Using this or new in JS? - javascript

I've got 3 codes :
var control = new Control();
function Control() {
this.doSomethingElse = function() {...}
this.doSomething = function () {
control.doSomethingElse();
}
}
Or
var control = new Control();
function Control() {
var self = this;
this.doSomethingElse = function() {...}
this.doSomething = function () {
self.doSomethingElse();
}
}
Or
var control = Control();
function Control() {
var self = this;
this.doSomethingElse = function() {...}
this.doSomething = function () {
self.doSomethingElse();
}
return self;
}
Important : The function is a controller, and just declared once. Then I'm using "control" everywhere in my code...
I was wondering if the control.doSomethingElse() was slow ?
In the end, what is the right thing to do and/or the fastest code in those exemple ?
Thanks !

The first is wrong - an object should never internally use the variable name by which it is known outside. Other code could change that variable to point to something else, breaking this code.
The third is also wrong - when calling Control() without new the assignments to this.foo inside will end up getting attached to the global object (except in strict mode, where there's no implicit this on bare function calls, so the assignment to this.doSomethingElse tries to attach to undefined, causing a runtime error).
That only leaves the second as appropriate, but ultimately it's a question of correctness, not performance.

Do not define methods in constructor - that means defining them every time an instance is created. Use Control.prototype.foo = function() {} instead. Also you do not need to return this if you're using new operator - that's the whole point of new operator.
The recommended approach is this:
function MyClass(param1) {
// Here we're changing the specific instance of an object
this.property1 = param1;
}
// Prototype will be shared with all instances of the object
// any modifications to prototype WILL be shared by all instances
MyClass.prototype.printProperty1 = function() {
console.log(this.property1);
}
var instance = new MyClass("Hello world!");
instance.printProperty1(); // Prints hello world
To understand this code, you need to understand javascript's prototype-based inheritance model. When you create instance of MyClass, you get a new object that inherits any properties present in MyClass.prototype. Read more about it.
Also I wonder:
The function is a controller, and just declared once.
If you're not using this multiple times, you don't need to create something like class. You can do this instead:
var control = {doSomething:function() { ... }};
I assume you are used to Java, where everything must be a class, whether it makes sense or not. Javascript is different, you can also make single objects or functions as you need.

Related

Convert Calls to undefined function in javascript [duplicate]

In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.

Javascript - Handle function calls dynamically [duplicate]

In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.

javascript: constructor function vs revealing module pattern for single use

I have come to understand that constructor functions can be instantiated to create new objects in javascript which has its own _proto_ property and also giving the property 'prototype' to the constructor function.
function MyController() {
var controllerName = 'initialcontroller';
function init() {
console.log(controllerName);
}
this.init = init;
}
Here, init can be called like this:
var mycontroller = new MyController();
mycontroller.init();
Supposing I am only instantiating only once and never again, isn't this an overkill if I don't intend to use all the prototype properties being provided by the MyController.prototype ?
Question: Instead, can i not code like this using the revealing module pattern?
var myController = function() {
var controllerName = 'initialcontroller';
function init() {
console.log(controllerName);
}
return {
init : init
}
}();
Here, init can be called like this:
myController.init();
In this case, if I try to access any property inside myController that is not present, the javascript engine won't try to find whether the property exists anywhere in the prototype chain, thus saving my time.
Or is there any other advantages of instantiating a function that i am overlooking?
If you simply want a "singleton"-like object with some methods and other properties, you could just use an object literal to simplify things even more:
var myController = {
init: function (foo) {
// do something with foo or whatever
}
}
myController.init("bar");
Or - if you need some "private" internal state, use the regular revealing module pattern:
var myController = (function () {
var internal = "i am private";
return {
init: function () {
// blah blah
}
};
}());
myController.init();
About the prototype lookup time: Yeah, theoretically, the lookup traverses up the prototype chain when you're trying to access a non-existing property. Theoretically, this might be a tiny bit faster for plain ol' Object instances that have "no" specific constructor. In reality, this performance impact should be quite negligible. Don't attempt to optimize here unless you REALLY need it. :)

Recommend way of scoping private members in javascript module

Conside the following JavaScript code. The function definitions all seem to achieve the same thing. Is there any recommended convention for defining the functions which are then 'revealed' in the return dictionary object?
var testModule = (function(){
var counter = 0;
var localFunc1 = function() {
return "local 1";
}
function localFunc2() {
return "local 2";
}
this.localFunc3 = function() {
return "local 3";
}
localFunc4 = function() {
return "local 4";
}
return {
proxy1: localFunc1,
proxy2: localFunc2,
proxy3: localFunc3,
proxy4: localFunc4
};
})();
I don't think that there is any real preferred method. The most common setup I've seen involves creating all of your methods as local (using var) then returning an object that exposes the public methods.
A couple of things to note:
this.localFunc3 will only work if your object is instantiated with the 'new' keyword
when returning your object, remove the () from each function so that you are returning a reference to the function and not the function's returned value
localFunc4 will be global since it has no 'var' keyword in front of it
When working with a module pattern like this, I tend to go for something along the lines of:
var Obj = ( function () {
var private_static = 'this value is static';
return function () {
//-- create return object
var _self = {};
//-- create private variables
var private_variable = 'this value is private';
var func1 = function () {
return 'value 1';
};
//-- attach public methods
_self.func1 = func1;
//-- return the object
return _self;
};
} )();
Some notes about this method:
allows for private static variables (if you don't need private static variables, you can remove the closure)
by creating the _self reference first, you can pass a self reference to any objects instantiated from within that need a reference to their parent
I like that I can reference all internal functions without _self.whatever or this.whatever, ignoring whether or not they are private or public
The definitions do not achieve the exact same thing.
var localFunc1 and function localFunc2 do the same thing, they create functions only available inside your outer function.
this.localFunc3 and localFunc4 are not really local functions: they both belong to the window object (this in that context is window, and localFunc4 is declared without the var statement).
So, the latter two don't even need to be exposed on your returned object, since they're already global. And, actually, you are not exposing any functions on your return object, you are exposing their return values, since you invoke each of them. Were you trying to do this?
return {
proxy1: localFunc1,
proxy2: localFunc2,
proxy3: localFunc3,
proxy4: localFunc4
};
Note: I recommend you watch this video where Douglas Crockford explains the multiple ways to deal with inheritance in JavaScript. I believe you are looking for what he calls "parasitic inheritance".

Better way to Dynamically Create New Objects in JavaScript?

I have two objects defined something like this (simplified for sake of the question):
var firstObject = function(){ };
firstObject.prototype.doSomethingFirstObjectsDo();
var secondObject = function(){ };
secondObject.prototype.doSomethingSecondObjectsDo();
Next I have an Object Manager which works as a sort of interface for my main application to create objects:
var ObjectManager = function()
{
this.create = {
FIRST:firstObject,
SECOND:secondObject
};
};
ObjectManager.prototype.createObject = function(type)
{
return new this.create[type]();
};
Finally an example of the main application using the Object Manager to Dynamically Create Either firstObjects or secondObjects:
var MainApplication = function(options)
{
this.objectTypes = options.objectTypes;
this.objManager = new ObjectManager();
};
MainApplication.prototype.createObjects = function()
{
//Iterate through all the types this application needs to create
for (var type in this.objectTypes)
{
var dynamicallyCreatedObject = this.objManager.createObject(type);
//Do Something Else
}
};
This approach works great, but has one disadvantage that I can see - being that you need to formally define the name of the Constructor Function for each Object "Type" that could be created.
In the event that I wanted to create a "thirdObject" - which would be already formally defined - I would also need to go back and add a reference to the "thirdObject"'s constructor function in the ObjectManager.
Ideally, I would like to remove the need for an "ObjectManager" and simply be able to dynamically call the constructor method with the "new" keyword like this:
//Inside MainApplication
for (var type in this.objectTypes)
{
var dynamicallyCreateObject = new [type](); //Invalid Syntax
};
Anybody have any thoughts on a better way to handle dynamically creating different objects in JavaScript using the "new" keyword?
Responding to Some Initial Comments:
I should have mentioned that the entire application is enclosed within an anonymous function.
(function(){
//All of My Mentioned Code is Found Here
$(document).ready(function(){
mainApp = window.mainApp = new MainApplication(options);
});
});
#casablanca: From what you are saying I believe I'll need to actually define a NameSpace inside the entire anonymous function, since once it finishes I have no real way to directly refer to that scope again. I think I know what I need to do now, I was kind of hoping there was another way to work with that "new" keyword - but it doesn't seem like that is the case.
This:
var dynamicallyCreateObject = new [type]();
is almost correct, except you need an outer object to access properties. In the case that your constructors are global, you can use window:
var dynamicallyCreateObject = new window[type]();
Ideally, they should be within your own namespace, in which case you can do something similar:
var dynamicallyCreateObject = new MyNamespace[type]();
Assuming I understand your desire (and I'm not sure that I do) you can use the global window object in DOM 0 browsers, or create your own reference to the global scope, and use that to look up variables defined locally.
var $global = this;
var firstObject = function(){};
var objName = "firstObject";
var instance = new $global[objName];

Categories

Resources