.
//Calculates events, speed and trajectory for paddle collisions
function paddleCollision()
{
for (var obj in objects)
{
for (var player in players)
{
var sAng = players[player].padd.startAngle * (Math.PI / 180.0);
var eAng = players[player].padd.endAngle * (Math.PI / 180.0);
var inR = players[player].padd.innerRadius;
var outR = players[player].padd.outerRadius;
var ballR = objects[obj].phys.radius;
var collides = false;
var dX = objects[obj].phys.x - players[player].phys.x;
var dY = objects[obj].phys.y - players[player].phys.y;
var dist = Math.sqrt((dX ** 2) + (dY ** 2));
var dir = Math.atan2(dY, dX);
var tanAng = Math.asin(ballR / dist);
var dir0 = dir + tanAng;
var dir1 = dir - tanAng;
if (dist + ballR > inR && dist - ballR < outR)
{
var d = dir > sAng && dir < eAng;
var d0 = dir0 > sAng && dir0 < eAng;
var d1 = dir1 > sAng && dir1 < eAng;
if (d || d0 && d1)
{
collides = true;
}
else if (d0 != d1)
{
var x0 = players[player].phys.x + outR * Math.cos(sAng) - objects[obj].phys.x;
var y0 = players[player].phys.y + outR * Math.sin(sAng) - objects[obj].phys.y;
var x1 = players[player].phys.x + outR * Math.cos(eAng) - objects[obj].phys.x;
var y1 = players[player].phys.y + outR * Math.sin(eAng) - objects[obj].phys.y;
if ((x0 ** 2) + (y0 ** 2) < (ballR ** 2) || (x1 ** 2) + (y1 ** 2) < (ballR ** 2))
{
collides = true;
}
}
}
}
}
if (collides)
{
console.log("HITTING");
}
}
This worked for me:
function arcsCollision(first, second) {
const dx = first.x - second.x;
const dy = first.y - second.y;
const distance = Math.sqrt(dx**2 + dy**2);
return (
distance
<=
(first.radius + second.radius + 0.1)
);
}
function arcAndRectCollision(arc, rect) {
return (
arc.x - arc.radius < rect.x ||
arc.x + arc.radius > rect.width ||
arc.y - arc.radius < rect.y ||
arc.y + arc.radius > rect.height
);
}
You can go to this website for more info.
https://spicyyoghurt.com/tutorials/html5-javascript-game-development/collision-detection-physics

How to detect collision between object made of bezier curves and a circle?

So I've wrote a microbe animation.
It's all cool, but I think that it would be even better, if the microbe would be able to eat diatoms, and to destroy bubbles.
The issue is that the microbe is made of bezier curves.
I have no idea how to check collision between object made of bezier curves, and a circle in a reasonable way.
The only thing that comes to my mind, is to paint the microbe shape and bubbles a hidden canvas, and then check if they paint to the same pixels. But that would cause big performance issues IMHO.
Code: https://codepen.io/michaelKurowski/pen/opWeKY
class Cell is the cell, while class CellWallNode is a node of bezier curve, in case if somebody needs to look up the implementation.
The bubbles and diatoms can be easily simplified to circles.
Solution to bounds testing object defined by beziers
Below is an example solution to finding if a circle is inside an object defined by a center point and a set of beziers defining the perimeter.
The solution has only been tested for non intersecting cubic beziers. Also will not work if there are more than two intercepts between the object being tested and the center of the cell. However all you need to solve for the more complex bounds is there in the code.
The method
Define a center point to test from as a 2D point
Define the test point as a 2D point
Define a line from the center to the test point
For each bezier
Translate bezier so first point is at start of line
Rotate the bezier such that the line is aligned to the x axis
Solve the bezier polynomials to find the roots (location of x axis intercepts)
Use the roots to find position on bezier curve of line intercept.
Use the closest intercept to the point to find distance from center to perimeter.
If perimeter distance is greater than test point distance plus radius then inside.
Notes
The test is to a point along a line to the center not to a circle which would be a area defined by a triangle. As long as the circle radius is small compared to the size of the beziers the approximation works well.
Not sure if you are using cubic or quadratic beziers so the solution covers both cubic and quadratic beziers.
Example
The snippet creates a set of beziers (cubic) around a center point. the object theBlob holds the animated beziers. The function testBlob tests the mouse position and returns true if inside theBlob. The object bezHelper contains all the functionality needed to solve the problem.
The cubic root solver was derived from github intersections cube root solver.
const bezHelper = (()=>{
// creates a 2D point
const P2 = (x=0, y= x === 0 ? 0 : x.y + (x = x.x, 0)) => ({x, y});
const setP2As = (p,pFrom) => (p.x = pFrom.x, p.y = pFrom.y, p);
// To prevent heap thrashing close over some pre defined 2D points
const v1 = P2();
const v2 = P2();
const v3 = P2();
const v4 = P2();
var u,u1,u2;
// solves quadratic for bezier 2 returns first root
function solveBezier2(A, B, C){
// solve the 2nd order bezier equation.
// There can be 2 roots, u,u1 hold the results;
// 2nd order function a+2(-a+b)x+(a-2b+c)x^2
a = (A - 2 * B + C);
b = 2 * ( - A + B);
c = A;
a1 = 2 * a;
c = b * b - 4 * a * c;
if(c < 0){
u = Infinity;
u1 = Infinity;
return u;
}else{
b1 = Math.sqrt(c);
}
u = (-b + b1) / a1;
u1 = (-b - b1) / a1;
return u;
}
// solves cubic for bezier 3 returns first root
function solveBezier3(A, B, C, D){
// There can be 3 roots, u,u1,u2 hold the results;
// Solves 3rd order a+(-2a+3b)t+(2a-6b+3c)t^2+(-a+3b-3c+d)t^3 Cardano method for finding roots
// this function was derived from http://pomax.github.io/bezierinfo/#intersections cube root solver
// Also see https://en.wikipedia.org/wiki/Cubic_function#Cardano.27s_method
function crt(v) {
if(v<0) return -Math.pow(-v,1/3);
return Math.pow(v,1/3);
}
function sqrt(v) {
if(v<0) return -Math.sqrt(-v);
return Math.sqrt(v);
}
var a, b, c, d, p, p3, q, q2, discriminant, U, v1, r, t, mp3, cosphi,phi, t1, sd;
u2 = u1 = u = -Infinity;
d = (-A + 3 * B - 3 * C + D);
a = (3 * A - 6 * B + 3 * C) / d;
b = (-3 * A + 3 * B) / d;
c = A / d;
p = (3 * b - a * a) / 3;
p3 = p / 3;
q = (2 * a * a * a - 9 * a * b + 27 * c) / 27;
q2 = q / 2;
a /= 3;
discriminant = q2 * q2 + p3 * p3 * p3;
if (discriminant < 0) {
mp3 = -p / 3;
r = sqrt(mp3 * mp3 * mp3);
t = -q / (2 * r);
cosphi = t < -1 ? -1 : t > 1 ? 1 : t;
phi = Math.acos(cosphi);
t1 = 2 * crt(r);
u = t1 * Math.cos(phi / 3) - a;
u1 = t1 * Math.cos((phi + 2 * Math.PI) / 3) - a;
u2 = t1 * Math.cos((phi + 4 * Math.PI) / 3) - a;
return u;
}
if(discriminant === 0) {
U = q2 < 0 ? crt(-q2) : -crt(q2);
u = 2 * U - a;
u1 = -U - a;
return u;
}
sd = sqrt(discriminant);
u = crt(sd - q2) - crt(sd + q2) - a;
return u;
}
// get a point on the bezier at pos ( from 0 to 1 values outside this range will be outside the bezier)
// p1, p2 are end points and cp1, cp2 are control points.
// ret is the resulting point. If given it is set to the result, if not given a new point is created
function getPositionOnBez(pos,p1,p2,cp1,cp2,ret = P2()){
if(pos === 0){
ret.x = p1.x;
ret.y = p1.y;
return ret;
}else
if(pos === 1){
ret.x = p2.x;
ret.y = p2.y;
return ret;
}
v1.x = p1.x;
v1.y = p1.y;
var c = pos;
if(cp2 === undefined){
v2.x = cp1.x;
v2.y = cp1.y;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (p2.x - v2.x) * c;
v2.y += (p2.y - v2.y) * c;
ret.x = v1.x + (v2.x - v1.x) * c;
ret.y = v1.y + (v2.y - v1.y) * c;
return ret;
}
v2.x = cp1.x;
v2.y = cp1.y;
v3.x = cp2.x;
v3.y = cp2.y;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (p2.x - v3.x) * c;
v3.y += (p2.y - v3.y) * c;
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
ret.x = v1.x + (v2.x - v1.x) * c;
ret.y = v1.y + (v2.y - v1.y) * c;
return ret;
}
const cubicBez = 0;
const quadraticBez = 1;
const none = 2;
var type = none;
// working bezier
const p1 = P2();
const p2 = P2();
const cp1 = P2();
const cp2 = P2();
// rotated bezier
const rp1 = P2();
const rp2 = P2();
const rcp1 = P2();
const rcp2 = P2();
// translate and rotate bezier
function transformBez(pos,rot){
const ax = Math.cos(rot);
const ay = Math.sin(rot);
var x = p1.x - pos.x;
var y = p1.y - pos.y;
rp1.x = x * ax - y * ay;
rp1.y = x * ay + y * ax;
x = p2.x - pos.x;
y = p2.y - pos.y;
rp2.x = x * ax - y * ay;
rp2.y = x * ay + y * ax;
x = cp1.x - pos.x;
y = cp1.y - pos.y;
rcp1.x = x * ax - y * ay;
rcp1.y = x * ay + y * ax;
if(type === cubicBez){
x = cp2.x - pos.x;
y = cp2.y - pos.y;
rcp2.x = x * ax - y * ay;
rcp2.y = x * ay + y * ax;
}
}
function getPosition2(pos,ret){
return getPositionOnBez(pos,p1,p2,cp1,undefined,ret);
}
function getPosition3(pos,ret){
return getPositionOnBez(pos,p1,p2,cp1,cp2,ret);
}
const API = {
getPosOnQBez(pos,p1,cp1,p2,ret){
return getPositionOnBez(pos,p1,p2,cp1,undefined,ret);
},
getPosOnCBez(pos,p1,cp1,cp2,p2,ret){
return getPositionOnBez(pos,p1,p2,cp1,cp2,ret);
},
set bezQ(points){
setP2As(p1, points[0]);
setP2As(cp1, points[1]);
setP2As(p2, points[2]);
type = quadraticBez;
},
set bezC(points){
setP2As(p1, points[0]);
setP2As(cp1, points[1]);
setP2As(cp2, points[2]);
setP2As(p2, points[3]);
type = cubicBez;
},
isInside(center, testPoint, pointRadius){
drawLine(testPoint , center);
v1.x = (testPoint.x - center.x);
v1.y = (testPoint.y - center.y);
const pointDist = Math.sqrt(v1.x * v1.x + v1.y * v1.y)
const dir = -Math.atan2(v1.y,v1.x);
transformBez(center,dir);
if(type === cubicBez){
solveBezier3(rp1.y, rcp1.y, rcp2.y, rp2.y);
if (u < 0 || u > 1) { u = u1 }
if (u < 0 || u > 1) { u = u2 }
if (u < 0 || u > 1) { return }
getPosition3(u, v4);
}else{
solveBezier2(rp1.y, rcp1.y, rp2.y);
if (u < 0 || u > 1) { u = u1 }
if (u < 0 || u > 1) { return }
getPosition2(u, v4);
}
drawCircle(v4);
const dist = Math.sqrt((v4.x - center.x) ** 2 + (v4.y - center.y) ** 2);
const dist1 = Math.sqrt((v4.x - testPoint.x) ** 2 + (v4.y - testPoint.y) ** 2);
return dist1 < dist && dist > pointDist - pointRadius;
}
}
return API;
})();
const ctx = canvas.getContext("2d");
const m = {x : 0, y : 0};
document.addEventListener("mousemove",e=>{
var b = canvas.getBoundingClientRect();
m.x = e.pageX - b.left - scrollX - 2;
m.y = e.pageY - b.top - scrollY - 2;
});
function drawCircle(p,r = 5,col = "black"){
ctx.beginPath();
ctx.strokeStyle = col;
ctx.arc(p.x,p.y,r,0,Math.PI*2)
ctx.stroke();
}
function drawLine(p1,p2,r = 5,col = "black"){
ctx.beginPath();
ctx.strokeStyle = col;
ctx.lineTo(p1.x,p1.y);
ctx.lineTo(p2.x,p2.y);
ctx.stroke();
}
const w = 400;
const h = 400;
const diag = Math.sqrt(w * w + h * h);
// creates a 2D point
const P2 = (x=0, y= x === 0 ? 0 : x.y + (x = x.x, 0)) => ({x, y});
const setP2As = (p,pFrom) => (p.x = pFrom.x, p.y = pFrom.y, p);
// random int and double
const randI = (min, max = min + (min = 0)) => (Math.random()*(max - min) + min) | 0;
const rand = (min = 1, max = min + (min = 0)) => Math.random() * (max - min) + min;
const theBlobSet = [];
const theBlob = [];
function createCubicBlob(segs){
const step = Math.PI / segs;
for(var i = 0; i < Math.PI * 2; i += step){
const dist = rand(diag * (1/6), diag * (1/5));
const ang = i + rand(-step * 0.2,step * 0.2);
const p = P2(
w / 2 + Math.cos(ang) * dist,
h / 2 + Math.sin(ang) * dist
);
theBlobSet.push(p);
theBlob.push(P2(p));
}
theBlobSet[theBlobSet.length -1] = theBlobSet[0];
theBlob[theBlobSet.length -1] = theBlob[0];
}
createCubicBlob(8);
function animateTheBlob(time){
for(var i = 0; i < theBlobSet.length-1; i++){
const ang = Math.sin(time + i) * 6;
theBlob[i].x = theBlobSet[i].x + Math.cos(ang) * diag * 0.04;
theBlob[i].y = theBlobSet[i].y + Math.sin(ang) * diag * 0.04;
}
}
function drawTheBlob(){
ctx.strokeStyle = "black";
ctx.lineWidth = 3;
ctx.beginPath();
var i = 0;
ctx.moveTo(theBlob[i].x,theBlob[i++].y);
while(i < theBlob.length){
ctx.bezierCurveTo(
theBlob[i].x,theBlob[i++].y,
theBlob[i].x,theBlob[i++].y,
theBlob[i].x,theBlob[i++].y
);
}
ctx.stroke();
}
var center = P2(w/2,h/2);
function testBlob(){
var i = 0;
while(i < theBlob.length-3){
bezHelper.bezC = [theBlob[i++], theBlob[i++], theBlob[i++], theBlob[i]];
if(bezHelper.isInside(center,m,6)){
return true;
}
}
return false;
}
// main update function
function update(timer){
ctx.clearRect(0,0,w,h);
animateTheBlob(timer/1000)
drawTheBlob();
if(testBlob()){
ctx.strokeStyle = "red";
}else{
ctx.strokeStyle = "black";
}
ctx.beginPath();
ctx.arc(m.x,m.y,5,0,Math.PI*2)
ctx.stroke();
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas { border : 2px solid black; }
<canvas id="canvas" width = "400" height = "400"></canvas>
I had created an animation of bubbles in which al the circle will expand which are 50px neer to the mouse.
so here is the trick. you can just simply change mouseX,mouseY with your microbe's X and Y coordinates and 50 to the radius of your microbe.
And when my bubbles get bigger, so there you can destroy you air bubbles.
here is the link to my Animation.
https://ankittorenzo.github.io/canvasAnimations/Elements/Bubbles/
here is the link to my GitHub Code.
https://github.com/AnkitTorenzo/canvasAnimations/blob/master/Elements/Bubbles/js/main.js
Let Me Know if you have any problem.

how to use html canvas in between 2 <div>s

I tried to use canvas in middle of my html page.but it does't work fine. I want to use ribbon effect in div. it works fine when the there is no div and when there is div or other element it doesn't work. I want use canvas in between two div. I used ribbon pen in codepen and will post the code below. I want to how to use it in my html page.
var TWO_PI = Math.PI * 2;
var HALF_PI = Math.PI * 0.5;
var THICKNESS = 12;
var LENGTH = 10;
var STEP = 0.1;
var FPS = 1000 / 60;
function Particle(x, y, mass) {
this.x = x || 0;
this.y = y || 0;
this.ox = this.x;
this.oy = this.y;
this.mass = mass || 1.0;
this.massInv = 1.0 / this.mass;
this.fixed = false;
this.update = function (dt) {
if (!this.fixed) {
var fx = 0.0000;
var fy = 0.0000;
var tx = this.x,
ty = this.y;
this.x += (this.x - this.ox) + fx * this.massInv * dt * dt;
this.y += (this.y - this.oy) + fy * this.massInv * dt * dt;
this.ox = tx;
this.oy = ty;
}
};
};
function Spring(p1, p2, restLength, strength) {
this.p1 = p1;
this.p2 = p2;
this.restLength = restLength || 10;
this.strength = strength || 1.0;
this.update = function (dt) {
// Compute desired force
var dx = p2.x - p1.x,
dy = p2.y - p1.y,
dd = Math.sqrt(dx * dx + dy * dy) + 0.0001,
tf = (dd - this.restLength) / (dd * (p1.massInv + p2.massInv)) * this.strength,
f;
// Apply forces
if (!p1.fixed) {
f = tf * p1.massInv;
p1.x += dx * f;
p1.y += dy * f;
}
if (!p2.fixed) {
f = -tf * p2.massInv;
p2.x += dx * f;
p2.y += dy * f;
}
}
};
function Sim() {
this.particles = [];
this.springs = [];
this.tick = function (dt) {
var i, n;
for (i = 0, n = this.springs.length; i < n; ++i) {
this.springs[i].update(dt);
}
for (i = 0, n = this.particles.length; i < n; ++i) {
this.particles[i].update(dt);
}
}
};
// Create a new system
var sim = new Sim(),
old = new Date().getTime(),
canvas = document.getElementById('world'),
context = canvas.getContext('2d');
function init() {
var np,
op,
mouse,
anchor,
step = STEP,
length = LENGTH,
count = length / step;
var sx = canvas.width * 0.5;
var sy = canvas.height * 0.5;
for (var i = 0; i < count; ++i) {
//np = new Particle(i*8,i*8,0.1+Math.random()*0.01);
np = new Particle(sx + (Math.random() - 0.5) * 200, sy + (Math.random() - 0.5) * 200, 0.1 + Math.random() * 0.01);
sim.particles.push(np);
if (i > 0) {
s = new Spring(np, op, step, 0.95);
sim.springs.push(s);
}
op = np;
}
// Fix the first particle
anchor = sim.particles[0];
//anchor.fixed = true;
anchor.x = 50;
anchor.y = 50;
// Move last particle with mouse
mouse = sim.particles[count - 1];
mouse.fixed = true;
canvas.addEventListener('mousemove', function (event) {
mouse.x = event.clientX;
mouse.y = event.clientY;
});
};
function step() {
var now = new Date().getTime(),
delta = now - old;
sim.tick(delta);
// Clear canvas
canvas.width = canvas.width;
var points = []; // Midpoints
var angles = []; // Delta angles
var i, n, p1, p2, dx, dy, mx, my, sin, cos, theta;
// Compute midpoints and angles
for (i = 0, n = sim.particles.length - 1; i < n; ++i) {
p1 = sim.particles[i];
p2 = sim.particles[i + 1];
dx = p2.x - p1.x;
dy = p2.y - p1.y;
mx = p1.x + dx * 0.5;
my = p1.y + dy * 0.5;
points[i] = {
x: mx,
y: my
};
angles[i] = Math.atan2(dy, dx);
}
// Render
context.beginPath();
for (i = 0, n = points.length; i < n; ++i) {
p1 = sim.particles[i];
p2 = points[i];
theta = angles[i];
r = Math.sin((i / n) * Math.PI) * THICKNESS;
sin = Math.sin(theta - HALF_PI) * r;
cos = Math.cos(theta - HALF_PI) * r;
context.quadraticCurveTo(
p1.x + cos,
p1.y + sin,
p2.x + cos,
p2.y + sin);
}
for (i = points.length - 1; i >= 0; --i) {
p1 = sim.particles[i + 1];
p2 = points[i];
theta = angles[i];
r = Math.sin((i / n) * Math.PI) * THICKNESS;
sin = Math.sin(theta + HALF_PI) * r;
cos = Math.cos(theta + HALF_PI) * r;
context.quadraticCurveTo(
p1.x + cos,
p1.y + sin,
p2.x + cos,
p2.y + sin);
}
context.strokeStyle = 'rgba(255,255,255,0.1)';
context.lineWidth = 8;
context.stroke();
context.strokeStyle = 'rgba(0,0,0,0.8)';
context.lineWidth = 0.5;
context.stroke();
context.fillStyle = 'rgba(255,255,255,0.9)';
context.fill();
old = now;
setTimeout(step, FPS);
};
function resize() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
}
window.addEventListener("resize", resize);
resize();
init();
step();
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,600,700' rel='stylesheet' type='text/css'>
<canvas id='world' width='500' height='500'></canvas>
<header><h1>Wiggle your mouse...</h1></header>
Here is one way:
HTML:
<div class="top">
top
</div>
<div class="middle">
<canvas id='world' width='500' height='500'></canvas>
<header><h1>Wiggle your mouse...</h1></header>
</div>
<div class="bottom">
bottom
</div>
CSS:
div {
border: 1px solid black
}
.top, .bottom {
height: 200px
}
The js remains the same. The CSS gives the top and bottom divs some height. The canvas is in the middle div. Here is a jsfiddle: https://jsfiddle.net/av902pcs/

html5 canvas triangle with rounded corners

I'm new to HTML5 Canvas and I'm trying to draw a triangle with rounded corners.
I have tried
ctx.lineJoin = "round";
ctx.lineWidth = 20;
but none of them are working.
Here's my code:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
var x = 18 / 2;
var y = 0;
var triangleWidth = 18;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>
Could you help me?
Rounding corners
An invaluable function I use a lot is rounded polygon. It takes a set of 2D points that describe a polygon's vertices and adds arcs to round the corners.
The problem with rounding corners and keeping within the constraint of the polygons area is that you can not always fit a round corner that has a particular radius.
In these cases you can either ignore the corner and leave it as pointy or, you can reduce the rounding radius to fit the corner as best possible.
The following function will resize the corner rounding radius to fit the corner if the corner is too sharp and the lines from the corner not long enough to get the desired radius in.
Note the code has comments that refer to the Maths section below if you want to know what is going on.
roundedPoly(ctx, points, radius)
// ctx is the context to add the path to
// points is a array of points [{x :?, y: ?},...
// radius is the max rounding radius
// this creates a closed polygon.
// To draw you must call between
// ctx.beginPath();
// roundedPoly(ctx, points, radius);
// ctx.stroke();
// ctx.fill();
// as it only adds a path and does not render.
function roundedPoly(ctx, points, radiusAll) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut,radius;
// convert 2 points into vector form, polar form, and normalised
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
radius = radiusAll;
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
// for each point
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
//-----------------------------------------
// Part 1
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA < -1 ? -1 : sinA > 1 ? 1 : sinA);
//-----------------------------------------
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
if(p2.radius !== undefined){
radius = p2.radius;
}else{
radius = radiusAll;
}
//-----------------------------------------
// Part 2
halfAngle = angle / 2;
//-----------------------------------------
//-----------------------------------------
// Part 3
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
//-----------------------------------------
//-----------------------------------------
// Special part A
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
//-----------------------------------------
// Part 4
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
//-----------------------------------------
// Part 5
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
//-----------------------------------------
// Part 6
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
//-----------------------------------------
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
You may wish to add to each point a radius eg {x :10,y:10,radius:20} this will set the max radius for that point. A radius of zero will be no rounding.
The maths
The following illistration shows one of two possibilities, the angle to fit is less than 90deg, the other case (greater than 90) just has a few minor calculation differences (see code).
The corner is defined by the three points in red A, B, and C. The circle radius is r and we need to find the green points F the circle center and D and E which will define the start and end angles of the arc.
First we find the angle between the lines from B,A and B,C this is done by normalising the vectors for both lines and getting the cross product. (Commented as Part 1) We also find the angle of line BC to the line at 90deg to BA as this will help determine which side of the line to put the circle.
Now we have the angle between the lines, we know that half that angle defines the line that the center of the circle will sit F but we do not know how far that point is from B (Commented as Part 2)
There are two right triangles BDF and BEF which are identical. We have the angle at B and we know that the side DF and EF are equal to the radius of the circle r thus we can solve the triangle to get the distance to F from B
For convenience rather than calculate to F is solve for BD (Commented as Part 3) as I will move along the line BC by that distance (Commented as Part 4) then turn 90deg and move up to F (Commented as Part 5) This in the process gives the point D and moving along the line BA to E
We use points D and E and the circle center F (in their abstract form) to calculate the start and end angles of the arc. (done in the arc function part 6)
The rest of the code is concerned with the directions to move along and away from lines and which direction to sweep the arc.
The code section (special part A) uses the lengths of both lines BA and BC and compares them to the distance from BD if that distance is greater than half the line length we know the arc can not fit. I then solve the triangles to find the radius DF if the line BD is half the length of shortest line of BA and BC
Example use.
The snippet is a simple example of the above function in use. Click to add points to the canvas (needs a min of 3 points to create a polygon). You can drag points and see how the corner radius adapts to sharp corners or short lines. More info when snippet is running. To restart rerun the snippet. (there is a lot of extra code that can be ignored)
The corner radius is set to 30.
const ctx = canvas.getContext("2d");
const mouse = {
x: 0,
y: 0,
button: false,
drag: false,
dragStart: false,
dragEnd: false,
dragStartX: 0,
dragStartY: 0
}
function mouseEvents(e) {
mouse.x = e.pageX;
mouse.y = e.pageY;
const lb = mouse.button;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
if (lb !== mouse.button) {
if (mouse.button) {
mouse.drag = true;
mouse.dragStart = true;
mouse.dragStartX = mouse.x;
mouse.dragStartY = mouse.y;
} else {
mouse.drag = false;
mouse.dragEnd = true;
}
}
}
["down", "up", "move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
const pointOnLine = {x:0,y:0};
function distFromLines(x,y,minDist){
var index = -1;
const v1 = {};
const v2 = {};
const v3 = {};
const point = P2(x,y);
eachOf(polygon,(p,i)=>{
const p1 = polygon[(i + 1) % polygon.length];
v1.x = p1.x - p.x;
v1.y = p1.y - p.y;
v2.x = point.x - p.x;
v2.y = point.y - p.y;
const u = (v2.x * v1.x + v2.y * v1.y)/(v1.y * v1.y + v1.x * v1.x);
if(u >= 0 && u <= 1){
v3.x = p.x + v1.x * u;
v3.y = p.y + v1.y * u;
dist = Math.hypot(v3.y - point.y, v3.x - point.x);
if(dist < minDist){
minDist = dist;
index = i;
pointOnLine.x = v3.x;
pointOnLine.y = v3.y;
}
}
})
return index;
}
function roundedPoly(ctx, points, radius) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut;
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA); // warning you should guard by clampling
// to -1 to 1. See function roundedPoly in answer or
// Math.asin(Math.max(-1, Math.min(1, sinA)))
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
halfAngle = angle / 2;
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
const eachOf = (array, callback) => { var i = 0; while (i < array.length && callback(array[i], i++) !== true); };
const P2 = (x = 0, y = 0) => ({x, y});
const polygon = [];
function findClosestPointIndex(x, y, minDist) {
var index = -1;
eachOf(polygon, (p, i) => {
const dist = Math.hypot(x - p.x, y - p.y);
if (dist < minDist) {
minDist = dist;
index = i;
}
});
return index;
}
// short cut vars
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var dragPoint;
var globalTime;
var closestIndex = -1;
var closestLineIndex = -1;
var cursor = "default";
const lineDist = 10;
const pointDist = 20;
var toolTip = "";
// main update function
function update(timer) {
globalTime = timer;
cursor = "crosshair";
toolTip = "";
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if (w !== innerWidth - 4 || h !== innerHeight - 4) {
cw = (w = canvas.width = innerWidth - 4) / 2;
ch = (h = canvas.height = innerHeight - 4) / 2;
} else {
ctx.clearRect(0, 0, w, h);
}
if (mouse.drag) {
if (mouse.dragStart) {
mouse.dragStart = false;
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex === -1){
polygon.push(dragPoint = P2(mouse.x, mouse.y));
}else{
polygon.splice(closestLineIndex+1,0,dragPoint = P2(mouse.x, mouse.y));
}
}else{
dragPoint = polygon[closestIndex];
}
}
dragPoint.x = mouse.x;
dragPoint.y = mouse.y
cursor = "none";
}else{
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex > -1){
toolTip = "Click to cut line and/or drag to move.";
}
}else{
toolTip = "Click drag to move point.";
closestLineIndex = -1;
}
}
ctx.lineWidth = 4;
ctx.fillStyle = "#09F";
ctx.strokeStyle = "#000";
ctx.beginPath();
roundedPoly(ctx, polygon, 30);
ctx.stroke();
ctx.fill();
ctx.beginPath();
ctx.strokeStyle = "red";
ctx.lineWidth = 0.5;
eachOf(polygon, p => ctx.lineTo(p.x,p.y) );
ctx.closePath();
ctx.stroke();
ctx.strokeStyle = "orange";
ctx.lineWidth = 1;
eachOf(polygon, p => ctx.strokeRect(p.x-2,p.y-2,4,4) );
if(closestIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
dragPoint = polygon[closestIndex];
ctx.strokeRect(dragPoint.x-4,dragPoint.y-4,8,8);
cursor = "move";
}else if(closestLineIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
var p = polygon[closestLineIndex];
var p1 = polygon[(closestLineIndex + 1) % polygon.length];
ctx.beginPath();
ctx.lineTo(p.x,p.y);
ctx.lineTo(p1.x,p1.y);
ctx.stroke();
ctx.strokeRect(pointOnLine.x-4,pointOnLine.y-4,8,8);
cursor = "pointer";
}
if(toolTip === "" && polygon.length < 3){
toolTip = "Click to add a corners of a polygon.";
}
canvas.title = toolTip;
canvas.style.cursor = cursor;
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas {
border: 2px solid black;
position: absolute;
top: 0px;
left: 0px;
}
<canvas id="canvas"></canvas>
I started by using #Blindman67 's answer, which works pretty well for basic static shapes.
I ran into the problem that when using the arc approach, having two points right next to each other is very different than having just one point. With two points next to each other, it won't be rounded, even if that is what your eye would expect. This is extra jarring if you are animating the polygon points.
I fixed this by using Bezier curves instead. IMO this is conceptually a little cleaner as well. I just make each corner with a quadratic curve where the control point is where the original corner was. This way, having two points in the same spot is virtually the same as only having one point.
I haven't compared performance but seems like canvas is pretty good at drawing Beziers.
As with #Blindman67 's answer, this doesn't actually draw anything so you will need to call ctx.beginPath() before and ctx.stroke() after.
/**
* Draws a polygon with rounded corners
* #param {CanvasRenderingContext2D} ctx The canvas context
* #param {Array} points A list of `{x, y}` points
* #radius {number} how much to round the corners
*/
function myRoundPolly(ctx, points, radius) {
const distance = (p1, p2) => Math.sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2)
const lerp = (a, b, x) => a + (b - a) * x
const lerp2D = (p1, p2, t) => ({
x: lerp(p1.x, p2.x, t),
y: lerp(p1.y, p2.y, t)
})
const numPoints = points.length
let corners = []
for (let i = 0; i < numPoints; i++) {
let lastPoint = points[i]
let thisPoint = points[(i + 1) % numPoints]
let nextPoint = points[(i + 2) % numPoints]
let lastEdgeLength = distance(lastPoint, thisPoint)
let lastOffsetDistance = Math.min(lastEdgeLength / 2, radius)
let start = lerp2D(
thisPoint,
lastPoint,
lastOffsetDistance / lastEdgeLength
)
let nextEdgeLength = distance(nextPoint, thisPoint)
let nextOffsetDistance = Math.min(nextEdgeLength / 2, radius)
let end = lerp2D(
thisPoint,
nextPoint,
nextOffsetDistance / nextEdgeLength
)
corners.push([start, thisPoint, end])
}
ctx.moveTo(corners[0][0].x, corners[0][0].y)
for (let [start, ctrl, end] of corners) {
ctx.lineTo(start.x, start.y)
ctx.quadraticCurveTo(ctrl.x, ctrl.y, end.x, end.y)
}
ctx.closePath()
}
Styles for joining of lines such as ctx.lineJoin="round" apply to the stroke operation on paths - which is when their width, color, pattern, dash/dotted and similar line style attributes are taken into account.
Line styles do not apply to filling the interior of a path.
So to affect line styles a stroke operation is needed. In the following adaptation of posted code, I've translated canvas output to see the result without cropping, and stroked the triangle's path but not the rectangles below it:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
ctx.translate( 18, 12);
var x = 18 / 2;
var y = 0;
var triangleWidth = 48;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
// stroke the triangle path.
ctx.lineWidth = 3;
ctx.lineJoin = "round";
ctx.strokeStyle = "orange";
ctx.stroke();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>

Approximating svg elliptical arc in canvas with javascript

I'm trying to generate an elliptical arc by approximating a bezier curve as in the post https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/
However my implementation doesn't seem to fetch the right result. (Red line is SVG and black line is canvas path)
This is my code
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
// M100,350
// a45,35 -30 0,1 50,-25
canvas.width = document.body.clientWidth;
canvas.height = document.body.clientHeight;
ctx.strokeWidth = 2;
ctx.strokeStyle = "#000000";
function clamp(value, min, max) {
return Math.min(Math.max(value, min), max)
}
function svgAngle(ux, uy, vx, vy ) {
var dot = ux*vx + uy*vy;
var len = Math.sqrt(ux*ux + uy*uy) * Math.sqrt(vx*vx + vy*vy);
var ang = Math.acos( clamp(dot / len,-1,1) );
if ( (ux*vy - uy*vx) < 0)
ang = -ang;
return ang;
}
function generateBezierPoints(rx, ry, phi, flagA, flagS, x1, y1, x2, y2) {
var rX = Math.abs(rx);
var rY = Math.abs(ry);
var dx2 = (x1 - x2)/2;
var dy2 = (y1 - y2)/2;
var x1p = Math.cos(phi)*dx2 + Math.sin(phi)*dy2;
var y1p = -Math.sin(phi)*dx2 + Math.cos(phi)*dy2;
var rxs = rX * rX;
var rys = rY * rY;
var x1ps = x1p * x1p;
var y1ps = y1p * y1p;
var cr = x1ps/rxs + y1ps/rys;
if (cr > 1) {
var s = Math.sqrt(cr);
rX = s * rX;
rY = s * rY;
rxs = rX * rX;
rys = rY * rY;
}
var dq = (rxs * y1ps + rys * x1ps);
var pq = (rxs*rys - dq) / dq;
var q = Math.sqrt( Math.max(0,pq) );
if (flagA === flagS)
q = -q;
var cxp = q * rX * y1p / rY;
var cyp = - q * rY * x1p / rX;
var cx = Math.cos(phi)*cxp - Math.sin(phi)*cyp + (x1 + x2)/2;
var cy = Math.sin(phi)*cxp + Math.cos(phi)*cyp + (y1 + y2)/2;
var theta = svgAngle( 1,0, (x1p-cxp) / rX, (y1p - cyp)/rY );
var delta = svgAngle(
(x1p - cxp)/rX, (y1p - cyp)/rY,
(-x1p - cxp)/rX, (-y1p-cyp)/rY);
delta = delta - Math.PI * 2 * Math.floor(delta / (Math.PI * 2));
if (!flagS)
delta -= 2 * Math.PI;
var n1 = theta, n2 = delta;
// E(n)
// cx +acosθcosη−bsinθsinη
// cy +asinθcosη+bcosθsinη
function E(n) {
var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
var eny = cy + rx * Math.sin(phi) * Math.cos(n) + ry * Math.cos(phi) * Math.sin(n);
return {x: enx,y: eny};
}
// E'(n)
// −acosθsinη−bsinθcosη
// −asinθsinη+bcosθcosη
function Ed(n) {
var ednx = -1 * rx * Math.cos(phi) * Math.sin(n) - ry * Math.sin(phi) * Math.cos(n);
var edny = -1 * rx * Math.sin(phi) * Math.sin(n) + ry * Math.cos(phi) * Math.cos(n);
return {x: ednx, y: edny};
}
var en1 = E(n1);
var en2 = E(n2);
var edn1 = Ed(n1);
var edn2 = Ed(n2);
var alpha = Math.sin(n2 - n1) * (Math.sqrt(4 + 3 * Math.pow(Math.tan((n2 - n1)/2), 2)) - 1)/3;
console.log(en1, en2);
return {
cpx1: en1.x + alpha*edn1.x,
cpy1: en1.y + alpha*edn1.y,
cpx2: en2.x - alpha*edn2.x,
cpy2: en2.y - alpha*edn2.y
};
}
// M100,100
ctx.moveTo(100,100)
// a45,35 -30 0,1 50,-25
cp = generateBezierPoints(
45,35, // Radii
-30 * Math.PI / 180, // xAngle
0, // Large arc flag
1, // Sweep flag
100,100, // Endpoint1
100 + 50, 100 - 25 // Endpoint2
);
ctx.bezierCurveTo(cp.cpx1,cp.cpy1,cp.cpx2,cp.cpy2,150,75);
ctx.stroke()
I need help with understanding where I'm going wrong
UPDATE:
I went through the post a couple more times and there is one part of the post that I don't quite understand which may also be lacking in my implementation.
All I had to do was subdivide the angle range into small sections to get a good approximation. I didn’t quite understand the paper’s error calculations, but I found another paper by Joe Cridge indicating divisions of π/2 provides a potential one pixel error on a fairly high resolution device. So I chose π/4 to ensure smooth animation, even for partial arcs on high density mobile devices.
I don't understand what the author means by subdividing the angles...
So apparently an elliptical arc cannot be approximated with a single bezier curve, so it takes multiple bezier curves by dividing the two angles into ranges.
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
// M100,350
// a45,35 -30 0,1 50,-25
canvas.width = document.body.clientWidth;
canvas.height = document.body.clientHeight;
ctx.strokeWidth = 2;
ctx.strokeStyle = "#000000";
function clamp(value, min, max) {
return Math.min(Math.max(value, min), max)
}
function svgAngle(ux, uy, vx, vy ) {
var dot = ux*vx + uy*vy;
var len = Math.sqrt(ux*ux + uy*uy) * Math.sqrt(vx*vx + vy*vy);
var ang = Math.acos( clamp(dot / len,-1,1) );
if ( (ux*vy - uy*vx) < 0)
ang = -ang;
return ang;
}
function generateBezierPoints(rx, ry, phi, flagA, flagS, x1, y1, x2, y2) {
var rX = Math.abs(rx);
var rY = Math.abs(ry);
var dx2 = (x1 - x2)/2;
var dy2 = (y1 - y2)/2;
var x1p = Math.cos(phi)*dx2 + Math.sin(phi)*dy2;
var y1p = -Math.sin(phi)*dx2 + Math.cos(phi)*dy2;
var rxs = rX * rX;
var rys = rY * rY;
var x1ps = x1p * x1p;
var y1ps = y1p * y1p;
var cr = x1ps/rxs + y1ps/rys;
if (cr > 1) {
var s = Math.sqrt(cr);
rX = s * rX;
rY = s * rY;
rxs = rX * rX;
rys = rY * rY;
}
var dq = (rxs * y1ps + rys * x1ps);
var pq = (rxs*rys - dq) / dq;
var q = Math.sqrt( Math.max(0,pq) );
if (flagA === flagS)
q = -q;
var cxp = q * rX * y1p / rY;
var cyp = - q * rY * x1p / rX;
var cx = Math.cos(phi)*cxp - Math.sin(phi)*cyp + (x1 + x2)/2;
var cy = Math.sin(phi)*cxp + Math.cos(phi)*cyp + (y1 + y2)/2;
var theta = svgAngle( 1,0, (x1p-cxp) / rX, (y1p - cyp)/rY );
var delta = svgAngle(
(x1p - cxp)/rX, (y1p - cyp)/rY,
(-x1p - cxp)/rX, (-y1p-cyp)/rY);
delta = delta - Math.PI * 2 * Math.floor(delta / (Math.PI * 2));
if (!flagS)
delta -= 2 * Math.PI;
var n1 = theta, n2 = delta;
// E(n)
// cx +acosθcosη−bsinθsinη
// cy +asinθcosη+bcosθsinη
function E(n) {
var enx = cx + rx * Math.cos(phi) * Math.cos(n) - ry * Math.sin(phi) * Math.sin(n);
var eny = cy + rx * Math.sin(phi) * Math.cos(n) + ry * Math.cos(phi) * Math.sin(n);
return {x: enx,y: eny};
}
// E'(n)
// −acosθsinη−bsinθcosη
// −asinθsinη+bcosθcosη
function Ed(n) {
var ednx = -1 * rx * Math.cos(phi) * Math.sin(n) - ry * Math.sin(phi) * Math.cos(n);
var edny = -1 * rx * Math.sin(phi) * Math.sin(n) + ry * Math.cos(phi) * Math.cos(n);
return {x: ednx, y: edny};
}
var n = [];
n.push(n1);
var interval = Math.PI/4;
while(n[n.length - 1] + interval < n2)
n.push(n[n.length - 1] + interval)
n.push(n2);
function getCP(n1, n2) {
var en1 = E(n1);
var en2 = E(n2);
var edn1 = Ed(n1);
var edn2 = Ed(n2);
var alpha = Math.sin(n2 - n1) * (Math.sqrt(4 + 3 * Math.pow(Math.tan((n2 - n1)/2), 2)) - 1)/3;
console.log(en1, en2);
return {
cpx1: en1.x + alpha*edn1.x,
cpy1: en1.y + alpha*edn1.y,
cpx2: en2.x - alpha*edn2.x,
cpy2: en2.y - alpha*edn2.y,
en1: en1,
en2: en2
};
}
var cps = []
for(var i = 0; i < n.length - 1; i++) {
cps.push(getCP(n[i],n[i+1]));
}
return cps;
}
// M100,100
ctx.moveTo(100,100)
// a45,35 -30 0,1 50,-25
var rx = 45, ry=35,phi = -30 * Math.PI / 180, fa = 0, fs = 1, x = 100, y = 100, x1 = x + 50, y1 = y - 25;
var cps = generateBezierPoints(rx, ry, phi, fa, fs, x, y, x1, y1);
var limit = 2;
for(var i = 0; i < limit && i < cps.length; i++) {
ctx.bezierCurveTo(cps[i].cpx1, cps[i].cpy1,
cps[i].cpx2, cps[i].cpy2,
i < limit - 1 ? cps[i].en2.x : x1, i < limit - 1 ? cps[i].en2.y : y1);
}
ctx.stroke()

Categories

Resources