How to draw multiple paths for a moving image on canvas - javascript

I´m just beginning to learn Html5 canvas, the main idea is to make an image move through multiple lines, creating paths, the total distance of the lines should be 10km, so i will be using 10 lines of 1km, using a javascript prompt, the user will say how many km or mts the image will advance.
I think i´ll have to draw ten paths of lines, making the path of the image, but i still don´t know how to move the image through all the lines.
The following code, move the image once, with no line to follow, this is what i have so far:
$(function(){
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var requestAnimationFrame = window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.oRequestAnimationFrame || window.msRequestAnimationFrame || function (callback) {
window.setTimeout(callback, 1000 / 60);
};
var pathArray = []; var enx = prompt("coordenada en x");
var eny = prompt("coordenada en y");
var num1 = parseInt(enx);
var num2 = parseInt(eny);
// Coordenada inicial
pathArray.push({
x: 50,
y: 50
});
pathArray.push({
x: num1,
y: num2
});
var polypoints = makePolyPoints(pathArray);
var width = 2;
var height = 5;
var position = 0;
var speed = 2;
animate();
var fps = 60;
function animate() {
setTimeout(function () {
requestAnimFrame(animate);
// calcular nueva posicion
position += speed;
if (position > polypoints.length - 1) {
return;
}
var pt = polypoints[position];
// dibujar
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.save();
ctx.beginPath();
ctx.translate(pt.x, pt.y);
// Objeto de la imagen del corredor
img = new Image();
// url de imagen
img.src = "img/mono_animar.png";
ctx.drawImage(img,0,0);
ctx.restore();
}, 1000 / fps);
}
function makePolyPoints(pathArray)
{
var points = [];
for (var i = 1; i < pathArray.length; i++) {
var startPt = pathArray[i - 1];
var endPt = pathArray[i];
var dx = endPt.x - startPt.x;
var dy = endPt.y - startPt.y;
for (var n = 0; n <= 100; n++)
{
var x = startPt.x + dx * n / 100;
var y = startPt.y + dy * n / 100;
points.push({
x: x,
y: y
});
}
}
return (points);}});
But i need something like this:
http://jsfiddle.net/ExpertSystem/qxgkc/
Except that the user will type a number from 1 to 12km in order to move the image along the path lines.

You could, in the draw loop implement a "line drawing algorithm" that does not exactly draw a line but draws an item at a place where that point would be.
function line(x0, y0, x1, y1){
var dx = Math.abs(x1-x0);
var dy = Math.abs(y1-y0);
var sx = (x0 < x1) ? 1 : -1;
var sy = (y0 < y1) ? 1 : -1;
var err = dx-dy;
while(true){ // put draw loop here.
drawImage(image,x0,y0);//setPixel(x0,y0); // Do what you need to for this
if ((x0==x1) && (y0==y1)) break;
var e2 = 2*err;
if (e2 >-dy){ err -= dy; x0 += sx; }
if (e2 < dx){ err += dx; y0 += sy; }
}
}
code taken from: Bresenham algorithm in Javascript
I would suggest using a library like p5.js to do something like this.
http://p5js.org

Related

How can I reverse the direction of this square after it reaches a certain value?

I'm trying to create an idle animation where the red rectangle moves back and forth slightly in a loop. For some reason once it reaches the specified threshhold instead of proceeding to move in the opposite direction, it just stops.
What did I do wrong?
<canvas id="myCanvas" width="1500" height="500" style="border:1px solid #c3c3c3;">
Your browser does not support the canvas element.
</canvas>
<script>
var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
// Spaceship structure
var shipWidth = 250;
var shipHeight = 100;
// Canvas parameters
var cWidth = canvas.width;
var cHeight = canvas.height;
// Positioning variables
var centerWidthPosition = (cWidth / 2) - (shipWidth / 2);
var centerHeightPosition = (cHeight / 2) - (shipHeight / 2);
var requestAnimationFrame = window.requestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame;
function drawShip(){
ctx.clearRect(0, 0, cWidth, cHeight);
ctx.fillStyle = "#FF0000";
ctx.fillRect(centerWidthPosition,centerHeightPosition,shipWidth,shipHeight);
centerWidthPosition--;
if (centerWidthPosition < 400){
++centerWidthPosition;
}
requestAnimationFrame(drawShip);
}
drawShip();
</script>
#TheAmberlamps explained why it's doing that. Here I offer you a solution to achieve what I believe you are trying to do.
Use a velocity variable that changes magnitude. X position always increases by velocity value. Velocity changes directions at screen edges.
// use a velocity variable
var xspeed = 1;
// always increase by velocity
centerWidthPosition += xspeed;
// screen edges are 0 and 400 in this example
if (centerWidthPosition > 400 || centerWidthPosition < 0){
xspeed *= -1; // change velocity direction
}
I added another condition in your if that causes the object to bounce back and forth. Remove the selection after || if you don't want it doing that.
Your function is caught in a loop; once centerWidthPosition reaches 399 your conditional makes it increment back up to 400, and then it decrements back to 399.
here is another one as a brain teaser - how would go by making this animation bounce in the loop - basically turn text into particles and then reverse back to text and reverse back to particles and back to text and so on and on and on infinitely:
var random = Math.random;
window.onresize = function () {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
};
window.onresize();
var ctx = canvas.getContext('2d');
ctx.font = 'bold 50px "somefont"';
ctx.textBaseline = 'center';
ctx.fillStyle = 'rgba(255,255,255,1)';
var _particles = [];
var particlesLength = 0;
var currentText = "SOMETEXT";
var createParticle = function createParticle(x, y) {_particles.push(new Particle(x, y));};
var checkAlpha = function checkAlpha(pixels, i) {return pixels[i * 4 + 3] > 0;};
var createParticles = function createParticles() {
var textSize = ctx.measureText(currentText);
ctx.fillText(currentText,Math.round((canvas.width / 2) - (textSize.width / 2)),Math.round(canvas.height / 2));
var imageData = ctx.getImageData(1, 1, canvas.width, canvas.height);
var pixels = imageData.data;
var dataLength = imageData.width * imageData.height;
for (var i = 0; i < dataLength; i++) {
var currentRow = Math.floor(i / imageData.width);
var currentColumn = i - Math.floor(i / imageData.height);
if (currentRow % 2 || currentColumn % 2) continue;
if (checkAlpha(pixels, i)) {
var cy = ~~(i / imageData.width);
var cx = ~~(i - (cy * imageData.width));
createParticle(cx, cy);
}}
particlesLength = _particles.length;
};
var Point = function Point(x, y) {
this.set(x, y);
};
Point.prototype = {
set: function (x, y) {
x = x || 0;
y = y || x || 0;
this._sX = x;
this._sY = y;
this.reset();
},
add: function (point) {
this.x += point.x;
this.y += point.y;
},
multiply: function (point) {
this.x *= point.x;
this.y *= point.y;
},
reset: function () {
this.x = this._sX;
this.y = this._sY;
return this;
},
};
var FRICT = new Point(0.98);//set to 0 if no flying needed
var Particle = function Particle(x, y) {
this.startPos = new Point(x, y);
this.v = new Point();
this.a = new Point();
this.reset();
};
Particle.prototype = {
reset: function () {
this.x = this.startPos.x;
this.y = this.startPos.y;
this.life = Math.round(random() * 300);
this.isActive = true;
this.v.reset();
this.a.reset();
},
tick: function () {
if (!this.isActive) return;
this.physics();
this.checkLife();
this.draw();
return this.isActive;
},
checkLife: function () {
this.life -= 1;
this.isActive = !(this.life < 1);
},
draw: function () {
ctx.fillRect(this.x, this.y, 1, 1);
},
physics: function () {
if (performance.now()<nextTime) return;
this.a.x = (random() - 0.5) * 0.8;
this.a.y = (random() - 0.5) * 0.8;
this.v.add(this.a);
this.v.multiply(FRICT);
this.x += this.v.x;
this.y += this.v.y;
this.x = Math.round(this.x * 10) / 10;
this.y = Math.round(this.y * 10) / 10;
}
};
var nextTime = performance.now()+3000;
createParticles();
function clearCanvas() {
ctx.fillStyle = 'rgba(0,0,0,1)';
ctx.fillRect(0, 0, canvas.width, canvas.height);
}
(function clearLoop() {
clearCanvas();
requestAnimationFrame(clearLoop);
})();
(function animLoop(time) {
ctx.fillStyle = 'rgba(255,255,255,1)';
var isAlive = true;
for (var i = 0; i < particlesLength; i++) {
if (_particles[i].tick()) isAlive = true;
}
requestAnimationFrame(animLoop);
})();
function resetParticles() {
for (var i = 0; i < particlesLength; i++) {
_particles[i].reset();
}}

How to make blur effect particles in javascript

Hi I want to make a blur effect particle like this:
Can I use shadowBlur and shadowOffsetX/shadowOffsetY to do this? The actual shine will glow and fade a little bit repeatedly, so if I have to write some kind of animation how can I achieve this?
I have tried this code (jsfiddle example) but it doesn't look like the effect. So I wonder how to blur and glow the particle at the same time?
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
const ra = window.requestAnimationFrame
|| window.webkitRequestAnimationFrame
|| window.mozRequestAnimationFrame
|| window.oRequestAnimationFrame
|| window.msRequestAnimationFrame
|| function(callback) {
window.setTimeout(callback, 1000 / 60);
};
class Particle {
constructor(options) {
this.ctx = options.context;
this.x = options.x;
this.y = options.y;
this.radius = options.radius;
this.lightSize = this.radius;
this.color = options.color;
this.lightDirection = true;
}
glow() {
const lightSpeed = 0.5;
this.lightSize += this.lightDirection ? lightSpeed : -lightSpeed;
if (this.lightSize > this.radius || this.lightSize < this.radius) {
this.lightDirection = !this.lightDirection;
}
}
render() {
this.ctx.clearRect(0, 0, canvas.width, canvas.height);
this.glow();
this.ctx.globalAlpha = 0.5;
this.ctx.fillStyle = this.color;
this.ctx.beginPath();
this.ctx.arc(this.x, this.y, this.lightSize,
0, Math.PI * 2
);
this.ctx.fill();
this.ctx.globalAlpha = 0.62;
this.ctx.beginPath();
this.ctx.arc(this.x, this.y, this.radius * 0.7, 0, Math.PI * 2);
this.ctx.shadowColor = this.color;
this.ctx.shadowBlur = 6;
this.ctx.shadowOffsetX = 0;
this.ctx.shadowOffsetY = 0;
this.ctx.fill();
}
}
var particle = new Particle({
context: ctx,
x: 60,
y: 80,
radius: 12,
color: '#4d88ff'
});
function run() {
particle.render();
ra(run);
}
run();
<canvas id='canvas'></canvas>
There are several ways to do this. For a particle system my option is to pre render the blur using a blur filter. A common filter is the convolution filter. It uses a small array to determine the amount neighboring pixels contribute to each pixel of the image. You are best to look up convolution functions to understand it.
Wiki Convolution and Wiki Gaussian blur for more info.
I am not much of a fan of the standard Gaussian blur or the convolution filter used so in the demo snippet below you can find my version that I think creates a much better blur. The convolution blur filter is procedurally created and is in the imageTools object.
To use create a filter pass an object with properties size the blur amount in pixels and power is the strength. Lower powers is less spread on the blur.
// image must be loaded or created
var blurFilter = imageTools.createBlurConvolutionArray({size:17,power:1}); // size must be greater than 2 and must be odd eg 3,5,7,9...
// apply the convolution filter on the image. The returned image may be a new
//image if the input image does not have a ctx property pointing to a 2d canvas context
image = imageTools.applyConvolutionFilter(image,blurFilter);
In the demo I create a image, draw a circle on it, copy it and pad it so that there is room for the blur. Then create a blur filter and apply it to the image.
When I render the particles I first draw all the unblurred images, then draw the blurred copies with the ctx.globalCompositeOperation = "screen"; so that they have a shine. To vary the amount of shine I use the ctx.globalAlpha to vary the intensity of the rendered blurred image. To improve the FX I have drawn the blur image twice, once with oscillating scale and next at fixed scale and alpha.
The demo is simple, image tools can be found at the top. Then there is some stuff to setup the canvas and handle resize event. Then there is the code that creates the images, and apply the filters. Then starts the render adds some particles and renders everything.
Look in the function drawParticles for how I draw everything.
imageTools has all the image functions you will need. The imageTools.applyConvolutionFilter will apply any filter (sharpen, outline, and many more) you just need to create the appropriate filter. The apply uses the photon count colour model so gives a very high quality result especially for blurs type effects. (though for sharpen you may want to get in and change the squaring of the RGB values, I personally like it other do not)
The blur filter is not fast so if you apply it to larger images It would be best that you break it up in so you do not block the page execution.
A cheap way to get a blur is to copy the image to blur to a smaller version of itself, eg 1/4 then render it scaled back to normal size, the canvas will apply bilinear filtering on the image give a blur effect. Not the best quality but for most situations it is indistinguishable from the more sophisticated blur that I have presented.
UPDATE
Change the code so that the particles have a bit of a 3dFX to show that the blur can work up to larger scales. The blue particles are 32 by 32 image and the blur is 9 pixels with the blur image being 50by 50 pixels.
var imageTools = (function () {
var tools = {
canvas : function (width, height) { // create a blank image (canvas)
var c = document.createElement("canvas");
c.width = width;
c.height = height;
return c;
},
createImage : function (width, height) {
var image = this.canvas(width, height);
image.ctx = image.getContext("2d");
return image;
},
image2Canvas : function (img) {
var image = this.canvas(img.width, img.height);
image.ctx = image.getContext("2d");
image.drawImage(img, 0, 0);
return image;
},
padImage : function(img,amount){
var image = this.canvas(img.width + amount * 2, img.height + amount * 2);
image.ctx = image.getContext("2d");
image.ctx.drawImage(img, amount, amount);
return image;
},
getImageData : function (image) {
return (image.ctx || (this.image2Canvas(image).ctx)).getImageData(0, 0, image.width, image.height);
},
putImageData : function (image, imgData){
(image.ctx || (this.image2Canvas(image).ctx)).putImageData(imgData,0, 0);
return image;
},
createBlurConvolutionArray : function(options){
var i, j, d; // misc vars
var filterArray = []; // the array to create
var size = options.size === undefined ? 3: options.size; // array size
var center = Math.floor(size / 2); // center of array
// the power ? needs descriptive UI options
var power = options.power === undefined ? 1: options.power;
// dist to corner
var maxDist = Math.sqrt(center * center + center * center);
var dist = 0; // distance sum
var sum = 0; // weight sum
var centerWeight; // center calculated weight
var totalDistance; // calculated total distance from center
// first pass get the total distance
for(i = 0; i < size; i++){
for(j = 0; j < size; j++){
d = (maxDist-Math.sqrt((center-i)*(center-i)+(center-j)*(center-j)));
d = Math.pow(d,power)
dist += d;
}
}
totalDistance = dist; // total distance to all points;
// second pass get the total weight of all but center
for(i = 0; i < size; i++){
for(j = 0; j < size; j++){
d = (maxDist-Math.sqrt((center-i)*(center-i)+(center-j)*(center-j)));
d = Math.pow(d,power)
d = d/totalDistance;
sum += d;
}
}
var scale = 1/sum;
sum = 0; // used to check
for(i = 0; i < size; i++){
for(j = 0; j < size; j++){
d = (maxDist-Math.sqrt((center-i)*(center-i)+(center-j)*(center-j)));
d = Math.pow(d,power)
d = d/totalDistance;
filterArray.push(d*scale);
}
}
return filterArray;
},
applyConvolutionFilter : function(image,filter){
imageData = this.getImageData(image);
imageDataResult = this.getImageData(image);
var w = imageData.width;
var h = imageData.height;
var data = imageData.data;
var data1 = imageDataResult.data;
var side = Math.round(Math.sqrt(filter.length));
var halfSide = Math.floor(side/2);
var r,g,b,a,c;
for(var y = 0; y < h; y++){
for(var x = 0; x < w; x++){
var ind = y*4*w+x*4;
r = 0;
g = 0;
b = 0;
a = 0;
for (var cy=0; cy<side; cy++) {
for (var cx=0; cx<side; cx++) {
var scy = y + cy - halfSide;
var scx = x + cx - halfSide;
if (scy >= 0 && scy < h && scx >= 0 && scx < w) {
var srcOff = (scy*w+scx)*4;
var wt = filter[cy*side+cx];
r += data[srcOff+0] * data[srcOff+0] * wt;
g += data[srcOff+1] * data[srcOff+1] * wt;
b += data[srcOff+2] * data[srcOff+2] * wt;
a += data[srcOff+3] * data[srcOff+3] * wt;
}
}
}
data1[ind+0] = Math.sqrt(Math.max(0,r));
data1[ind+1] = Math.sqrt(Math.max(0,g));
data1[ind+2] = Math.sqrt(Math.max(0,b));
data1[ind+3] = Math.sqrt(Math.max(0,a));
}
}
return this.putImageData(image,imageDataResult);
}
};
return tools;
})();
/** SimpleFullCanvasMouse.js begin **/
const CANVAS_ELEMENT_ID = "canv";
const U = undefined;
var w, h, cw, ch; // short cut vars
var canvas, ctx;
var globalTime = 0;
var createCanvas, resizeCanvas, setGlobals;
var L = typeof log === "function" ? log : function(d){ console.log(d); }
createCanvas = function () {
var c,cs;
cs = (c = document.createElement("canvas")).style;
c.id = CANVAS_ELEMENT_ID;
cs.position = "absolute";
cs.top = cs.left = "0px";
cs.zIndex = 1000;
document.body.appendChild(c);
return c;
}
resizeCanvas = function () {
if (canvas === U) { canvas = createCanvas(); }
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
if (typeof setGlobals === "function") { setGlobals(); }
}
setGlobals = function(){
cw = (w = canvas.width) / 2; ch = (h = canvas.height) / 2;
if(particles && particles.length > 0){
particles.length = 0;
}
}
resizeCanvas(); // create and size canvas
window.addEventListener("resize",resizeCanvas); // add resize event
const IMAGE_SIZE = 32;
const IMAGE_SIZE_HALF = 16;
const GRAV = 2001;
const NUM_PARTICLES = 90;
var background = imageTools.createImage(8,8);
var grad = ctx.createLinearGradient(0,0,0,8);
grad.addColorStop(0,"#000");
grad.addColorStop(1,"#048");
background.ctx.fillStyle = grad;
background.ctx.fillRect(0,0,8,8);
var circle = imageTools.createImage(IMAGE_SIZE,IMAGE_SIZE);
circle.ctx.fillStyle = "#5BF";
circle.ctx.arc(IMAGE_SIZE_HALF, IMAGE_SIZE_HALF, IMAGE_SIZE_HALF -2,0, Math.PI * 2);
circle.ctx.fill();
var blurFilter = imageTools.createBlurConvolutionArray({size:9,power:1}); // size must be greater than 2 and must be odd eg 3,5,7,9...
var blurCircle = imageTools.padImage(circle,9);
blurCircle = imageTools.applyConvolutionFilter(blurCircle,blurFilter)
var sun = imageTools.createImage(64,64);
grad = ctx.createRadialGradient(32,32,0,32,32,32);
grad.addColorStop(0,"#FF0");
grad.addColorStop(1,"#A40");
sun.ctx.fillStyle = grad;
sun.ctx.arc(32,32,32 -2,0, Math.PI * 2);
sun.ctx.fill();
var sunBlur = imageTools.padImage(sun,17);
blurFilter = imageTools.createBlurConvolutionArray({size:17,power:1}); // size must be greater than 2 and must be odd eg 3,5,7,9...
sunBlur = imageTools.applyConvolutionFilter(sunBlur,blurFilter);
var particles = [];
var createParticle = function(x,y,dx,dy){
var dir = Math.atan2(y-ch,x-cw);
var dist = Math.sqrt(Math.pow(y-ch,2)+Math.pow(x-cw,2));
var v = Math.sqrt(GRAV / dist); // get apporox orbital speed
return {
x : x,
y : y,
dx : dx + Math.cos(dir + Math.PI/2) * v, // set orbit speed at tangent
dy : dy + Math.sin(dir + Math.PI/2) * v,
s : (Math.random() + Math.random() + Math.random())/4 + 0.5, // scale
v : (Math.random() + Math.random() + Math.random()) / 3 + 2, // glow vary rate
};
}
var depthSort = function(a,b){
return b.y - a.y;
}
var updateParticles = function(){
var i,p,f,dist,dir;
for(i = 0; i < particles.length; i ++){
p = particles[i];
dist = Math.sqrt(Math.pow(cw-p.x,2)+Math.pow(ch-p.y,2));
dir = Math.atan2(ch-p.y,cw-p.x);
f = GRAV * 1 / (dist * dist);
p.dx += Math.cos(dir) * f;
p.dy += Math.sin(dir) * f;
p.x += p.dx;
p.y += p.dy;
p.rx = ((p.x - cw ) / (p.y + h)) * h + cw;
p.ry = ((p.y - ch ) / (p.y + h)) * h * -0.051+ ch;
//p.ry = ((h-p.y) - ch) * 0.1 + ch;
p.rs = (p.s / (p.y + h)) * h
}
particles.sort(depthSort)
}
var drawParticles = function(){
var i,j,p,f,dist,dir;
// draw behind the sun
for(i = 0; i < particles.length; i ++){
p = particles[i];
if(p.y - ch < 0){
break;
}
ctx.setTransform(p.rs,0,0,p.rs,p.rx,p.ry);
ctx.drawImage(circle,-IMAGE_SIZE_HALF,-IMAGE_SIZE_HALF);
}
// draw glow for behind the sun
ctx.globalCompositeOperation = "screen";
var iw = -blurCircle.width/2;
for(j = 0; j < i; j ++){
p = particles[j];
ctx.globalAlpha = ((Math.sin(globalTime / (50 * p.v)) + 1) / 2) * 0.6 + 0.4;
var scale = (1-(Math.sin(globalTime / (50 * p.v)) + 1) / 2) * 0.6 + 0.6;
ctx.setTransform(p.rs * 1.5 * scale,0,0,p.rs * 1.5* scale,p.rx,p.ry);
ctx.drawImage(blurCircle,iw,iw);
// second pass to intensify the glow
ctx.globalAlpha = 0.7;
ctx.setTransform(p.rs * 1.1,0,0,p.rs * 1.1,p.rx,p.ry);
ctx.drawImage(blurCircle,iw,iw);
}
// draw the sun
ctx.globalCompositeOperation = "source-over";
ctx.globalAlpha = 1;
ctx.setTransform(1,0,0,1,cw,ch);
ctx.drawImage(sun,-sun.width/2,-sun.height/2);
ctx.globalAlpha = 1;
ctx.globalCompositeOperation = "screen";
ctx.setTransform(1,0,0,1,cw,ch);
ctx.drawImage(sunBlur,-sunBlur.width/2,-sunBlur.height/2);
var scale = Math.sin(globalTime / 100) *0.5 + 1;
ctx.globalAlpha = (Math.cos(globalTime / 100) + 1) * 0.2 + 0.4;;
ctx.setTransform(1 + scale,0,0,1 + scale,cw,ch);
ctx.drawImage(sunBlur,-sunBlur.width/2,-sunBlur.height/2);
ctx.globalAlpha = 1;
ctx.globalCompositeOperation = "source-over";
// draw in front the sun
for(j = i; j < particles.length; j ++){
p = particles[j];
if(p.y > -h){ // don't draw past the near view plane
ctx.setTransform(p.rs,0,0,p.rs,p.rx,p.ry);
ctx.drawImage(circle,-IMAGE_SIZE_HALF,-IMAGE_SIZE_HALF);
}
}
ctx.globalCompositeOperation = "screen";
var iw = -blurCircle.width/2;
for(j = i; j < particles.length; j ++){
p = particles[j];
if(p.y > -h){ // don't draw past the near view plane
ctx.globalAlpha = ((Math.sin(globalTime / (50 * p.v)) + 1) / 2) * 0.6 + 0.4;
var scale = (1-(Math.sin(globalTime / (50 * p.v)) + 1) / 2) * 0.6 + 0.6;
ctx.setTransform(p.rs * 1.5 * scale,0,0,p.rs * 1.5* scale,p.rx,p.ry);
ctx.drawImage(blurCircle,iw,iw);
// second pass to intensify the glow
ctx.globalAlpha = 0.7;
ctx.setTransform(p.rs * 1.1,0,0,p.rs * 1.1,p.rx,p.ry);
ctx.drawImage(blurCircle,iw,iw);
}
}
ctx.globalCompositeOperation = "source-over";
}
var addParticles = function(count){
var ww = (h-10)* 2;
var cx = cw - ww/2;
var cy = ch - ww/2;
for(var i = 0; i < count; i ++){
particles.push(createParticle(cx + Math.random() * ww,cy + Math.random() * ww, Math.random() - 0.5, Math.random() - 0.5));
}
}
function display(){ // put code in here
if(particles.length === 0){
addParticles(NUM_PARTICLES);
}
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.drawImage(background,0,0,w,h)
updateParticles();
drawParticles();
ctx.globalAlpha = 1;
ctx.globalCompositeOperation = "source-over";
}
function update(timer){ // Main update loop
globalTime = timer;
display(); // call demo code
requestAnimationFrame(update);
}
requestAnimationFrame(update);
/** SimpleFullCanvasMouse.js end **/

Creating the Butterfly curve with arrays

I have two questions, the first being how do I access the indexes within my array separately, because my console.log of [n][0] results in two values - x and y. Secondly, for the butterfly curve, https://en.wikipedia.org/wiki/Butterfly_curve_%28transcendental%29, how would I determine the values of t? and reiterate through a certain minimum and maximum. In need of logic support.
Here's my progress so far.
/*function drawButterFly(n){
c.beginPath();
console.log(n[2])
for (var i = 0; i < n.length; i++){
if (i === 0) {
c.moveTo();
} else {
c.lineTo();
}
c.stroke();
}
}*/
function butterFly() {
var r = 5;
var N = 3;
var value = [];
for (var a = 0.2; a < 2*Math.PI; a = a + 0.1){
value.push(a);
}
var t = value[Math.floor(Math.random()*value.length)];
var cos = r*Math.cos(t)*( (Math.exp(Math.cos(t))) - (2*Math.cos(4*t)) - (Math.sin(t/12)^5) );
var sin = r*Math.sin(t)*( (Math.exp(Math.cos(t))) - (2*Math.cos(4*t)) - (Math.sin(t/12)^5) );
var n = [];
for (var u = 0; u < N; u++){
var x = sin * -u;
var y = cos * -u;
n.push([x,y]);
}
drawButterFly(n);
}
Since you're pushing an array here: n.push([x,y]) you can access the x component of the first element with n[0][0] and the y component of the same element with n[0][1]
Example:
var n = [];
n.push( ["x", "y"] );
console.log( n[0][0] );
console.log( n[0][1] );
As for the useful values of t - in the image you've shown, you'll notice that the same butterfly is drawn several times at different sizes. To draw a complete butterfly, you need to use the range for t of [0..2pi]. If you want to draw two butterflies, you need to use the range [0..4pi]. That is it's cyclic over the same period that a circle is. Unlike a circle however, each cycle doesn't draw over the previous one.
Here's a quick and nasty example:
function byId(id) {
return document.getElementById(id);
}
window.addEventListener('load', onDocLoaded, false);
function onDocLoaded(evt) {
butterFly();
}
function butterFly() {
var pointArray = [];
var stepSize = 0.05; // ~125 steps for every 360°
var upperLimit = 4 * Math.PI;
var scale = 20;
for (var t = 0.0; t < upperLimit; t += stepSize) {
var xVal = Math.sin(t) * ((Math.exp(Math.cos(t))) - (2 * Math.cos(4 * t)) - (Math.pow(Math.sin(t / 12), 5)));
var yVal = Math.cos(t) * ((Math.exp(Math.cos(t))) - (2 * Math.cos(4 * t)) - (Math.pow(Math.sin(t / 12), 5)));
pointArray.push([scale * xVal, -scale * yVal]); // -1 value since screen-y direction is opposite direction to cartesian coords y
}
drawButterFly(pointArray);
}
function drawButterFly(pointArray) {
var can = byId('myCan');
var ctx = can.getContext('2d');
var originX, originY;
originX = can.width / 2;
originY = can.height / 2;
ctx.beginPath();
for (var i = 0; i < pointArray.length; i++) {
if (i === 0) {
ctx.moveTo(originX + pointArray[i][0], originX + pointArray[i][1]);
} else {
ctx.lineTo(originX + pointArray[i][0], originY + pointArray[i][1]);
}
}
ctx.closePath();
ctx.stroke();
}
canvas {
border: solid 1px red;
}
<canvas id='myCan' width='256' height='256' />
If I'm not mistaken, the Butterfly curve is given as a pair of parametric equations, meaning you increment t to get the next (x, y) points on your curve. In other words, your t is what you should be using in place of u in your code, and the range of values for t should be 0 .. 24*pi as that's the range in which sin(t / 12) has its unique values).
Here's a version that demonstrates the drawing of the curve to a canvas:
function getPoint(t, S, O) {
var cos_t = Math.cos(t);
var factor = Math.exp(cos_t) - 2 * Math.cos(4*t) - Math.pow(Math.sin(t/12), 5);
return {
x: S * Math.sin(t) * factor + O.x,
y: S * cos_t * factor + O.y
};
}
var canvas = document.getElementById("c");
canvas.width = 300;
canvas.height = 300;
var ctx = canvas.getContext("2d");
// First path
ctx.beginPath();
ctx.strokeStyle = 'blue';
var offset = {x:150, y:120};
var scale = 40;
var maxT = 24 * Math.PI;
var p = getPoint(0, scale, offset);
ctx.moveTo(p.x, canvas.height - p.y);
for (var t = 0.01; t <= maxT; t += 0.01) {
p = getPoint(t, scale, offset);
ctx.lineTo(p.x, canvas.height - p.y);
}
ctx.stroke();
#c {
border: solid 1px black;
}
<canvas id="c"></canvas>
One thing to note: canvases have y = 0 start at the top, so you need to inverse your y (i.e. canvas.height - y) to have your curve orient correctly.
UPDATE: Added animated version
As requested by royhowie, here's an animated version, using requestAnimationFrame:
function getPoint(t, S, O) {
var cos_t = Math.cos(t);
var factor = Math.exp(cos_t) - 2 * Math.cos(4*t) - Math.pow(Math.sin(t/12), 5);
return {
x: S * Math.sin(t) * factor + O.x,
y: S * cos_t * factor + O.y
};
}
var canvas = document.getElementById("c");
canvas.width = 300;
canvas.height = 300;
var ctx = canvas.getContext("2d");
var offset = {x:150, y:120};
var scale = 40;
var maxT = 24 * Math.PI;
var animationID;
var started = false;
var t = 0;
document.getElementById('start').addEventListener('click', function(e) {
e.preventDefault();
if (!started) {
animationID = requestAnimationFrame(animate);
started = true;
}
});
document.getElementById('pause').addEventListener('click', function(e) {
e.preventDefault();
if (started) {
cancelAnimationFrame(animationID);
started = false;
}
});
function animate() {
animationID = requestAnimationFrame(animate);
var p = getPoint(t, scale, offset);
if (t === 0) {
ctx.beginPath();
ctx.strokeStyle = 'blue';
ctx.moveTo(p.x, canvas.height - p.y);
t += 0.01;
} else if (t < maxT) {
ctx.lineTo(p.x, canvas.height - p.y);
ctx.stroke();
t += 0.01;
} else {
cancelAnimationFrame(animationID);
}
}
#c {
border: solid 1px black;
}
<div>
<button id="start">Start</button>
<button id="pause">Pause</button>
</div>
<canvas id="c"></canvas>
Question 1
For an arbitrary integer i, let n[i] = [xi, yi]. xi can then be accessed via n[i][0] and yi via n[i][1]
Question 2
For values of t, I am sure you're gonna want to use sub-integer values, so I recommend using a constant increment value representing the "resolution" of your graph.
Let's call it dt. Also, I'd advise changing your variable names from single letters to something more descriptive, like min_t and max_t, and instead of n I'm going to call your array points.
function drawButterFly(points){
for (var i = 0, n = points.count; i < n; ++i) {
var x = points[i][0];
var y = points[i][1];
...
}
}
function butterFly(min_t, max_t, dt, r) {
var points = [];
for (var t = min_t; t < max_t; t+=dt){
var x = r*Math.sin(t)*...
var y = r*Math.cos(t)*...
points.push([x,y]);
}
drawButterFly(points, dt);
}
I'm not sure what the other loop inside of that function was for, but if you need it, you can adapt from the pattern above.
Usage example: butterFly(0, 10, 0.01, 3) -> t goes from 0 to 10 with an increment of 0.01, and r=3
Regarding your first question it's a better option to replace the multidimensional array containing the x and y coordinates with an object. Then when iterating over the array you can check for the object values.
So instead of:
n.push([x,y]);
you should do:
m.push({
'xPos' : x,
'yPos' : y
})
Later you can access this by m.xPos or m.yPos
Then you can access the x and y values by object literal names.
Regarding the second question: for a good pseudo code implementation of butterfly curves you might check Paul Burke site: http://paulbourke.net/geometry/butterfly/. So t in your case is:
t = i * 24.0 * PI / N;
As you see t is a parametric value which got incremented on each step when iterating over the array.

HTML5 Canvas Pathfinding for an object within a drawn polygon

Good afternoon all,
I come to you with yet another request for a lesson/example/answers. While messing around with a canvas in HTML5, I have learned how to manipulate Depth(Z-Buffer) and several other neat things. However, now I am trying to find a way to perform Pathfinding with the canvas. Most of the examples on the Internet are a little difficult to comprehend for me due to the fact that they are handling pathfinding far differently than I am trying to achieve(Which is that they use tile based pathfinding). Most other examples seem to deal in boxes or rectangles as well.
This is my code that I used as an example to draw a Polygon:
var canvas = document.getElementById('CanvasPath');
var context = canvas.getContext('2d');
// begin custom shape
context.beginPath();
context.moveTo(170, 80);
context.bezierCurveTo(1, 200, 125, 230, 230, 150);
context.bezierCurveTo(250, 180, 320, 200, 340, 200);
context.bezierCurveTo(420, 150, 420, 120, 390, 100);
context.bezierCurveTo(430, 40, 370, 30, 340, 50);
context.bezierCurveTo(320, 5, 250, 20, 250, 50);
context.bezierCurveTo(200, 5, 150, 20, 170, 80);
context.closePath();
context.lineWidth = 2;
context.strokeStyle = 'gray';
context.stroke();
Lets say I have a small box that I want to move around in that Polygon(I really will be creating the polygon with line points rather than Bezier curvers. I just wantd to show an example here) when I click at the goal position I want it to be at... How can I create a pathfinding algorithm that will find its way around and yet not have the bottom points of the box touch outside the polygon? I am assuming I would need to get all the pixels that are in that polygon to create a path from? I am thinking that the Bezier Curves and points may need to be created and pushed from an Array instead and then find the path???
Any suggestions on approach and can you provide an example for how to go about this? Please be gentle... While I have been an experienced scripter and programmer, I have not been one to mess to much with games, or graphics and I am still learning to manipulate the canvas in HTML5. Thanks for your help in advance.
The key part of what you are asking is how to shrink a polygon so that your box can travel along the shrunken polygon without extending outside the original polygon.
The illustration below shows an original black polygon, a shrunken red polygon and a blue traveling box.
Precisely shrinking a polygon
The code to precisely shrink a polygon is quite complex. It involves repositioning the original polygon vertices based on whether each particular vertex forms a convex or concave angle.
Here's example code I derived from Hans Muller's Blog on Webkits Shape-Padding. This example requires that the polygon vertices defined in a clockwise order.
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
var shapePadding = 10;
var dragVertexIndex = null;
var hoverLocation = null;
var polygonVertexRadius = 9;
var polygon, marginPolygon, paddingPolygon;
var polygonVertices = [{x: 143, y: 327}, {x: 80, y: 236}, {x: 151, y: 148}, {x: 454, y: 69}, {x: 560, y: 320}];
var polygon = createPolygon(polygonVertices);
var paddingPolygon = createPaddingPolygon(polygon);
drawAll();
/////////////////////////////////
// Polygon creation and drawing
function drawAll(){
draw(polygon,'black');
draw(paddingPolygon,'red');
}
function draw(p,stroke){
var v=p.vertices;
ctx.beginPath();
ctx.moveTo(v[0].x,v[0].y);
for(var i=0;i<v.length;i++){
ctx.lineTo(v[i].x,v[i].y);
}
ctx.closePath();
ctx.strokeStyle=stroke;
ctx.stroke();
}
function createPolygon(vertices){
var polygon = {vertices: vertices};
var edges = [];
var minX = (vertices.length > 0) ? vertices[0].x : undefined;
var minY = (vertices.length > 0) ? vertices[0].y : undefined;
var maxX = minX;
var maxY = minY;
for (var i = 0; i < polygon.vertices.length; i++) {
vertices[i].label = String(i);
vertices[i].isReflex = isReflexVertex(polygon, i);
var edge = {
vertex1: vertices[i],
vertex2: vertices[(i + 1) % vertices.length],
polygon: polygon,
index: i
};
edge.outwardNormal = outwardEdgeNormal(edge);
edge.inwardNormal = inwardEdgeNormal(edge);
edges.push(edge);
var x = vertices[i].x;
var y = vertices[i].y;
minX = Math.min(x, minX);
minY = Math.min(y, minY);
maxX = Math.max(x, maxX);
maxY = Math.max(y, maxY);
}
polygon.edges = edges;
polygon.minX = minX;
polygon.minY = minY;
polygon.maxX = maxX;
polygon.maxY = maxY;
polygon.closed = true;
return polygon;
}
function createPaddingPolygon(polygon){
var offsetEdges = [];
for (var i = 0; i < polygon.edges.length; i++) {
var edge = polygon.edges[i];
var dx = edge.inwardNormal.x * shapePadding;
var dy = edge.inwardNormal.y * shapePadding;
offsetEdges.push(createOffsetEdge(edge, dx, dy));
}
var vertices = [];
for (var i = 0; i < offsetEdges.length; i++) {
var thisEdge = offsetEdges[i];
var prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length];
var vertex = edgesIntersection(prevEdge, thisEdge);
if (vertex)
vertices.push(vertex);
else {
var arcCenter = polygon.edges[i].vertex1;
appendArc(vertices, arcCenter, shapePadding, prevEdge.vertex2, thisEdge.vertex1, true);
}
}
var paddingPolygon = createPolygon(vertices);
paddingPolygon.offsetEdges = offsetEdges;
return paddingPolygon;
}
//////////////////////
// Support functions
function isReflexVertex(polygon, vertexIndex){
// Assuming that polygon vertices are in clockwise order
var thisVertex = polygon.vertices[vertexIndex];
var nextVertex = polygon.vertices[(vertexIndex + 1) % polygon.vertices.length];
var prevVertex = polygon.vertices[(vertexIndex + polygon.vertices.length - 1) % polygon.vertices.length];
if (leftSide(prevVertex, nextVertex, thisVertex) < 0){return true;} // TBD: return true if thisVertex is inside polygon when thisVertex isn't included
return false;
}
function inwardEdgeNormal(edge){
// Assuming that polygon vertices are in clockwise order
var dx = edge.vertex2.x - edge.vertex1.x;
var dy = edge.vertex2.y - edge.vertex1.y;
var edgeLength = Math.sqrt(dx*dx + dy*dy);
return {x: -dy/edgeLength, y: dx/edgeLength};
}
function outwardEdgeNormal(edge){
var n = inwardEdgeNormal(edge);
return {x: -n.x, y: -n.y};
}
// If the slope of line vertex1,vertex2 greater than the slope of vertex1,p then p is on the left side of vertex1,vertex2 and the return value is > 0.
// If p is colinear with vertex1,vertex2 then return 0, otherwise return a value < 0.
function leftSide(vertex1, vertex2, p){
return ((p.x - vertex1.x) * (vertex2.y - vertex1.y)) - ((vertex2.x - vertex1.x) * (p.y - vertex1.y));
}
function createOffsetEdge(edge, dx, dy){
return {
vertex1: {x: edge.vertex1.x + dx, y: edge.vertex1.y + dy},
vertex2: {x: edge.vertex2.x + dx, y: edge.vertex2.y + dy}
};
}
// based on http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/, edgeA => "line a", edgeB => "line b"
function edgesIntersection(edgeA, edgeB){
var den = (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex2.x - edgeA.vertex1.x) - (edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex2.y - edgeA.vertex1.y);
if (den == 0){return null;} // lines are parallel or conincident
var ua = ((edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
var ub = ((edgeA.vertex2.x - edgeA.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeA.vertex2.y - edgeA.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
if (ua < 0 || ub < 0 || ua > 1 || ub > 1){ return null; }
return {x: edgeA.vertex1.x + ua * (edgeA.vertex2.x - edgeA.vertex1.x), y: edgeA.vertex1.y + ua * (edgeA.vertex2.y - edgeA.vertex1.y)};
}
function appendArc(vertices, center, radius, startVertex, endVertex, isPaddingBoundary){
const twoPI = Math.PI * 2;
var startAngle = Math.atan2(startVertex.y - center.y, startVertex.x - center.x);
var endAngle = Math.atan2(endVertex.y - center.y, endVertex.x - center.x);
if (startAngle < 0)
startAngle += twoPI;
if (endAngle < 0)
endAngle += twoPI;
var arcSegmentCount = 5; // An odd number so that one arc vertex will be eactly arcRadius from center.
var angle = ((startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPI - endAngle));
var angle5 = ((isPaddingBoundary) ? -angle : twoPI - angle) / arcSegmentCount;
vertices.push(startVertex);
for (var i = 1; i < arcSegmentCount; ++i) {
var angle = startAngle + angle5 * i;
var vertex = {
x: center.x + Math.cos(angle) * radius,
y: center.y + Math.sin(angle) * radius,
};
vertices.push(vertex);
}
vertices.push(endVertex);
}
body{ background-color: ivory; }
#canvas{border:1px solid red;}
<h4>Original black polygon and shrunken red polygon</h4>
<canvas id="canvas" width=650 height=400></canvas>
Calculating the waypoints along the polygon for your traveling box
To have your box travel along the inside of the polygon, you need an array containing points along each line of the polygon. You can calculate these points using linear interpolation.
Given an object defining a line like this:
var line={
x0:50,
y0:50,
x1:200,
y1:50};
You can use linear interpolation to calculate points along that line every 1px like this:
var allPoints = allLinePoints(line);
function allLinePoints(line){
var raw=[];
var dx = line.x1-line.x0;
var dy = line.y1-line.y0;
var length=Math.sqrt(dx*dx+dy*dy);
var segments=parseInt(length+1);
for(var i=0;i<segments;i++){
var percent=i/segments;
if(i==segments-1){
raw.push({x:line.x1,y:line.y1}); // force last point == p1
}else{
raw.push({ x:line.x0+dx*percent, y:line.y0+dy*percent});
}
}
return(raw);
}
Get the point on the polygon closest to the mouse click
You can use the distance formula (derived from Pythagorean theorem) to calculate which of the calculated waypoints is closest to the mouse click position:
// this will be the index in of the waypoint closest to the mouse
var indexOfClosestPoint;
// iterate all waypoints and find the closest to the mouse
var minLengthSquared=1000000*1000000;
for(var i=0;i<allPoints.length;i++){
var p=allPoints[i];
var dx=mouseX-p.x;
var dy=mouseY-p.y;
var dxy=dx*dx+dy*dy
if(dxy<minLengthSquared){
minLengthSquared=dxy;
indexOfClosestPoint=i;
}
}
Animate the box along each waypoint up to the calculated ending waypoint
The only thing left to do is set up an animation loop that redraws the traveling box at each waypoint along the polygon until it reaches the ending waypoint:
// start animating at the first waypoint
var animationIndex=0;
// use requestAnimationFrame to redraw the traveling box
// along each waypoint
function animate(time){
// redraw the line and the box at its current (percent) position
var pt=allPoints[animationIndex];
// redraw the polygon and the traveling box
ctx.strokeStyle='black';
ctx.lineWidth=1;
ctx.clearRect(0,0,cw,ch);
ctx.strokeStyle='black';
drawLines(linePoints);
ctx.strokeStyle='red';
drawLines(insideLinePoints);
ctx.fillStyle='skyblue';
ctx.fillRect(pt.x-boxWidth/2,pt.y-boxHeight/2,boxWidth,boxHeight);
// increase the percentage for the next frame loop
animationIndex++;
// Are we done?
if(animationIndex<=indexOfClosestPoint){
// request another frame loop
requestAnimationFrame(animate);
}else{
// set the flag indicating the animation is complete
isAnimating=false;
}
}
Here's what it looks like when you put it all together
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
function reOffset(){
var BB=canvas.getBoundingClientRect();
offsetX=BB.left;
offsetY=BB.top;
}
var offsetX,offsetY;
reOffset();
window.onscroll=function(e){ reOffset(); }
// polygon vertices
var polygonVertices=[
{x:143,y:327},
{x:80,y:236},
{x:151,y:148},
{x:454,y:69},
{x:560,y:320},
];
var shrunkenVertices=getShrunkenVertices(polygonVertices,10);
var polyPoints=getPolygonPoints(shrunkenVertices)
//log(shrunkenVertices);
// animation variables
var isAnimating=false;
var animationIndex=0;
//
var indexOfClosestPoint=-99;
// define the movable box
var boxWidth=12;
var boxHeight=10;
var boxRadius=Math.sqrt(boxWidth*boxWidth+boxHeight*boxHeight);
var boxFill='skyblue';
// listen for mouse events
$("#canvas").mousedown(function(e){handleMouseDown(e);});
$("#canvas").mousemove(function(e){handleMouseMove(e);});
drawPolys(polygonVertices,shrunkenVertices);
////////////////////////////
// animate box to endpoint
////////////////////////////
function animate(time){
ctx.clearRect(0,0,cw,ch);
drawPolys(polygonVertices,shrunkenVertices);
// redraw the line and the box at its current (percent) position
var pt=polyPoints[animationIndex];
ctx.fillStyle=boxFill;
ctx.fillRect(pt.x-boxWidth/2,pt.y-boxHeight/2,boxWidth,boxHeight);
// increase the percentage for the next frame loop
animationIndex++;
// request another frame loop
if(animationIndex<=indexOfClosestPoint){
requestAnimationFrame(animate);
}else{
isAnimating=false;
}
}
////////////////////////////////////
// select box endpoint with click
////////////////////////////////////
function handleMouseDown(e){
// return if we're already animating
if(isAnimating){return;}
// tell the browser we're handling this event
e.preventDefault();
e.stopPropagation();
// start animating
animationIndex=0;
isAnimating=true;
requestAnimationFrame(animate);
}
function handleMouseMove(e){
// return if we're already animating
if(isAnimating){return;}
// tell the browser we're handling this event
e.preventDefault();
e.stopPropagation();
// get mouse position
mouseX=parseInt(e.clientX-offsetX);
mouseY=parseInt(e.clientY-offsetY);
// find the nearest waypoint
indexOfClosestPoint=findNearestPointToMouse(mouseX,mouseY);
// redraw
ctx.clearRect(0,0,cw,ch);
drawPolys(polygonVertices,shrunkenVertices);
// draw a red dot at the nearest waypoint
drawDot(polyPoints[indexOfClosestPoint],'red');
}
function findNearestPointToMouse(mx,my){
// find the nearest waypoint
var minLengthSquared=1000000*1000000;
for(var i=0;i<polyPoints.length;i++){
var p=polyPoints[i];
var dx=mouseX-p.x;
var dy=mouseY-p.y;
var dxy=dx*dx+dy*dy
if(dxy<minLengthSquared){
minLengthSquared=dxy;
indexOfClosestPoint=i;
}
}
return(indexOfClosestPoint);
}
////////////////////////////////
// Drawing functions
////////////////////////////////
function drawPolys(polygon,shrunken){
drawPoly(polygon,'black');
drawPoly(shrunken,'blue');
}
function drawPoly(v,stroke){
ctx.beginPath();
ctx.moveTo(v[0].x,v[0].y);
for(var i=0;i<v.length;i++){
ctx.lineTo(v[i].x,v[i].y);
}
ctx.closePath();
ctx.strokeStyle=stroke;
ctx.stroke();
}
function drawDot(pt,color){
ctx.beginPath();
ctx.arc(pt.x,pt.y,3,0,Math.PI*2);
ctx.closePath();
ctx.fillStyle=color;
ctx.fill();
}
////////////////////////////////
// Get points along a polygon
////////////////////////////////
function getPolygonPoints(vertices){
// For this purpose, be sure to close the polygon
var v=vertices.slice(0);
var v0=v[0];
var vx=v[v.length-1];
if(v0.x!==vx.x || v0.y!==vx.y){v.push(v[0]);}
//
var points=[];
for(var i=1;i<v.length;i++){
var p0=v[i-1];
var p1=v[i];
var line={x0:p0.x,y0:p0.y,x1:p1.x,y1:p1.y};
points=points.concat(getLinePoints(line));
}
return(points);
}
function getLinePoints(line){
var raw=[];
var dx = line.x1-line.x0;
var dy = line.y1-line.y0;
var length=Math.sqrt(dx*dx+dy*dy);
var segments=parseInt(length+1);
for(var i=0;i<segments;i++){
var percent=i/segments;
if(i==segments-1){
raw.push({x:line.x1,y:line.y1}); // force last point == p1
}else{
raw.push({ x:line.x0+dx*percent, y:line.y0+dy*percent});
}
}
return(raw);
}
/////////////////////////
// "shrink" a polygon
/////////////////////////
function getShrunkenVertices(vertices,shapePadding){
var polygon = createPolygon(polygonVertices);
var paddingPolygon = createPaddingPolygon(polygon,shapePadding);
return(paddingPolygon.vertices);
}
function createPolygon(vertices){
var polygon = {vertices: vertices};
var edges = [];
var minX = (vertices.length > 0) ? vertices[0].x : undefined;
var minY = (vertices.length > 0) ? vertices[0].y : undefined;
var maxX = minX;
var maxY = minY;
for (var i = 0; i < polygon.vertices.length; i++) {
vertices[i].label = String(i);
vertices[i].isReflex = isReflexVertex(polygon, i);
var edge = {
vertex1: vertices[i],
vertex2: vertices[(i + 1) % vertices.length],
polygon: polygon,
index: i
};
edge.outwardNormal = outwardEdgeNormal(edge);
edge.inwardNormal = inwardEdgeNormal(edge);
edges.push(edge);
var x = vertices[i].x;
var y = vertices[i].y;
minX = Math.min(x, minX);
minY = Math.min(y, minY);
maxX = Math.max(x, maxX);
maxY = Math.max(y, maxY);
}
polygon.edges = edges;
polygon.minX = minX;
polygon.minY = minY;
polygon.maxX = maxX;
polygon.maxY = maxY;
polygon.closed = true;
return polygon;
}
function createPaddingPolygon(polygon,shapePadding){
var offsetEdges = [];
for (var i = 0; i < polygon.edges.length; i++) {
var edge = polygon.edges[i];
var dx = edge.inwardNormal.x * shapePadding;
var dy = edge.inwardNormal.y * shapePadding;
offsetEdges.push(createOffsetEdge(edge, dx, dy));
}
var vertices = [];
for (var i = 0; i < offsetEdges.length; i++) {
var thisEdge = offsetEdges[i];
var prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length];
var vertex = edgesIntersection(prevEdge, thisEdge);
if (vertex)
vertices.push(vertex);
else {
var arcCenter = polygon.edges[i].vertex1;
appendArc(vertices, arcCenter, shapePadding, prevEdge.vertex2, thisEdge.vertex1, true);
}
}
var paddingPolygon = createPolygon(vertices);
paddingPolygon.offsetEdges = offsetEdges;
return paddingPolygon;
}
function isReflexVertex(polygon, vertexIndex){
// Assuming that polygon vertices are in clockwise order
var thisVertex = polygon.vertices[vertexIndex];
var nextVertex = polygon.vertices[(vertexIndex + 1) % polygon.vertices.length];
var prevVertex = polygon.vertices[(vertexIndex + polygon.vertices.length - 1) % polygon.vertices.length];
if (leftSide(prevVertex, nextVertex, thisVertex) < 0){return true;} // TBD: return true if thisVertex is inside polygon when thisVertex isn't included
return false;
}
function inwardEdgeNormal(edge){
// Assuming that polygon vertices are in clockwise order
var dx = edge.vertex2.x - edge.vertex1.x;
var dy = edge.vertex2.y - edge.vertex1.y;
var edgeLength = Math.sqrt(dx*dx + dy*dy);
return {x: -dy/edgeLength, y: dx/edgeLength};
}
function outwardEdgeNormal(edge){
var n = inwardEdgeNormal(edge);
return {x: -n.x, y: -n.y};
}
// If the slope of line vertex1,vertex2 greater than the slope of vertex1,p then p is on the left side of vertex1,vertex2 and the return value is > 0.
// If p is colinear with vertex1,vertex2 then return 0, otherwise return a value < 0.
function leftSide(vertex1, vertex2, p){
return ((p.x - vertex1.x) * (vertex2.y - vertex1.y)) - ((vertex2.x - vertex1.x) * (p.y - vertex1.y));
}
function createOffsetEdge(edge, dx, dy){
return {
vertex1: {x: edge.vertex1.x + dx, y: edge.vertex1.y + dy},
vertex2: {x: edge.vertex2.x + dx, y: edge.vertex2.y + dy}
};
}
// based on http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/, edgeA => "line a", edgeB => "line b"
function edgesIntersection(edgeA, edgeB){
var den = (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex2.x - edgeA.vertex1.x) - (edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex2.y - edgeA.vertex1.y);
if (den == 0){return null;} // lines are parallel or conincident
var ua = ((edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
var ub = ((edgeA.vertex2.x - edgeA.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) - (edgeA.vertex2.y - edgeA.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) / den;
if (ua < 0 || ub < 0 || ua > 1 || ub > 1){ return null; }
return {x: edgeA.vertex1.x + ua * (edgeA.vertex2.x - edgeA.vertex1.x), y: edgeA.vertex1.y + ua * (edgeA.vertex2.y - edgeA.vertex1.y)};
}
function appendArc(vertices, center, radius, startVertex, endVertex, isPaddingBoundary){
const twoPI = Math.PI * 2;
var startAngle = Math.atan2(startVertex.y - center.y, startVertex.x - center.x);
var endAngle = Math.atan2(endVertex.y - center.y, endVertex.x - center.x);
if (startAngle < 0)
startAngle += twoPI;
if (endAngle < 0)
endAngle += twoPI;
var arcSegmentCount = 5; // An odd number so that one arc vertex will be eactly arcRadius from center.
var angle = ((startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPI - endAngle));
var angle5 = ((isPaddingBoundary) ? -angle : twoPI - angle) / arcSegmentCount;
vertices.push(startVertex);
for (var i = 1; i < arcSegmentCount; ++i) {
var angle = startAngle + angle5 * i;
var vertex = {
x: center.x + Math.cos(angle) * radius,
y: center.y + Math.sin(angle) * radius,
};
vertices.push(vertex);
}
vertices.push(endVertex);
}
/////////////////////////
// End "shrink polygon"
/////////////////////////
body{ background-color: ivory; }
#canvas{border:1px solid red;}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<h4>Move mouse to where you want the box to end up<br>Then click to start the box animating from start to end.<br>Note: The starting point is on the bottom left of the polygon</h4>
<canvas id="canvas" width=650 height=400></canvas>
Using curved paths
If you want to make your closed path with Bezier curves, you will have to calculate waypoints along the curves using De Casteljau's algorithm. You will want to over-sample the number of points--maybe 500 values of T between 0.00 and 1.00. Here is a javascript version of the algorithm that calculates x,y points at interval T along a Cubic Bezier Curve:
// De Casteljau's algorithm which calculates points along a cubic Bezier curve
// plot a point at interval T along a bezier curve
// T==0.00 at beginning of curve. T==1.00 at ending of curve
// Calculating 300 T's between 0-1 will usually define the curve sufficiently
function getCubicBezierXYatT(startPt,controlPt1,controlPt2,endPt,T){
var x=CubicN(T,startPt.x,controlPt1.x,controlPt2.x,endPt.x);
var y=CubicN(T,startPt.y,controlPt1.y,controlPt2.y,endPt.y);
return({x:x,y:y});
}
// cubic helper formula at T distance
function CubicN(T, a,b,c,d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}

Overlap/hit test in javascript

Im trying to get a hit test/overlap test to work in the below code which creates 200 circles in a random position on a canvas. I am trying to store the positions of the circles in an array and then checking that array each time another circle is created in the for loop, if the randomly created x and y is too close to a already created circle it should keep getting a new random x and y until it isnt too close to an already created circle.
I just cant get it too work in the while loop.
Any help please...
Thanks
<script type="text/javascript">
document.addEventListener("DOMContentLoaded", canvasDraw);
function canvasDraw () {
var c = document.getElementById("canvas");
var w = window.innerWidth;
var h = window.innerHeight;
c.width = w;
c.height = h;
var ctx = c.getContext("2d");
ctx.clearRect(0,0,c.width, c.height);
var abc = 0;
var colours = new Array ("rgb(0,100,0)", "rgb(51,102,255)");
var positions = new Array();
function hitTest(x, y) {
for(var p in positions) {
pp = p.split(",");
pp[0] = parseInt(pp[0]);
pp[1] = parseInt(pp[1]);
if(((x > (pp[0] - 24)) && (x < (pp[0] + 24))) && ((y > (pp[1] - 24)) && (y < (pp[1] + 24)))) {
return true;
}
}
return false;
}
//Loop 200 times for 200 circles
for (i=0; i<200; i++) {
var x = Math.floor(Math.random()*c.width);
var y = Math.floor(Math.random()*c.height);
while(hitTest(x, y) == true){
var x = Math.floor(Math.random()*c.width);
var y = Math.floor(Math.random()*c.height);
}
var pos = x.toString() + "," + y.toString();
positions.push(pos);
var radius = 10;
var r = radius.toString();
var b = colours[Math.floor(Math.random()*colours.length)];
circle(ctx,x,y, radius, b);
}
}
function circle (ctx, x, y, radius, b) {
ctx.fillStyle = b;
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI*2, true);
ctx.closePath();
ctx.fill();
}
</script>
Some things before beginning:
Don't create arrays with new Array(), unless you specify the initial length. Use [];
Don't iterate through arrays using for...in: use a standard for with a counter. This is more a good practice;
Converting numbers into strings and converting back to numbers is useless and expensive. Use a small array to store both values;
Don't use "magic numbers", i.e. number with a precise value but hard to recognize immediately. Use named "constants" or put a comment near each of them telling what they mean, for future maintenance.
Ok, let's see the code.
if(((x > (pp[0] - 24)) && (x < (pp[0] + 24))) && ((y > (pp[1] - 24)) && (y < (pp[1] + 24))))
Honestly, what is this? I'd call it a cranky and obscure snippet. Recall what you've learnt at school:
var dx = pp[0] - x, dy = pp[1] - y;
if (dx * dx + dy * dy < 400) return true;
Isn't it much clearer?
Let's see the whole function:
function canvasDraw () {
var c = document.getElementById("canvas");
var w = window.innerWidth;
var h = window.innerHeight;
c.width = w;
c.height = h;
var ctx = c.getContext("2d");
ctx.clearRect(0,0,c.width, c.height);
// Lolwut?
// var abc = 0;
var colours = ["rgb(0,100,0)", "rgb(51,102,255)"];
var positions = [];
function hitTest(x, y) {
for (var j = 0; j < positions.length; j++) {
var pp = positions[j];
var dx = pp[0] - x, dy = pp[1] - y;
if (dx * dx + dy * dy < 400) return true;
}
return false;
}
// You declare the radius once and for all
var radius = 10;
// Declare the local scoped variables. You forgot i
var x, y, i;
for (i=0; i<200; i++) {
// How about a do...while instead of a while?
do {
var x = Math.floor(Math.random()*c.width);
var y = Math.floor(Math.random()*c.height);
// Testing with === is faster, always do it if you know the type
// I'll let it here, but if the type is boolean, you can avoid testing
// at all, as in while (hitTest(x, y));
} while (hitTest(x, y) === true);
positions.push([x, y]);
// This instruction is useless
// var r = radius.toString();
var b = colours[Math.floor(Math.random()*colours.length)];
circle(ctx,x,y, radius, b);
}
}
BEWARE, though, that depending on your canvas size, there could be no more room for another circle, so it could end in an infinite loop. Try to put 200 circles with a radius of 10 inside a 40x40 box...
There should be another test to do, and that could be complicated.

Categories

Resources