Functional Programming: Sum of properties - javascript

I am trying to implement a function in JS using Ramda that takes a list of objects and returns the sum of specific properties. E.g.
var l = [
{a: 1, b: 2, c: 0},
{a: 1, b: 3, c: -1},
{a: 1, b: 4, c: 0},
]
func(['a', 'b'], l)
-> {a: 3, b: 9}
In principle, I would need a function like this:
R.map(R.props($1, _), $2)
What is the most elegant way to implement something like this in functional programming? R.map(R.props) does not work for obvious reasons. I tried to use some combinations with R.compose or R.pipe but I had no luck

I would break this into two parts:
const fnOverProp = R.curry((fn, prop, list) => fn(R.pluck(prop, list)));
const fnOverProps = R.curry((fn, props, list) =>
R.fromPairs(R.zip(props)(R.map(fnOverProp(fn, __, list), props))));
(I'm sorry, I've got a creative block on naming here. These names are pretty awful.)
You could use it like this:
fnOverProp(R.sum, 'b', list); //=> 9
fnOverProps(R.sum, ['a', 'b'], list); //=> {a: 3, b: 9}
const sumOverProps = fnOverProps(R.sum);
sumOverProps(['a', 'c'], list); //=> {a: 3, c: -1}
Note first that I generalize your idea to make sum a parameter. It just made sense to me that this was not the only thing one might want to do with such a function.
Then I break it into a function that operates on a single property name. This strikes me as quite useful on its own. You might not need to do this for a whole list of them, and this function is worth using on its own.
Then I wrap this in a function that maps the first function over a list of properties. Note that this is really a fairly simple function:
(fn, props, list) => R.map(fnOverProp(fn, R.__, list), props)
wrapped inside two wrappers to convert the flat list of results into the object output you're looking for. R.zip(props)(<thatFn>, props) turns [3, -1] into [['a', 3], ['c', -1]] and then R.fromPairs turns that into {a: 3, c: -1}.
This does not give you your single-line implementation you say you want. Obviously you could fold the definition of the first function into the second, but I don't think that gains you much. And even if it could be made points-free, I would expect that would simply reduce readability in this case.
You can see this in action in the Ramda REPL.

This can also be defined as a reducer over the list of objects. Given some initial state of the result, we want a function that can sum the results of the two object's properties, where props is the list of properties we are interested in:
reduce(useWith(mergeWith(add, [identity, pick(props)]))
You then have two options as to whether the list is potentially non-empty or is guaranteed to have at lest one object. If the list is guaranteed to be non-empty, the initial value of the reducer can simply be the head of the list, serving the tail as the list to iterate over.
const func = (props, objs) =>
reduce(useWith(mergeWith(add), [identity, pick(props)]), pick(props, head(objs)), tail(objs))
If however the list could potentially be empty, the reduce function must be initialised with the empty values (zero in this case).
const func = (props, objs) =>
reduce(useWith(mergeWith(add), [identity, pick(props)]), pick(props, map(flip(objOf)(0), props)), objs)

You may try this:
function add(a, b){
return Object.keys(a).reduce(function(p, c){
p[c] += a[c];
return p;
}, b);
}
console.log(R.reduce(add, {a:0, b:0, c:0}, l))
This is another approach :
R.pipe(R.map(R.props(['a', 'b', 'c'])), R.transpose, R.map(R.sum))(l);

Related

Write a function called keys, which accepts an object and returns an array of all of the keys in the object

Beginner at JavaScript. I can't use the Object.keys() function. This is what I have so far. I can't for the life of me figure out how to return all the keys in the object, it's only returning "['a']", the first key:
const keys = (obj) => {
var obj1 = {a: 1, b: 2, c: 3};
var newArray = [];
for(var key in obj1) {
newArray.push(key);
return newArray;
}
};
keys();
Your loop will only run once because your return statement is inside the loop, which terminates your entire function, including the loop.
Madhawa Priyashantha is right: put the return statement after the loop and it should work.
Facetiously not using Object.keys() - you can use Object.entries() and map() and to create an array of the first item in the key : value pairings.
Presumably this is some sort of homework or teaching activity - the reason for my post is to show that there are many ways to achieve the outcome and some are just different ways of saying the same thing.
The obvious answer is to use a loop as per your attempt and the other solutions - but my solution is intended to invite you to see things in a different way. And putting arbitary limits on the way you can achieve something forces you to adopt either inefficient proactise or prevents you from using newer methodologies.
Rather than forcing you to use a loop - a better teaching activity would be to get you to use the newer javascript methods- especially map(), reduce() and filter().
There are definitely reasons to get you to learn loops - but doing so in an exercise to get the keys of an object limits your ability to use current code approaches and is just wrong. IMO.
FYI - I am an ex-teacher and believe in using the right learning activity and the right learning tools to achieve the learning.
const keys = (obj) => {
return Object.entries(obj).map(item => item[0]);
};
const obj = {a: 1, b: 2, c: 3};
console.log(keys(obj)); // gives ["a", "b", "c"]
The return statement inside the for loop terminates it after the first iteration so you should put the return statement after the loop as shown below.
const keys = (obj) => {
var obj1 = {
a: 1,
b: 2,
c: 3
};
var newArray = [];
for (var key in obj1) {
newArray.push(key);
}
return newArray;
};
keys();

Javascript map with composite keys

In JavaScript I want to store values to compound keys, similar to a C# dictionary with a tuple as key. This is where I came across the Map class. However, it does not seem to work quite as well as I would like it to. Here's my current approach:
var test = new Map();
test.set({a: 1, b: 1}, 'Bla');
test.set({a: 5, b: 7}, 'Blub');
test.get({a: 1, b: 1}); // ==> Returns undefined; would expect 'Bla'
I guess, that this has something to do that both objects with {a: 1, b: 1} have a different memory address and therefore are the same, but not identical. The Dictionary class in c# uses a hash function in background. Is there something similar in JS? Or a much easier approach?
My real key object consistst of three strings.
Your analysis is correct. It works like this because in Javascript you usually operate primitive objects that don't have all this hashing behavior attached to them out of the box. Nothing stops you from implementing your own Dictionary with hash function in background though
class Dictionary {
map = {}
constructor(hashFunction) {
this.hashFunction = hashFunction
}
set(key, item) {
this.map[this.hashFunction(key)] = item
}
get(key) {
return this.map[this.hashFunction(key)]
}
delete(key) {
delete this.map[this.hashFunction(key)]
}
}
const dict = new Dictionary((keyObject) => JSON.stringify(keyObject))
dict.set({ a: 1, b: 2 }, 'hello')
console.log(dict.get({ a: 1, b: 2 })) // hello
As to what to use, Map or object, the difference between Map and object is simply that object only supports string keys (also Symbols but irrelevant right now) while Map supports any value at a cost of using more resources, less compatibility with old browsers, and it's generally less handy to use than object (and also stops GC from cleaning out those objects you use as keys). That said, object is your choice here
{} this operator will create a new object every time; and a new object will have a different object refenece each time; if you save the object reference and use that for multiple operation its ok; but since you are trying to use a new object refence every time it won't work; you may either use a primitive type as key, or same object reference like the snippet below
//approach 1 using same object reference
var test = new Map();
var obj = {a: 1, b: 1};
test.set(obj, 'Bla');
test.set({a: 5, b: 7}, 'Blub');
let result = test.get(obj);
console.log(result);
// aproach 2 using JSON.stringify
test = new Map();
test.set(JSON.stringify({a: 1, b: 1}), 'Bla');
test.set({a: 5, b: 7}, 'Blub');
result = test.get(JSON.stringify({a: 1, b: 1}));
console.log(result)

Spread Or Rest Operator in Array Push [duplicate]

What does the ... do in this React (using JSX) code and what is it called?
<Modal {...this.props} title='Modal heading' animation={false}>
That's property spread notation. It was added in ES2018 (spread for arrays/iterables was earlier, ES2015), but it's been supported in React projects for a long time via transpilation (as "JSX spread attributes" even though you could do it elsewhere, too, not just attributes).
{...this.props} spreads out the "own" enumerable properties in props as discrete properties on the Modal element you're creating. For instance, if this.props contained a: 1 and b: 2, then
<Modal {...this.props} title='Modal heading' animation={false}>
would be the same as
<Modal a={this.props.a} b={this.props.b} title='Modal heading' animation={false}>
But it's dynamic, so whatever "own" properties are in props are included.
Since children is an "own" property in props, spread will include it. So if the component where this appears had child elements, they'll be passed on to Modal. Putting child elements between the opening tag and closing tags is just syntactic sugar — the good kind — for putting a children property in the opening tag. Example:
class Example extends React.Component {
render() {
const { className, children } = this.props;
return (
<div className={className}>
{children}
</div>
);
}
}
ReactDOM.render(
[
<Example className="first">
<span>Child in first</span>
</Example>,
<Example className="second" children={<span>Child in second</span>} />
],
document.getElementById("root")
);
.first {
color: green;
}
.second {
color: blue;
}
<div id="root"></div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/16.6.3/umd/react.production.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/react-dom/16.6.3/umd/react-dom.production.min.js"></script>
Spread notation is handy not only for that use case, but for creating a new object with most (or all) of the properties of an existing object — which comes up a lot when you're updating state, since you can't modify state directly:
this.setState(prevState => {
return {foo: {...prevState.foo, a: "updated"}};
});
That replaces this.state.foo with a new object with all the same properties as foo except the a property, which becomes "updated":
const obj = {
foo: {
a: 1,
b: 2,
c: 3
}
};
console.log("original", obj.foo);
// Creates a NEW object and assigns it to `obj.foo`
obj.foo = {...obj.foo, a: "updated"};
console.log("updated", obj.foo);
.as-console-wrapper {
max-height: 100% !important;
}
... are called spread attributes which, as the name represents, it allows an expression to be expanded.
var parts = ['two', 'three'];
var numbers = ['one', ...parts, 'four', 'five']; // ["one", "two", "three", "four", "five"]
And in this case (I'm going to simplify it).
// Just assume we have an object like this:
var person= {
name: 'Alex',
age: 35
}
This:
<Modal {...person} title='Modal heading' animation={false} />
is equal to
<Modal name={person.name} age={person.age} title='Modal heading' animation={false} />
So in short, it's a neat short-cut, we can say.
The three dots represent the spread operator in ES6. It allows us to do quite a few things in JavaScript:
Concatenate arrays
var shooterGames = ['Call of Duty', 'Far Cry', 'Resident Evil'];
var racingGames = ['Need For Speed', 'Gran Turismo', 'Burnout'];
var games = [...shooterGames, ...racingGames];
console.log(games) // ['Call of Duty', 'Far Cry', 'Resident Evil', 'Need For Speed', 'Gran Turismo', 'Burnout']
Destructuring an array
var shooterGames = ['Call of Duty', 'Far Cry', 'Resident Evil'];
var [first, ...remaining] = shooterGames;
console.log(first); //Call of Duty
console.log(remaining); //['Far Cry', 'Resident Evil']
Combining two objects
var myCrush = {
firstname: 'Selena',
middlename: 'Marie'
};
var lastname = 'my last name';
var myWife = {
...myCrush,
lastname
}
console.log(myWife); // {firstname: 'Selena',
// middlename: 'Marie',
// lastname: 'my last name'}
There's another use for the three dots which is known as Rest Parameters and it makes it possible to take all of the arguments to a function in as one array.
Function arguments as array
function fun1(...params) {
}
... (three dots in JavaScript) is called the Spread Syntax or Spread Operator. This allows an iterable such as an array expression or string to be expanded or an object expression to be expanded wherever placed. This is not specific to React. It is a JavaScript operator.
All these answers here are helpful, but I want to list down the mostly used practical Use Cases of the Spread Syntax (Spread Operator).
1. Combine Arrays (Concatenate Arrays)
There are a variety of ways to combine arrays, but the spread operator allows you to place this at any place in an array. If you'd like to combine two arrays and place elements at any point within the array, you can do as follows:
var arr1 = ['two', 'three'];
var arr2 = ['one', ...arr1, 'four', 'five'];
// arr2 = ["one", "two", "three", "four", "five"]
2. Copying Arrays
When we wanted a copy of an array, we used to have the Array.prototype.slice() method. But, you can do the same with the spread operator.
var arr = [1,2,3];
var arr2 = [...arr];
// arr2 = [1,2,3]
3. Calling Functions without Apply
In ES5, to pass an array of two numbers to the doStuff() function, you often use the Function.prototype.apply() method as follows:
function doStuff (x, y, z) {}
var args = [0, 1, 2];
// Call the function, passing args
doStuff.apply(null, args);
However, by using the spread operator, you can pass an array into the function.
doStuff(...args);
4. Destructuring Arrays
You can use destructuring and the rest operator together to extract the information into variables as you'd like them:
let { x, y, ...z } = { x: 1, y: 2, a: 3, b: 4 };
console.log(x); // 1
console.log(y); // 2
console.log(z); // { a: 3, b: 4 }
5. Function Arguments as Rest Parameters
ES6 also has three dots (...) which indicates a rest parameter that collects all remaining arguments of a function into an array.
function f(a, b, ...args) {
console.log(args);
}
f(1, 2, 3, 4, 5); // [3, 4, 5]
6. Using Math Functions
Any function where spread is used as the argument can be used by functions that can accept any number of arguments.
let numbers = [9, 4, 7, 1];
Math.min(...numbers); // 1
7. Combining Two Objects
You can use the spread operator to combine two objects. This is an easy and cleaner way to do it.
var carType = {
model: 'Toyota',
yom: '1995'
};
var carFuel = 'Petrol';
var carData = {
...carType,
carFuel
}
console.log(carData);
// {
// model: 'Toyota',
// yom: '1995',
// carFuel = 'Petrol'
// }
8. Separate a String into Separate Characters
You can use the spread operator to spread a string into separate characters.
let chars = ['A', ...'BC', 'D'];
console.log(chars); // ["A", "B", "C", "D"]
You can think of more ways to use the Spread Operator. What I have listed here are the popular use cases of it.
The three dots in JavaScript are the spread / rest operator.
Spread operator
The spread syntax allows an expression to be expanded in places where multiple arguments are expected.
myFunction(...iterableObj);
[...iterableObj, 4, 5, 6]
[...Array(10)]
Rest parameters
The rest parameter syntax is used for functions with a variable number of arguments.
function(a, b, ...theArgs) {
// ...
}
The spread / rest operator for arrays was introduced in ES6. There's a State 2 proposal for object spread / rest properties.
TypeScript also supports the spread syntax and can transpile that into older versions of ECMAScript with minor issues.
This is a feature of ES6, which is used in React as well. Look at the below example:
function Sum(x, y, z) {
return x + y + z;
}
console.log(Sum(1, 2, 3)); // 6
This way is fine if we have a maximum of three parameters. But, what if we need to add, for example, 110 parameters. Should we define them all and add them one by one?
Of course there is an easier way to do, which is called spread.
Instead of passing all those parameters you write:
function (...numbers){}
We have no idea how many parameters we have, but we know there are heaps of those.
Based on ES6, we can rewrite the above function as below and use the spread and mapping between them to make it as easy as a piece of cake:
let Sum = (...numbers) => {
return numbers.reduce((prev, current) => prev + current);
}
console.log(Sum(1, 2, 3, 4, 5, 6, 7, 8, 9)); // 45
Kudos to Brandon Morelli. He explained perfectly here, but links may die so I am just pasting the content below:
The spread syntax is simply three dots: ...
It allows an iterable to expand in places where 0+ arguments are expected.
Definitions are tough without context. Let's explore some different use cases to help understand what this means.
Example 1 — Inserting Arrays
Take a look at the code below. In this code, we don’t use the spread syntax:
var mid = [3, 4];
var arr = [1, 2, mid, 5, 6];
console.log(arr);
Above, we’ve created an array named mid. We then create a second array which contains our mid array. Finally, we log out the result. What do you expect arr to print? Click run above to see what happens. Here is the output:
[1, 2, [3, 4], 5, 6]
Is that the result you expected?
By inserting the mid array into the arr array, we’ve ended up with an array within an array. That’s fine if that was the goal. But what if you want only a single array with the values of 1 through 6? To accomplish this, we can use the spread syntax! Remember, the spread syntax allows the elements of our array to expand.
Let’s look at the code below. Everything is the same — except we’re now using the spread syntax to insert the mid array into the arr array:
var mid = [3, 4];
var arr = [1, 2, ...mid, 5, 6];
console.log(arr);
And when you hit the run button, here’s the result:
[1, 2, 3, 4, 5, 6]
Awesome!
Remember the spread syntax definition you just read above? Here’s where it comes into play. As you can see, when we create the arr array and use the spread operator on the mid array, instead of just being inserted, the mid array expands. This expansion means that each and every element in the mid array is inserted into the arr array. Instead of nested arrays, the result is a single array of numbers ranging from 1 to 6.
Example 2 — Math
JavaScript has a built-in math object that allows us to do some fun math calculations. In this example we’ll be looking at Math.max(). If you’re unfamiliar, Math.max() returns the largest of zero or more numbers. Here are a few examples:
Math.max();
// -Infinity
Math.max(1, 2, 3);
// 3
Math.max(100, 3, 4);
// 100
As you can see, if you want to find the maximum value of multiple numbers, Math.max() requires multiple parameters. You unfortunately can’t simply use a single array as input. Before the spread syntax, the easiest way to use Math.max() on an array is to use .apply().
var arr = [2, 4, 8, 6, 0];
function max(arr) {
return Math.max.apply(null, arr);
}
console.log(max(arr));
It works, it’s just really annoying.
Now take a look at how we do the same exact thing with the spread syntax:
var arr = [2, 4, 8, 6, 0];
var max = Math.max(...arr);
console.log(max);
Instead of having to create a function and utilize the apply method to return the result of Math.max() , we only need two lines of code! The spread syntax expands our array elements and inputs each element in our array individually into the Math.max() method!
Example 3 — Copy an Array
In JavaScript, you can’t just copy an array by setting a new variable equal to already existing array. Consider the following code example:
var arr = ['a', 'b', 'c'];
var arr2 = arr;
console.log(arr2);
When you press run, you’ll get the following output:
['a', 'b', 'c']
Now, at first glance, it looks like it worked — it looks like we’ve copied the values of arr into arr2. But that’s not what has happened. You see, when working with objects in JavaScript (arrays are a type of object) we assign by reference, not by value. This means that arr2 has been assigned to the same reference as arr. In other words, anything we do to arr2 will also affect the original arr array (and vice versa). Take a look below:
var arr = ['a', 'b', 'c'];
var arr2 = arr;
arr2.push('d');
console.log(arr);
Above, we’ve pushed a new element d into arr2. Yet, when we log out the value of arr, you’ll see that the d value was also added to that array:
['a', 'b', 'c', 'd']
No need to fear though! We can use the spread operator!
Consider the code below. It’s almost the same as above. Instead though, we’ve used the spread operator within a pair of square brackets:
var arr = ['a', 'b', 'c'];
var arr2 = [...arr];
console.log(arr2);
Hit run, and you’ll see the expected output:
['a', 'b', 'c']
Above, the array values in arr expanded to become individual elements which were then assigned to arr2. We can now change the arr2 array as much as we’d like with no consequences on the original arr array:
var arr = ['a', 'b', 'c'];
var arr2 = [...arr];
arr2.push('d');
console.log(arr);
Again, the reason this works is because the value of arr is expanded to fill the brackets of our arr2 array definition. Thus, we are setting arr2 to equal the individual values of arr instead of the reference to arr like we did in the first example.
Bonus Example — String to Array
As a fun final example, you can use the spread syntax to convert a string into an array. Simply use the spread syntax within a pair of square brackets:
var str = "hello";
var chars = [...str];
console.log(chars);
For someone who wants to understand this simple and fast:
First of all, this is not a syntax only to React. This is syntax from ES6 called spread syntax which iterate (merge, add, etc.) the array and object. Read more about it here.
So to answer the question:
Let's imagine you have this tag:
<UserTag name="Supun" age="66" gender="male" />
And you do this:
const user = {
"name": "Joe",
"age": "50"
"test": "test-val"
};
<UserTag name="Supun" gender="male" {...user} age="66" />
Then the tag will be equal to this:
<UserTag name="Joe" gender="male" test="test-val" age="66" />
So when you used the spread syntax in a React tag, it took the tag's attribute as object attributes which merge (replace if it exists) with the given object user. Also, you might have noticed one thing that it only replaces before attribute, not after attributes. So in this example, age remains as it is.
It's just defining props in a different way in JSX for you!
It's using ... array and object operator in ES6 (object one not fully supported yet), so basically if you already define your props, you can pass it to your element this way.
So in your case, the code should be something like this:
function yourA() {
const props = {name='Alireza', age='35'};
<Modal {...props} title='Modal heading' animation={false} />
}
so the props you defined, now separated and can be reused if necessary.
It's equal to:
function yourA() {
<Modal name='Alireza' age='35' title='Modal heading' animation={false} />
}
These are the quotes from React team about spread operator in JSX:
JSX Spread Attributes
If you know all the properties that you want to place on a component
ahead of time, it is easy to use JSX:
var component = <Component foo={x} bar={y} />;
Mutating Props is Bad If you don't know which properties you want to set, you might be tempted to add them onto the object later:
var component = <Component />;
component.props.foo = x; // bad
component.props.bar = y; // also bad
This is an anti-pattern because it means that we can't help you check
the right propTypes until way later. This means that your propTypes
errors end up with a cryptic stack trace.
The props should be considered immutable. Mutating the props object
somewhere else could cause unexpected consequences so ideally it would
be a frozen object at this point.
Spread Attributes Now you can use a new feature of JSX called spread attributes:
var props = {};
props.foo = x;
props.bar = y;
var component = <Component {...props} />;
The properties of the object that you pass in are copied onto the
component's props.
You can use this multiple times or combine it with other attributes.
The specification order is important. Later attributes override
previous ones.
var props = { foo: 'default' };
var component = <Component {...props} foo={'override'} />;
console.log(component.props.foo); // 'override'
What's with the weird ... notation? The ... operator (or spread operator) is already supported for arrays in ES6. There is also
an ECMAScript proposal for Object Rest and Spread Properties. We're
taking advantage of these supported and developing standards in order
to provide a cleaner syntax in JSX.
For those who come from the Python world, JSX Spread Attributes are equivalent to
Unpacking Argument Lists (the Python **-operator).
I'm aware this is a JSX question, but working with analogies sometimes helps to get it faster.
Three dots ... represent spread operators or rest parameters.
It allows an array expression or string or anything which can be iterating to be expanded in places where zero or more arguments for function calls or elements for array are expected.
Merge two arrays
var arr1 = [1,2,3];
var arr2 = [4,5,6];
arr1 = [...arr1, ...arr2];
console.log(arr1); //[1, 2, 3, 4, 5, 6]
Copying array:
var arr = [1, 2, 3];
var arr2 = [...arr];
console.log(arr); //[1, 2, 3]
Note: Spread syntax effectively goes one level deep while copying an
array. Therefore, it may be unsuitable for copying multidimensional
arrays as the following example shows (it's the same with
Object.assign() and spread syntax).
Add values of one array to other at specific index e.g 3:
var arr1 = [4, 5]
var arr2 = [1, 2, 3, ...arr1, 6]
console.log(arr2); // [1, 2, 3, 4, 5, 6]
When calling a constructor with new:
var dateFields = [1970, 0, 1]; // 1 Jan 1970
var d = new Date(...dateFields);
console.log(d);
Spread in object literals:
var obj1 = { foo: 'bar', x: 42 };
var obj2 = { foo: 'baz', y: 13 };
var clonedObj = { ...obj1 };
console.log(clonedObj); // {foo: "bar", x: 42}
var mergedObj = { ...obj1, ...obj2 };
console.log(mergedObj); // {foo: "baz", x: 42, y: 13}
Note that the foo property of obj1 has been overwritten by the obj2 foo property.
As a rest parameter syntax which allows us to represent an indefinite number of arguments as an array:
function sum(...theArgs) {
return theArgs.reduce((previous, current) => {
return previous + current;
});
}
console.log(sum(1, 2, 3)); //6
console.log(sum(1, 2, 3, 4)); //10
Note: The spread syntax (other than in the case of spread properties) can be applied only to iterable objects:
So the following will throw an error:
var obj = {'key1': 'value1'};
var array = [...obj]; // TypeError: obj is not iterable
Reference1
Reference2
The ...(spread operator) is used in React to:
provide a neat way to pass props from parent to child components. E.g., given these props in a parent component,
this.props = {
username: "danM",
email: "dan#mail.com"
}
they could be passed in the following manner to the child,
<ChildComponent {...this.props} />
which is similar to this
<ChildComponent username={this.props.username} email={this.props.email} />
but way cleaner.
The three dots (...) are called the spread operator, and this is conceptually similar to the ES6 array spread operator, JSX
taking advantage of these supported and developing standards in order to provide a cleaner syntax in JSX
Spread properties in object initializers copies own enumerable
properties from a provided object onto the newly created object.
let n = { x, y, ...z };
n; // { x: 1, y: 2, a: 3, b: 4 }
References:
Spread Properties
JSX In Depth
It is common practice to pass props around in a React application. In doing this we able to apply state changes to the child component regardless of whether it is Pure or Impure (stateless or stateful). There are times when the best approach, when passing in props, is to pass in singular properties or an entire object of properties. With the support for arrays in ES6 we were given the "..." notation and with this we are now able to achieve passing an entire object to a child.
The typical process of passing props to a child is noted with this syntax:
var component = <Component foo={x} bar={y} />;
This is fine to use when the number of props is minimal but becomes unmanageable when the prop numbers get too much higher. A problem with this method occurs when you do not know the properties needed within a child component and the typical JavaScript method is to simple set those properties and bind to the object later. This causes issues with propType checking and cryptic stack trace errors that are not helpful and cause delays in debugging. The following is an example of this practice, and what not to do:
var component = <Component />;
component.props.foo = x; // bad
component.props.bar = y;
This same result can be achieved but with more appropriate success by doing this:
var props = {};
props.foo = x;
props.bar = y;
var component = Component(props); // Where did my JSX go?
But does not use JSX spread or JSX so to loop this back into the equation we can now do something like this:
var props = {};
props.foo = x;
props.bar = y;
var component = <Component {...props} />;
The properties included in "...props" are foo: x, bar: y. This can be combined with other attributes to override the properties of "...props" using this syntax:
var props = { foo: 'default' };
var component = <Component {...props} foo={'override'} />;
console.log(component.props.foo); // 'override'
In addition we can copy other property objects onto each other or combine them in this manner:
var oldObj = { foo: 'hello', bar: 'world' };
var newObj = { ...oldObj, foo: 'hi' };
console.log(newObj.foo); // 'hi';
console.log(newObj.bar); // 'world';
Or merge two different objects like this (this is not yet available in all react versions):
var ab = { ...a, ...b }; // merge(a, b)
Another way of explaining this, according to Facebook's react/docs site is:
If you already have "props" as an object, and you want to pass it in JSX, you can use "..." as a SPREAD operator to pass the whole props object. The following two examples are equivalent:
function App1() {
return <Greeting firstName="Ben" lastName="Hector" />;
}
function App2() {
const props = {firstName: 'Ben', lastName: 'Hector'};
return <Greeting {...props} />;
}
Spread attributes can be useful when you are building generic containers. However, they can also make your code messy by making it easy to pass a lot of irrelevant props to components that don't care about them. This syntax should be used sparingly.
It is called spreads syntax in JavaScript.
It use for destructuring an array or object in JavaScript.
Example:
const objA = { a: 1, b: 2, c: 3 }
const objB = { ...objA, d: 1 }
/* Result of objB will be { a: 1, b: 2, c: 3, d: 1 } */
console.log(objB)
const objC = { ....objA, a: 3 }
/* result of objC will be { a: 3, b: 2, c: 3, d: 1 } */
console.log(objC)
You can do it same result with Object.assign() function in JavaScript.
Reference: Spread syntax
The spread operator (triple operator) introduced in ECMAScript 6 (ES6). ECMAScript (ES6) is a wrapper of JavaScript.
The spread operator enumerable properties in props.
this.props =
{
firstName: 'Dan',
lastName: 'Abramov',
city: 'New York',
country: 'USA'
}
<Modal {...this.props} title='Modal heading' animation={false}>
{...this.props} = { firstName: 'Dan',
lastName: 'Abramov',
city: 'New York',
country: 'USA' }
But the main feature spread operator is used for a reference type.
For example,
let person= {
name: 'Alex',
age: 35
}
person1 = person;
person1.name = "Raheel";
console.log( person.name); // Output: Raheel
This is called a reference type. One object affects other objects, because they are shareable in memory. If you are getting a value independently means spread memory and both use the spread operator.
let person= {
name: 'Alex',
age: 35
}
person2 = {...person};
person2.name = "Shahzad";
console.log(person.name); // Output: Alex
... 3 dots represent the spread operator in JS.
Without a spread operator.
let a = ['one','one','two','two'];
let unq = [new Set(a)];
console.log(a);
console.log(unq);
Output:
(4) ['one', 'one', 'two', 'two']
[Set(2)]
With spread operator.
let a = ['one','one','two','two'];
let unq = [...new Set(a)];
console.log(a);
console.log(unq);
Output:
(4) ['one', 'one', 'two', 'two']
(2) ['one', 'two']
Spread operator! As most ppl have already answered the question elegantly, I wanted to suggest a quick list of ways to use the spread operator:
The ... spread operator is useful for many different routine tasks in JavaScript, including the following:
Copying an array
Concatenating or combining arrays
Using Math functions
Using an array as arguments
Adding an item to a list
Adding to state in React
Combining objects
Converting NodeList to an array
Check out the article for more details. How to use the Spread Operator. I recommend getting used to it. There are so many cool ways you can use spread operators.
Those 3 dots ... is not React terms. Those are JavaScript ES6 spread operators. Which helps to create a new array without disturbing the original one to perform a deep copy. This can be used for objects also.
const arr1 = [1, 2, 3, 4, 5]
const arr2 = arr1 // [1, 2, 3, 4, 5]
/*
This is an example of a shallow copy.
Where the value of arr1 is copied to arr2
But now if you apply any method to
arr2 will affect the arr1 also.
*/
/*
This is an example of a deep copy.
Here the values of arr1 get copied but they
both are disconnected. Meaning if you
apply any method to arr3 it will not
affect the arr1.
*/
const arr3 = [...arr1] // [1, 2, 3, 4, 5]
<Modal {...{ title: "modal heading", animation: false, ...props} />
Much cleaner.
Those are called spreads. Just as the name implies, it means it's putting whatever the value of it in those array or objects.
Such as:
let a = [1, 2, 3];
let b = [...a, 4, 5, 6];
console.log(b);
> [1, 2, 3, 4, 5, 6]
The spread syntax allows an data structures like array and object to destructure
them for either to extract a value from them or to add a value to them.
e.g
const obj={name:"ram",age:10} const {name}=obj
from above example we can say that we destructured the obj and extracted name from that object.
similarly,
const newObj={...obj,address:"Nepal"}
from this example we added a new property to that object.
This is similar in case of array too.
The Spread operator lets you expand an iterable like an object, string, or array into its elements while the Rest operator does the inverse by reducing a set of elements into one array.

Difference between fill and fill map

I came across some code which was filling an array of objects like so:
const getObj = () => {
return {a: 1, b: 2, c: 3};
}
const arr = Array(3).fill(null).map(getObj);
console.log(arr);
However, I'm wondering what the main purpose of fill(null).map(getObj) is? It seems redundant as I can simply write the following and get the same resulting array:
const getObj = () => {
return {a: 1, b: 2, c: 3};
}
const arr = Array(3).fill(getObj());
console.log(arr);
So, I'm wondering if these two lines of code do exactly the same thing or if there is something I'm missing?
The resulting arrays (top array first method with fill + map bottom array is only using map):
Array(3).fill(getObj()) will fill your array with references to the same object, Array(3).fill(null).map(getObj) will create object per element. See the example below:
const getObj = () => {
return {a: 1, b: 2, c: 3};
}
const arr = Array(3).fill(null).map(getObj);
arr[0].b=4;
console.log(JSON.stringify(arr));
const arr1 = Array(3).fill(getObj());
arr1[0].b=4;
console.log(JSON.stringify(arr1))
When it comes to Array.fill it is stated in the documentation that:
When fill gets passed an object, it will copy the reference and fill
the array with references to that object.
So using a Array.fill with objects has somewhat limited application unless you really want to have multiple objects pointing to the same reference. In more than few use cases however that would lead to bugs if not understood.
For the 2nd case where you do Array(3).fill(null).map(getObj) this is one of the ways to create a new array based on a given arbitrary size and at the same time fill it with new objects.
The real need for the fill(null) is due to the fact that calling Array(3) would only do one thing. Create a new array and set its length property to 3. That is it!
let arr = Array(3) // returns new array with its "length" property set to 3
console.log(arr) // [empty × 3] <-- browser console
So that array now has only length and bunch of empty elements. You can't do much with it until it actually has values. Therefore the need for fill so that you give it any value and then map through it to set the values you actually want. Using Array.map and calling each iteration your function guarantees you do not have same references. You could have skipped the fill step and done something like this:
const getObj = () => ({a: 1, b: 2, c: 3})
// using array destructuring
let arr = [...Array(3)].map(getObj)
arr[0].a = 3
console.log(arr)
// using Array.from
let arr2 = Array.from(Array(3)).map(getObj)
arr2[0].a = 3
console.log(arr2)
There are somewhat shorter and get you the exact same result of filling the array with specified length with objects and not references to the same object.
The trick here is that both would "fill" the array after it is defined with undefined values instead, after which the map would fill it with the values we want.

point free where arguments are in the wrong order

I want to write a function using Ramda's standard function set that given a dictionary and a key, it will increment the value for the key. Example
fn('foo', {}) // => {foo: 1}
fn('foo', {foo: 1}) // => {foo: 2}
I've gotten pretty close but am missing a way to curry properly.
I have a method that takes a key and an object and returns one more:
// count :: Any -> Number
var count = R.compose(R.inc, R.defaultTo(0))
// countProp :: String -> Object -> Number
var countProp = R.curry(R.compose(count, (R.prop(R.__))))
countProp('foo', {foo:1}) // 2
countProp('foo', {}) // 1
Now I want to return a new data structure
// accum :: String -> Object -> Object
var accum = R.curry(function(key, obj){
return R.assoc(key, countProp(key, obj), obj)
})
accum('foo', {foo: 1}) // => {foo: 2}
But the issue is that in order to make this point free, I have to figure out how to get the values in the functions setup to get curried in the proper order. What am I doing wrong? Should I set up this function differently? I tried to set it up so both dependent functions would both take the key first, then the object, but I'm missing something. Should I be considering a specific Functor for this?
Thanks!
Several points:
First, if #davidchambers' solution does what you need, that's great. It will be even better when the next version of Ramda is released and lensProp is added, which will make this just
var fooLens = R.lensProp('foo');
fooLens.map(R.inc, {foo: 1, bar: 2}); // => {foo: 2, bar: 2}
Second, there is a difference between your original function and either lens version:
accum('foo', {bar: 1}); //=> {"bar":1,"foo":1}
fooLens.map(R.inc, {bar: 1}); //=> {"bar":1,"foo":null}
Third, regardless of all this, if you are interested in determining how to wrap your function up in a points-free manner, Ramda has several functions that will help. There is one helper function nthArg which does nothing but return a function that return the nth argument of the outer function in which it's called. Then there are several functions that act as extended versions of compose including useWith and converge.
You can use them like this:
var accum = R.converge(R.assoc, R.nthArg(0), countProp, R.nthArg(1));
accum('foo', {foo: 1, bar: 2}); // => {foo: 2, bar: 2}
accum('foo', {bar: 2}); // => {foo: 1, bar: 2}
In this code, converge passes the arguments (key and obj) to each of the functions passed as parameters, except for the first one, then passes the results of each of those to the that first function.
Finally, although this shows a way to write this code points-free, and it's not in the end too horrible, it's arguably less clear than your earlier version that isn't points-free. I love points-free code. But sometimes we make a fetish of it, making code points-free for no good reason. If you can't in the end use a lens version, you might want to think carefully whether a points-free solution is actually clearer than the alternative.
You could use R.lens:
const fooLens = R.lens(R.prop('foo'), R.assoc('foo'));
fooLens.map(R.inc, {foo: 1, bar: 2}); // => {foo: 2, bar: 2}
fooLens.map(R.inc, {foo: 2, bar: 2}); // => {foo: 3, bar: 2}
fooLens.map(R.inc, {foo: 3, bar: 2}); // => {foo: 4, bar: 2}
Lenses make it possible to create a succession of values without undermining the integrity of a succeeded value by mutating it.

Categories

Resources