Javascript Canvas apply Radial Gradient to Segment? - javascript

I am trying to create a shadow system for my 2D Game in a HTML5 Canvas. Right now, I am rendering my shadows like so:
function drawShadows(x, y, width) {
if (shadowSprite == null) {
shadowSprite = document.createElement('canvas');
var tmpCtx = shadowSprite.getContext('2d');
var shadowBlur = 20;
shadowSprite.width = shadowResolution;
shadowSprite.height = shadowResolution;
var grd = tmpCtx.createLinearGradient(-(shadowResolution / 4), 0,
shadowResolution, 0);
grd.addColorStop(0, "rgba(0, 0, 0, 0.1)");
grd.addColorStop(1, "rgba(0, 0, 0, 0)");
tmpCtx.fillStyle = grd;
tmpCtx.shadowBlur = shadowBlur;
tmpCtx.shadowColor = "#000";
tmpCtx.fillRect(0, 0, shadowResolution, shadowResolution);
}
graph.save();
graph.rotate(sun.getDir(x, y));
graph.drawImage(shadowSprite, 0, -(width / 2), sun.getDist(x, y), width);
graph.restore();
}
This renders a cube with a linear gradient that fades from black to alpha 0.
This however does not produce a realistic result, since it will always be a rectangle. Here is an illustration to describe the problem:
Sorry i'm not very artistic. It would not be an issue to draw the trapezoid shape. (Seen in blue). The issue is that I still there to be a gradient. Is it possible to draw a shape like that with a gradient?

The canvas is very flexible. Almost anything is possible. This example draws the light being cast. But it can just as easily be the reverse. Draw the shadows as a gradient.
If you are after realism then instead of rendering a gradient for the lighting (or shadows) use the shape created to set a clipping area and then render a accurate lighting and shadow solution.
With lineTo and gradients you can create any shape and gradient you my wish. Also to get the best results use globalCompositeOperation as they have a large variety of filters.
The demo just shows how to mix a gradient and a shadow map. (Very basic no recursion implemented, and shadows are just approximations.)
var canvas = document.getElementById("canV");
var ctx = canvas.getContext("2d");
var mouse = {
x:0,
y:0,
};
function mouseMove(event){
mouse.x = event.offsetX; mouse.y = event.offsetY;
if(mouse.x === undefined){ mouse.x = event.clientX; mouse.y = event.clientY;}
}
// add mouse controls
canvas.addEventListener('mousemove',mouseMove);
var boundSize = 10000; // a number....
var createImage = function(w,h){ // create an image
var image;
image = document.createElement("canvas");
image.width = w;
image.height = h;
image.ctx = image.getContext("2d");
return image;
}
var directionC = function(x,y,xx,yy){ // this should be inLine but the angles were messing with my head
var a; // so moved it out here
a = Math.atan2(yy - y, xx - x); // for clarity and the health of my sanity
return (a + Math.PI * 2) % (Math.PI * 2); // Dont like negative angles.
}
// Create background image
var back = createImage(20, 20);
back.ctx.fillStyle = "#333";
back.ctx.fillRect(0, 0, 20, 20);
// Create background image
var backLight = createImage(20, 20);
backLight .ctx.fillStyle = "#ACD";
backLight .ctx.fillRect(0, 0, 20, 20);
// create circle image
var circle = createImage(64, 64);
circle.ctx.fillStyle = "red";
circle.ctx.beginPath();
circle.ctx.arc(32, 32, 30, 0, Math.PI * 2);
circle.ctx.fill();
// create some circles semi random
var circles = [];
circles.push({
x : 200 * Math.random(),
y : 200 * Math.random(),
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random() + 200,
y : 200 * Math.random(),
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random() + 200,
y : 200 * Math.random() + 200,
scale : Math.random() * 0.8 + 0.3,
});
circles.push({
x : 200 * Math.random(),
y : 200 * Math.random() + 200,
scale : Math.random() * 0.8 + 0.3,
});
// shadows on for each circle;
var shadows = [{},{},{},{}];
var update = function(){
var c, dir, dist, x, y, x1, y1, x2, y2, dir1, dir2, aAdd, i, j, s, s1 ,nextDir, rev, revId;
rev = false; // if inside a circle reverse the rendering.
// set up the gradient at the mouse pos
var g = ctx.createRadialGradient(mouse.x, mouse.y, canvas.width * 1.6, mouse.x, mouse.y, 2);
// do each circle and work out the two shadow lines coming from it.
for(var i = 0; i < circles.length; i++){
c = circles[i];
dir = directionC(mouse.x, mouse.y, c.x, c.y);
dist = Math.hypot(mouse.x - c.x, mouse.y - c.y);
// cludge factor. Could not be bother with the math as the light sourse nears an object
if(dist < 30* c.scale){
rev = true;
revId = i;
}
aAdd = (Math.PI / 2) * (0.5 / (dist - 30 * c.scale));
x1 = Math.cos(dir - (Math.PI / 2 + aAdd)) * 30 * c.scale;
y1 = Math.sin(dir - (Math.PI / 2 + aAdd)) * 30 * c.scale;
x2 = Math.cos(dir + (Math.PI / 2 + aAdd)) * 30 * c.scale;
y2 = Math.sin(dir + (Math.PI / 2 + aAdd)) * 30 * c.scale;
// direction of both shadow lines
dir1 = directionC(mouse.x, mouse.y, c.x + x1, c.y + y1);
dir2 = directionC(mouse.x, mouse.y, c.x + x2, c.y + y2);
// create the shadow object to hold details
shadows[i].dir = dir;
shadows[i].d1 = dir1;
if (dir2 < dir1) { // make sure second line is always greater
dir2 += Math.PI * 2;
}
shadows[i].d2 = dir2;
shadows[i].x1 = (c.x + x1); // set the shadow start pos
shadows[i].y1 = (c.y + y1);
shadows[i].x2 = (c.x + x2); // for both lines
shadows[i].y2 = (c.y + y2);
shadows[i].circle = c; // ref the circle
shadows[i].dist = dist; // set dist from light
shadows[i].branch1 = undefined; //.A very basic tree for shadows that interspet other object
shadows[i].branch2 = undefined; //
shadows[i].branch1Dist = undefined;
shadows[i].branch2Dist = undefined;
shadows[i].active = true; // false if the shadow is in a shadow
shadows[i].id = i;
}
shadows.sort(function(a,b){ // sort by distance from light
return a.dist - b.dist;
});
// cull shdows with in shadows and connect circles with joined shadows
for(i = 0; i < shadows.length; i++){
s = shadows[i];
for(j = i + 1; j < shadows.length; j++){
s1 = shadows[j];
if(s1.d1 > s.d1 && s1.d2 < s.d2){ // if shadow in side another
s1.active = false; // cull it
}else
if(s.d1 > s1.d1 && s.d1 < s1.d2){ // if shodow intercepts going twards light
s1.branch1 = s;
s.branch1Dist = s1.dist - s.dist;
s.active = false;
}else
if(s.d2 > s1.d1 && s.d2 < s1.d2){ // away from light
s.branch2 = s1;
s.branch2Dist = s1.dist - s.dist;
s1.active = false;
}
}
}
// keep it quick so not using filter
// filter culled shadows
var shadowsShort = [];
for (i = 0; i < shadows.length; i++) {
if ((shadows[i].active && !rev) || (rev && shadows[i].id === revId)) { // to much hard work makeng shadow from inside the circles. Was a good idea at the time. But this i just an example after all;
shadowsShort.push(shadows[i])
}
}
// sort shadows in clock wise render order
if(rev){
g.addColorStop(0.3, "rgba(210,210,210,0)");
g.addColorStop(0.6, "rgba(128,128,128,0.5)");
g.addColorStop(1, "rgba(0,0,0,0.9)");
shadowsShort.sort(function(a,b){
return b.dir - a.dir;
});
// clear by drawing background image.
ctx.drawImage(backLight, 0, 0, canvas.width, canvas.height);
}else{
g.addColorStop(0.3, "rgba(0,0,0,0)");
g.addColorStop(0.6, "rgba(128,128,128,0.5)");
g.addColorStop(1, "rgba(215,215,215,0.9)");
shadowsShort.sort(function(a,b){
return a.dir - b.dir;
});
// clear by drawing background image.
ctx.drawImage(back, 0, 0, canvas.width, canvas.height);
}
// begin drawin the light area
ctx.fillStyle = g; // set the gradient as the light
ctx.beginPath();
for(i = 0; i < shadowsShort.length; i++){ // for each shadow move in to the light across the circle and then back out away from the light
s = shadowsShort[i];
x = s.x1 + Math.cos(s.d1) * boundSize;
y = s.y1 + Math.sin(s.d1) * boundSize;
if (i === 0) { // if the start move to..
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
ctx.lineTo(s.x1, s.y1);
if (s.branch1 !== undefined) { // if braching. (NOTE this is not recursive. the correct solution would to math this a function and use recursion to climb in an out)
s = s.branch1;
x = s.x1 + Math.cos(s.d1) * s.branch1Dist;
y = s.y1 + Math.sin(s.d1) * s.branch1Dist;
ctx.lineTo(x, y);
ctx.lineTo(s.x1, s.y1);
}
ctx.lineTo(s.x2, s.y2);
if (s.branch2 !== undefined) {
x = s.x2 + Math.cos(s.d2) * s.branch2Dist;
y = s.y2 + Math.sin(s.d2) * s.branch2Dist;
ctx.lineTo(x, y);
s = s.branch2;
ctx.lineTo(s.x2, s.y2);
}
x = s.x2 + Math.cos(s.d2) * boundSize;
y = s.y2 + Math.sin(s.d2) * boundSize;
ctx.lineTo(x, y);
// now fill in the light between shadows
s1 = shadowsShort[(i + 1) % shadowsShort.length];
nextDir = s1.d1;
if(rev){
if (nextDir > s.d2) {
nextDir -= Math.PI * 2
}
}else{
if (nextDir < s.d2) {
nextDir += Math.PI * 2
}
}
x = Math.cos((nextDir+s.d2)/2) * boundSize + canvas.width / 2;
y = Math.sin((nextDir+s.d2)/2) * boundSize + canvas.height / 2;
ctx.lineTo(x, y);
}
// close the path.
ctx.closePath();
// set the comp to lighten or multiply
if(rev){
ctx.globalCompositeOperation ="multiply";
}else{
ctx.globalCompositeOperation ="lighter";
}
// draw the gradient
ctx.fill()
ctx.globalCompositeOperation ="source-over";
// draw the circles
for (i = 0; i < circles.length; i++) {
c = circles[i];
ctx.drawImage(circle, c.x - 32 * c.scale, c.y - 32 * c.scale, 64 * c.scale, 64 * c.scale);
}
// feed the herbervors.
window.requestAnimationFrame(update);
}
update();
.canC { width:400px; height:400px;}
<canvas class="canC" id="canV" width=400 height=400></canvas>

Related

How can we stop this HTML5 Canvas wheel at exact points after spin?

In the Below code link HTML5 canvas spin wheel game. I want to stop this canvas at a user-defined position as if the user wants to stop always at 200 texts or 100 texts like that.
Currently, it is stopping at random points I want to control where to stop as in if I want to stop circle at 100 or 200 or 0 whenever I want.
How can we achieve that??? Can anyone Help!!!!!
Attached Codepen link also.
Html file
<div>
<canvas class="spin-wheel" id="canvas" width="300" height="300"></canvas>
</div>
JS file
var color = ['#ca7','#7ac','#77c','#aac','#a7c','#ac7', "#caa"];
var label = ['10', '200','50','100','5','500',"0"];
var slices = color.length;
var sliceDeg = 360/slices;
var deg = 270;
var speed = 5;
var slowDownRand = 0;
var ctx = canvas.getContext('2d');
var width = canvas.width; // size
var center = width/2; // center
var isStopped = false;
var lock = false;
function rand(min, max) {
return Math.random() * (max - min) + min;
}
function deg2rad(deg){ return deg * Math.PI/180; }
function drawSlice(deg, color){
ctx.beginPath();
ctx.fillStyle = color;
ctx.moveTo(center, center);
ctx.arc(center, center, width/2, deg2rad(deg), deg2rad(deg+sliceDeg));
console.log(center, center, width/2, deg2rad(deg), deg2rad(deg+sliceDeg))
ctx.lineTo(center, center);
ctx.fill();
}
function drawText(deg, text) {
ctx.save();
ctx.translate(center, center);
ctx.rotate(deg2rad(deg));
ctx.textAlign = "right";
ctx.fillStyle = "#fff";
ctx.font = 'bold 30px sans-serif';
ctx.fillText(text, 130, 10);
ctx.restore();
}
function drawImg() {
ctx.clearRect(0, 0, width, width);
for(var i=0; i<slices; i++){
drawSlice(deg, color[i]);
drawText(deg+sliceDeg/2, label[i]);
deg += sliceDeg;
}
}
// ctx.rotate(360);
function anim() {
isStopped = true;
deg += speed;
deg %= 360;
// Increment speed
if(!isStopped && speed<3){
speed = speed+1 * 0.1;
}
// Decrement Speed
if(isStopped){
if(!lock){
lock = true;
slowDownRand = rand(0.994, 0.998);
}
speed = speed>0.2 ? speed*=slowDownRand : 0;
}
// Stopped!
if(lock && !speed){
var ai = Math.floor(((360 - deg - 90) % 360) / sliceDeg); // deg 2 Array Index
console.log(slices)
ai = (slices+ai)%slices; // Fix negative index
return alert("You got:\n"+ label[ai] ); // Get Array Item from end Degree
// ctx.arc(150,150,150,8.302780584487312,9.200378485512967);
// ctx.fill();
}
drawImg();
window.requestAnimationFrame(anim);
}
function start() {
anim()
}
drawImg();
Spin wheel codepen
Ease curves
If you where to plot the wheel position over time as it slows to a stop you would see a curve, a curve that looks like half a parabola.
You can get the very same curve if you plot the value of x squared in the range 0 to 1 as in the next snippet, the red line shows the plot of f(x) => x * x where 0 <= x <= 1
Unfortunately the plot is the wrong way round and needs to be mirrored in x and y. That is simple by changing the function to f(x) => 1 - (1 - x) ** 2 (Click the canvas to get the yellow line)
const size = 200;
const ctx = Object.assign(document.createElement("canvas"),{width: size, height: size / 2}).getContext("2d");
document.body.appendChild(ctx.canvas);
ctx.canvas.style.border = "2px solid black";
plot(getData());
plot(unitCurve(x => x * x), "#F00");
ctx.canvas.addEventListener("click",()=>plot(unitCurve(x => 1 - (1 - x) ** 2), "#FF0"), {once: true});
function getData(chart = []) {
var pos = 0, speed = 9, deceleration = 0.1;
while(speed > 0) {
chart.push(pos);
pos += speed;
speed -= deceleration;
}
return chart;
}
function unitCurve(f,chart = []) {
const step = 1 / 100;
var x = 0;
while(x <= 1) {
chart.push(f(x));
x += step
}
return chart;
}
function plot(chart, col = "#000") {
const xScale = size / chart.length, yScale = size / 2 / Math.max(...chart);
ctx.setTransform(xScale, 0, 0, yScale, 0, 0);
ctx.strokeStyle = col;
ctx.beginPath();
chart.forEach((y,x) => ctx.lineTo(x,y));
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.stroke();
}
In animation this curve is an ease in.
We can create function that uses the ease function, takes the time and returns the position of the wheel. We can provide some additional values that controls how long the wheel will take to stop, the starting position and the all important stop position.
function wheelPos(currentTime, startTime, endTime, startPos, endPos) {
// first scale the current time to a value from 0 to 1
const x = (currentTime - startTime) / (endTime - startTime);
// rather than the square, we will use the square root (this flips the curve)
const xx = x ** (1 / 2);
// convert the value to a wheel position
return xx * (endPos - startPos) + startPos;
}
Demo
The demo puts it in action. Rather than using the square root the function in the demo defines the root as the constant slowDownRate = 2.6. The smaller this value the greater start speed and the slower the end speed. A value of 1 means it will move at a constant speed and then stop. The value must be > 0 and < 1
requestAnimationFrame(mainLoop);
Math.TAU = Math.PI * 2;
const size = 160;
const ctx = Object.assign(document.createElement("canvas"),{width: size, height: size}).getContext("2d");
document.body.appendChild(ctx.canvas);
const stopAt = document.createElement("div")
document.body.appendChild(stopAt);
ctx.canvas.style.border = "2px solid black";
var gTime; // global time
const colors = ["#F00","#F80","#FF0","#0C0","#08F","#00F","#F0F"];
const wheelSteps = 12;
const minSpins = 3 * Math.TAU; // min number of spins before stopping
const spinTime = 6000; // in ms
const slowDownRate = 1 / 1.8; // smaller this value the greater the ease in.
// Must be > 0
var startSpin = false;
var readyTime = 0;
ctx.canvas.addEventListener("click",() => { startSpin = !wheel.spinning });
stopAt.textContent = "Click wheel to spin";
const wheel = { // hold wheel related variables
img: createWheel(wheelSteps),
endTime: performance.now() - 2000,
startPos: 0,
endPos: 0,
speed: 0,
pos: 0,
spinning: false,
set currentPos(val) {
this.speed = (val - this.pos) / 2; // for the wobble at stop
this.pos = val;
},
set endAt(pos) {
this.endPos = (Math.TAU - (pos / wheelSteps) * Math.TAU) + minSpins;
this.endTime = gTime + spinTime;
this.startTime = gTime;
stopAt.textContent = "Spin to: "+(pos + 1);
}
};
function wheelPos(currentTime, startTime, endTime, startPos, endPos) {
const x = ((currentTime - startTime) / (endTime - startTime)) ** slowDownRate;
return x * (endPos - startPos) + startPos;
}
function mainLoop(time) {
gTime = time;
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0, 0, size, size);
if (startSpin && !wheel.spinning) {
startSpin = false;
wheel.spinning = true;
wheel.startPos = (wheel.pos % Math.TAU + Math.TAU) % Math.TAU;
wheel.endAt = Math.random() * wheelSteps | 0;
} else if (gTime <= wheel.endTime) { // wheel is spinning get pos
wheel.currentPos = wheelPos(gTime, wheel.startTime, wheel.endTime, wheel.startPos, wheel.endPos);
readyTime = gTime + 1500;
} else { // wobble at stop
wheel.speed += (wheel.endPos - wheel.pos) * 0.0125;
wheel.speed *= 0.95;
wheel.pos += wheel.speed;
if (wheel.spinning && gTime > readyTime) {
wheel.spinning = false;
stopAt.textContent = "Click wheel to spin";
}
}
// draw wheel
ctx.setTransform(1,0,0,1,size / 2, size / 2);
ctx.rotate(wheel.pos);
ctx.drawImage(wheel.img, -size / 2 , - size / 2);
// draw marker shadow
ctx.setTransform(1,0,0,1,1,4);
ctx.fillStyle = "#0004";
ctx.beginPath();
ctx.lineTo(size - 13, size / 2);
ctx.lineTo(size, size / 2 - 7);
ctx.lineTo(size, size / 2 + 7);
ctx.fill();
// draw marker
ctx.setTransform(1,0,0,1,0,0);
ctx.fillStyle = "#F00";
ctx.beginPath();
ctx.lineTo(size - 13, size / 2);
ctx.lineTo(size, size / 2 - 7);
ctx.lineTo(size, size / 2 + 7);
ctx.fill();
requestAnimationFrame(mainLoop);
}
function createWheel(steps) {
const ctx = Object.assign(document.createElement("canvas"),{width: size, height: size}).getContext("2d");
const s = size, s2 = s / 2, r = s2 - 4;
var colIdx = 0;
for (let a = 0; a < Math.TAU; a += Math.TAU / steps) {
const aa = a - Math.PI / steps;
ctx.fillStyle = colors[colIdx++ % colors.length];
ctx.beginPath();
ctx.moveTo(s2, s2);
ctx.arc(s2, s2, r, aa, aa + Math.TAU / steps);
ctx.fill();
}
ctx.fillStyle = "#FFF";
ctx.beginPath();
ctx.arc(s2, s2, 12, 0, Math.TAU);
ctx.fill();
ctx.beginPath();
ctx.lineWidth = 2;
ctx.arc(s2, s2, r, 0, Math.TAU);
ctx.moveTo(s2 + 12, s2);
ctx.arc(s2, s2, 12, 0, Math.TAU);
for (let a = 0; a < Math.TAU; a += Math.TAU / steps) {
const aa = a - Math.PI / steps;
ctx.moveTo(Math.cos(aa) * 12 + s2, Math.sin(aa) * 12 + s2);
ctx.lineTo(Math.cos(aa) * r + s2, Math.sin(aa) * r + s2);
}
//ctx.fill("evenodd");
ctx.stroke();
ctx.fillStyle = "#000";
ctx.font = "13px arial black";
ctx.textAlign = "center";
ctx.textBaseline = "middle";
const tr = r - 8;
var idx = 1;
for (let a = 0; a < Math.TAU; a += Math.TAU / steps) {
const dx = Math.cos(a);
const dy = Math.sin(a);
ctx.setTransform(dy, -dx, dx, dy, dx * (tr - 4) + s2, dy * (tr - 4) + s2);
ctx.fillText(""+ (idx ++), 0, 0);
}
return ctx.canvas;
}
body { font-family: arial }

Dynamic Wavy Path/Border

There is something I need to build, but my math ability is not up to par. What I am looking to build is something like this demo, but I need it to be a hybrid of a circle and polygon instead of a line, so to speak. The black line should be dynamic and randomly generated that basically acts as a border on the page.
Currently, I am dissecting this answer with the aim of hopefully being able to transpose it into this, but I am having massive doubts that I will be able to figure this out.
Any idea how to do this or can anybody explain the mathematics?
Below are my notes about the code from the answer I linked above.
var
cw = cvs.width = window.innerWidth,
ch = cvs.height = window.innerHeight,
cx = cw / 2,
cy = ch / 2,
xs = Array(),
ys = Array(),
npts = 20,
amplitude = 87, // can be val from 1 to 100
frequency = -2, // can be val from -10 to 1 in steps of 0.1
ctx.lineWidth = 4
// creates array of coordinates that
// divides page into regular portions
// creates array of weights
for (var i = 0; i < npts; i++) {
xs[i] = (cw/npts)*i
ys[i] = 2.0*(Math.random()-0.5)*amplitude
}
function Draw() {
ctx.clearRect(0, 0, cw, ch);
ctx.beginPath();
for (let x = 0; x < cw; x++) {
y = 0.0
wsum = 0.0
for (let i = -5; i <= 5; i++) {
xx = x; // 0 / 1 / 2 / to value of screen width
// creates sequential sets from [-5 to 5] to [15 to 25]
ii = Math.round(x/xs[1]) + i
// `xx` is a sliding range with the total value equal to client width
// keeps `ii` within range of 0 to 20
if (ii < 0) {
xx += cw
ii += npts
}
if (ii >= npts){
xx -= cw
ii -= npts
}
// selects eleven sequential array items
// which are portions of the screen width and height
// to create staggered inclines in increments of those portions
w = Math.abs(xs[ii] - xx)
// creates irregular arcs
// based on the inclining values
w = Math.pow(w, frequency)
// also creates irregular arcs therefrom
y += w*ys[ii];
// creates sets of inclining values
wsum += w;
}
// provides a relative position or weight
// for each y-coordinate in the total path
y /= wsum;
//y = Math.sin(x * frequency) * amplitude;
ctx.lineTo(x, y+cy);
}
ctx.stroke();
}
Draw();
This is my answer. Please read the comments in the code. I hope this is what you need.
// initiate the canvas
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
let cw = (canvas.width = 600),
cx = cw / 2;
let ch = (canvas.height = 400),
cy = ch / 2;
ctx.fillStyle = "white"
// define the corners of an rectangle
let corners = [[100, 100], [500, 100], [500, 300], [100, 300]];
let amplitud = 20;// oscilation amplitude
let speed = 0.01;// the speed of the oscilation
let points = []; // an array of points to draw the curve
class Point {
constructor(x, y, hv) {
// the point is oscilating around this point (cx,cy)
this.cx = x;
this.cy = y;
// the current angle of oscilation
this.a = Math.random() * 2 * Math.PI;
this.hv = hv;// a variable to know if the oscilation is horizontal or vertical
this.update();
}
// a function to update the value of the angle
update() {
this.a += speed;
if (this.hv == 0) {
this.x = this.cx;
this.y = this.cy + amplitud * Math.cos(this.a);
} else {
this.x = this.cx + amplitud * Math.cos(this.a);
this.y = this.cy;
}
}
}
// a function to divide a line that goes from a to b in n segments
// I'm using the resulting points to create a new point object and push this new point into the points array
function divide(n, a, b) {
for (var i = 0; i <= n; i++) {
let p = {
x: (b[0] - a[0]) * i / n + a[0],
y: (b[1] - a[1]) * i / n + a[1],
hv: b[1] - a[1]
};
points.push(new Point(p.x, p.y, p.hv));
}
}
divide(10, corners[0], corners[1]);points.pop();
divide(5, corners[1], corners[2]);points.pop();
divide(10, corners[2], corners[3]);points.pop();
divide(5, corners[3], corners[0]);points.pop();
// this is a function that takes an array of points and draw a curved line through those points
function drawCurves() {
//find the first midpoint and move to it
let p = {};
p.x = (points[points.length - 1].x + points[0].x) / 2;
p.y = (points[points.length - 1].y + points[0].y) / 2;
ctx.beginPath();
ctx.moveTo(p.x, p.y);
//curve through the rest, stopping at each midpoint
for (var i = 0; i < points.length - 1; i++) {
let mp = {};
mp.x = (points[i].x + points[i + 1].x) / 2;
mp.y = (points[i].y + points[i + 1].y) / 2;
ctx.quadraticCurveTo(points[i].x, points[i].y, mp.x, mp.y);
}
//curve through the last point, back to the first midpoint
ctx.quadraticCurveTo(
points[points.length - 1].x,
points[points.length - 1].y,
p.x,
p.y
);
ctx.stroke();
ctx.fill();
}
function Draw() {
window.requestAnimationFrame(Draw);
ctx.clearRect(0, 0, cw, ch);
points.map(p => {
p.update();
});
drawCurves();
}
Draw();
canvas{border:1px solid; background:#6ab150}
<canvas></canvas>

html5 canvas triangle with rounded corners

I'm new to HTML5 Canvas and I'm trying to draw a triangle with rounded corners.
I have tried
ctx.lineJoin = "round";
ctx.lineWidth = 20;
but none of them are working.
Here's my code:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
var x = 18 / 2;
var y = 0;
var triangleWidth = 18;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>
Could you help me?
Rounding corners
An invaluable function I use a lot is rounded polygon. It takes a set of 2D points that describe a polygon's vertices and adds arcs to round the corners.
The problem with rounding corners and keeping within the constraint of the polygons area is that you can not always fit a round corner that has a particular radius.
In these cases you can either ignore the corner and leave it as pointy or, you can reduce the rounding radius to fit the corner as best possible.
The following function will resize the corner rounding radius to fit the corner if the corner is too sharp and the lines from the corner not long enough to get the desired radius in.
Note the code has comments that refer to the Maths section below if you want to know what is going on.
roundedPoly(ctx, points, radius)
// ctx is the context to add the path to
// points is a array of points [{x :?, y: ?},...
// radius is the max rounding radius
// this creates a closed polygon.
// To draw you must call between
// ctx.beginPath();
// roundedPoly(ctx, points, radius);
// ctx.stroke();
// ctx.fill();
// as it only adds a path and does not render.
function roundedPoly(ctx, points, radiusAll) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut,radius;
// convert 2 points into vector form, polar form, and normalised
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
radius = radiusAll;
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
// for each point
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
//-----------------------------------------
// Part 1
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA < -1 ? -1 : sinA > 1 ? 1 : sinA);
//-----------------------------------------
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
if(p2.radius !== undefined){
radius = p2.radius;
}else{
radius = radiusAll;
}
//-----------------------------------------
// Part 2
halfAngle = angle / 2;
//-----------------------------------------
//-----------------------------------------
// Part 3
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
//-----------------------------------------
//-----------------------------------------
// Special part A
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
//-----------------------------------------
// Part 4
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
//-----------------------------------------
// Part 5
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
//-----------------------------------------
// Part 6
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
//-----------------------------------------
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
You may wish to add to each point a radius eg {x :10,y:10,radius:20} this will set the max radius for that point. A radius of zero will be no rounding.
The maths
The following illistration shows one of two possibilities, the angle to fit is less than 90deg, the other case (greater than 90) just has a few minor calculation differences (see code).
The corner is defined by the three points in red A, B, and C. The circle radius is r and we need to find the green points F the circle center and D and E which will define the start and end angles of the arc.
First we find the angle between the lines from B,A and B,C this is done by normalising the vectors for both lines and getting the cross product. (Commented as Part 1) We also find the angle of line BC to the line at 90deg to BA as this will help determine which side of the line to put the circle.
Now we have the angle between the lines, we know that half that angle defines the line that the center of the circle will sit F but we do not know how far that point is from B (Commented as Part 2)
There are two right triangles BDF and BEF which are identical. We have the angle at B and we know that the side DF and EF are equal to the radius of the circle r thus we can solve the triangle to get the distance to F from B
For convenience rather than calculate to F is solve for BD (Commented as Part 3) as I will move along the line BC by that distance (Commented as Part 4) then turn 90deg and move up to F (Commented as Part 5) This in the process gives the point D and moving along the line BA to E
We use points D and E and the circle center F (in their abstract form) to calculate the start and end angles of the arc. (done in the arc function part 6)
The rest of the code is concerned with the directions to move along and away from lines and which direction to sweep the arc.
The code section (special part A) uses the lengths of both lines BA and BC and compares them to the distance from BD if that distance is greater than half the line length we know the arc can not fit. I then solve the triangles to find the radius DF if the line BD is half the length of shortest line of BA and BC
Example use.
The snippet is a simple example of the above function in use. Click to add points to the canvas (needs a min of 3 points to create a polygon). You can drag points and see how the corner radius adapts to sharp corners or short lines. More info when snippet is running. To restart rerun the snippet. (there is a lot of extra code that can be ignored)
The corner radius is set to 30.
const ctx = canvas.getContext("2d");
const mouse = {
x: 0,
y: 0,
button: false,
drag: false,
dragStart: false,
dragEnd: false,
dragStartX: 0,
dragStartY: 0
}
function mouseEvents(e) {
mouse.x = e.pageX;
mouse.y = e.pageY;
const lb = mouse.button;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
if (lb !== mouse.button) {
if (mouse.button) {
mouse.drag = true;
mouse.dragStart = true;
mouse.dragStartX = mouse.x;
mouse.dragStartY = mouse.y;
} else {
mouse.drag = false;
mouse.dragEnd = true;
}
}
}
["down", "up", "move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
const pointOnLine = {x:0,y:0};
function distFromLines(x,y,minDist){
var index = -1;
const v1 = {};
const v2 = {};
const v3 = {};
const point = P2(x,y);
eachOf(polygon,(p,i)=>{
const p1 = polygon[(i + 1) % polygon.length];
v1.x = p1.x - p.x;
v1.y = p1.y - p.y;
v2.x = point.x - p.x;
v2.y = point.y - p.y;
const u = (v2.x * v1.x + v2.y * v1.y)/(v1.y * v1.y + v1.x * v1.x);
if(u >= 0 && u <= 1){
v3.x = p.x + v1.x * u;
v3.y = p.y + v1.y * u;
dist = Math.hypot(v3.y - point.y, v3.x - point.x);
if(dist < minDist){
minDist = dist;
index = i;
pointOnLine.x = v3.x;
pointOnLine.y = v3.y;
}
}
})
return index;
}
function roundedPoly(ctx, points, radius) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut;
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA); // warning you should guard by clampling
// to -1 to 1. See function roundedPoly in answer or
// Math.asin(Math.max(-1, Math.min(1, sinA)))
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
halfAngle = angle / 2;
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
const eachOf = (array, callback) => { var i = 0; while (i < array.length && callback(array[i], i++) !== true); };
const P2 = (x = 0, y = 0) => ({x, y});
const polygon = [];
function findClosestPointIndex(x, y, minDist) {
var index = -1;
eachOf(polygon, (p, i) => {
const dist = Math.hypot(x - p.x, y - p.y);
if (dist < minDist) {
minDist = dist;
index = i;
}
});
return index;
}
// short cut vars
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var dragPoint;
var globalTime;
var closestIndex = -1;
var closestLineIndex = -1;
var cursor = "default";
const lineDist = 10;
const pointDist = 20;
var toolTip = "";
// main update function
function update(timer) {
globalTime = timer;
cursor = "crosshair";
toolTip = "";
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if (w !== innerWidth - 4 || h !== innerHeight - 4) {
cw = (w = canvas.width = innerWidth - 4) / 2;
ch = (h = canvas.height = innerHeight - 4) / 2;
} else {
ctx.clearRect(0, 0, w, h);
}
if (mouse.drag) {
if (mouse.dragStart) {
mouse.dragStart = false;
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex === -1){
polygon.push(dragPoint = P2(mouse.x, mouse.y));
}else{
polygon.splice(closestLineIndex+1,0,dragPoint = P2(mouse.x, mouse.y));
}
}else{
dragPoint = polygon[closestIndex];
}
}
dragPoint.x = mouse.x;
dragPoint.y = mouse.y
cursor = "none";
}else{
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex > -1){
toolTip = "Click to cut line and/or drag to move.";
}
}else{
toolTip = "Click drag to move point.";
closestLineIndex = -1;
}
}
ctx.lineWidth = 4;
ctx.fillStyle = "#09F";
ctx.strokeStyle = "#000";
ctx.beginPath();
roundedPoly(ctx, polygon, 30);
ctx.stroke();
ctx.fill();
ctx.beginPath();
ctx.strokeStyle = "red";
ctx.lineWidth = 0.5;
eachOf(polygon, p => ctx.lineTo(p.x,p.y) );
ctx.closePath();
ctx.stroke();
ctx.strokeStyle = "orange";
ctx.lineWidth = 1;
eachOf(polygon, p => ctx.strokeRect(p.x-2,p.y-2,4,4) );
if(closestIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
dragPoint = polygon[closestIndex];
ctx.strokeRect(dragPoint.x-4,dragPoint.y-4,8,8);
cursor = "move";
}else if(closestLineIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
var p = polygon[closestLineIndex];
var p1 = polygon[(closestLineIndex + 1) % polygon.length];
ctx.beginPath();
ctx.lineTo(p.x,p.y);
ctx.lineTo(p1.x,p1.y);
ctx.stroke();
ctx.strokeRect(pointOnLine.x-4,pointOnLine.y-4,8,8);
cursor = "pointer";
}
if(toolTip === "" && polygon.length < 3){
toolTip = "Click to add a corners of a polygon.";
}
canvas.title = toolTip;
canvas.style.cursor = cursor;
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas {
border: 2px solid black;
position: absolute;
top: 0px;
left: 0px;
}
<canvas id="canvas"></canvas>
I started by using #Blindman67 's answer, which works pretty well for basic static shapes.
I ran into the problem that when using the arc approach, having two points right next to each other is very different than having just one point. With two points next to each other, it won't be rounded, even if that is what your eye would expect. This is extra jarring if you are animating the polygon points.
I fixed this by using Bezier curves instead. IMO this is conceptually a little cleaner as well. I just make each corner with a quadratic curve where the control point is where the original corner was. This way, having two points in the same spot is virtually the same as only having one point.
I haven't compared performance but seems like canvas is pretty good at drawing Beziers.
As with #Blindman67 's answer, this doesn't actually draw anything so you will need to call ctx.beginPath() before and ctx.stroke() after.
/**
* Draws a polygon with rounded corners
* #param {CanvasRenderingContext2D} ctx The canvas context
* #param {Array} points A list of `{x, y}` points
* #radius {number} how much to round the corners
*/
function myRoundPolly(ctx, points, radius) {
const distance = (p1, p2) => Math.sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2)
const lerp = (a, b, x) => a + (b - a) * x
const lerp2D = (p1, p2, t) => ({
x: lerp(p1.x, p2.x, t),
y: lerp(p1.y, p2.y, t)
})
const numPoints = points.length
let corners = []
for (let i = 0; i < numPoints; i++) {
let lastPoint = points[i]
let thisPoint = points[(i + 1) % numPoints]
let nextPoint = points[(i + 2) % numPoints]
let lastEdgeLength = distance(lastPoint, thisPoint)
let lastOffsetDistance = Math.min(lastEdgeLength / 2, radius)
let start = lerp2D(
thisPoint,
lastPoint,
lastOffsetDistance / lastEdgeLength
)
let nextEdgeLength = distance(nextPoint, thisPoint)
let nextOffsetDistance = Math.min(nextEdgeLength / 2, radius)
let end = lerp2D(
thisPoint,
nextPoint,
nextOffsetDistance / nextEdgeLength
)
corners.push([start, thisPoint, end])
}
ctx.moveTo(corners[0][0].x, corners[0][0].y)
for (let [start, ctrl, end] of corners) {
ctx.lineTo(start.x, start.y)
ctx.quadraticCurveTo(ctrl.x, ctrl.y, end.x, end.y)
}
ctx.closePath()
}
Styles for joining of lines such as ctx.lineJoin="round" apply to the stroke operation on paths - which is when their width, color, pattern, dash/dotted and similar line style attributes are taken into account.
Line styles do not apply to filling the interior of a path.
So to affect line styles a stroke operation is needed. In the following adaptation of posted code, I've translated canvas output to see the result without cropping, and stroked the triangle's path but not the rectangles below it:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
ctx.translate( 18, 12);
var x = 18 / 2;
var y = 0;
var triangleWidth = 48;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
// stroke the triangle path.
ctx.lineWidth = 3;
ctx.lineJoin = "round";
ctx.strokeStyle = "orange";
ctx.stroke();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>

How to draw herringbone pattern on html canvas

I Have to draw Herringbone pattern on canvas and fill with image
some one please help me I am new to canvas 2d drawing.
I need to draw mixed tiles with cross pattern (Herringbone)
var canvas = this.__canvas = new fabric.Canvas('canvas');
var canvas_objects = canvas._objects;
// create a rectangle with a fill and a different color stroke
var left = 150;
var top = 150;
var x=20;
var y=40;
var rect = new fabric.Rect({
left: left,
top: top,
width: x,
height: y,
angle:45,
fill: 'rgba(255,127,39,1)',
stroke: 'rgba(34,177,76,1)',
strokeWidth:0,
originX:'right',
originY:'top',
centeredRotation: false
});
canvas.add(rect);
for(var i=0;i<15;i++){
var rectangle = fabric.util.object.clone(getLastobject());
if(i%2==0){
rectangle.left = rectangle.oCoords.tr.x;
rectangle.top = rectangle.oCoords.tr.y;
rectangle.originX='right';
rectangle.originY='top';
rectangle.angle =-45;
}else{
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.left = rectangle.oCoords.tl.x;
rectangle.top = rectangle.oCoords.tl.y;
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.originX='left';
rectangle.originY='top';
rectangle.angle =45;
}
//rectangle.angle -90;
canvas.add(rectangle);
}
fabric.log('rectangle: ', canvas.toJSON());
canvas.renderAll();
function getLastobject(){
var last = null;
if(canvas_objects.length !== 0){
last = canvas_objects[canvas_objects.length -1]; //Get last object
}
return last;
}
How to draw this pattern in canvas using svg or 2d,3d method. If any third party library that also Ok for me.
I don't know where to start and how to draw this complex pattern.
some one please help me to draw this pattern with rectangle fill with dynamic color on canvas.
Here is a sample of the output I need: (herringbone pattern)
I tried something similar using fabric.js library here is my JSFiddle
Trippy disco flooring
To get the pattern you need to draw rectangles one horizontal tiled one space left or right for each row down and the same for the vertical rectangle.
The rectangle has an aspect of width 2 time height.
Drawing the pattern is simple.
Rotating is easy as well the harder part is finding where to draw the tiles for the rotation.
To do that I create a inverse matrix of the rotation (it reverses a rotation). I then apply that rotation to the 4 corners of the canvas 0,0, width,0 width,height and 0,height this gives me 4 points in the rotated space that are at the edges of the canvas.
As I draw the tiles from left to right top to bottom I find the min corners for the top left, and the max corners for the bottom right, expand it out a little so I dont miss any pixels and draw the tiles with a transformation set the the rotation.
As I could not workout what angle you wanted it at the function will draw it at any angle. On is animated, the other is at 60deg clockwise.
Warning demo contains flashing content.
Update The flashing was way to out there, so have made a few changes, now colours are a more pleasing blend and have fixed absolute positions, and have tied the tile origin to the mouse position, clicking the mouse button will cycle through some sizes as well.
const ctx = canvas.getContext("2d");
const colours = []
for(let i = 0; i < 1; i += 1/80){
colours.push(`hsl(${Math.floor(i * 360)},${Math.floor((Math.sin(i * Math.PI *4)+1) * 50)}%,${Math.floor(Math.sin(i * Math.PI *8)* 25 + 50)}%)`)
}
const sizes = [0.04,0.08,0.1,0.2];
var currentSize = 0;
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 2;
endX = Math.floor(endX / size) + 2;
startY = Math.floor(startY / size) - 2;
endY = Math.floor(endY / size) + 2;
// draw the pattern
ctx.lineWidth = size * 0.1;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
var colourIndex = 0;
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
if((x + y) % 4 === 0){
colourIndex = Math.floor(Math.abs(Math.sin(x)*size + Math.sin(y) * 20));
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
// Animate it all
var update = true; // flag to indecate something needs updating
function mainLoop(time){
// if window size has changed update canvas to new size
if(canvas.width !== innerWidth || canvas.height !== innerHeight || update){
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width, canvas.height) * sizes[currentSize % sizes.length];
update = false;
}
if(mouse.buttonRaw !== 0){
mouse.buttonRaw = 0;
currentSize += 1;
update = true;
}
// draw the patter
drawPattern(size,mouse,time/2000);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
mouse = (function () {
function preventDefault(e) { e.preventDefault() }
var m; // alias for mouse
var mouse = {
x : 0, y : 0, // mouse position
buttonRaw : 0,
over : false, // true if mouse over the element
buttonOnMasks : [0b1, 0b10, 0b100], // mouse button on masks
buttonOffMasks : [0b110, 0b101, 0b011], // mouse button off masks
bounds : null,
eventNames : "mousemove,mousedown,mouseup,mouseout,mouseover".split(","),
event(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left - scrollX;
m.y = e.pageY - m.bounds.top - scrollY;
if (t === "mousedown") { m.buttonRaw |= m.buttonOnMasks[e.which - 1] }
else if (t === "mouseup") { m.buttonRaw &= m.buttonOffMasks[e.which - 1] }
else if (t === "mouseout") { m.over = false }
else if (t === "mouseover") { m.over = true }
e.preventDefault();
},
start(element) {
if (m.element !== undefined) { m.remove() }
m.element = element === undefined ? document : element;
m.eventNames.forEach(name => document.addEventListener(name, mouse.event) );
document.addEventListener("contextmenu", preventDefault, false);
},
}
m = mouse;
return mouse;
})();
mouse.start(canvas);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
Un-animated version at 60Deg
const ctx = canvas.getContext("2d");
const colours = ["red","green","yellow","orange","blue","cyan","magenta"]
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 4;
endX = Math.floor(endX / size) + 4;
startY = Math.floor(startY / size) - 4;
endY = Math.floor(endY / size) + 4;
// draw the pattern
ctx.lineWidth = 5;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
if((x + y) % 4 === 0){
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
drawPattern(size,origin,Math.PI / 3);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
The best way to approach this is to examine the pattern and analyse its symmetry and how it repeats.
You can look at this several ways. For example, you could rotate the patter 45 degrees so that the tiles are plain orthogonal rectangles. But let's just look at it how it is. I am going to assume you are happy with it with 45deg tiles.
Like the tiles themselves, it turns out the pattern has a 2:1 ratio. If we repeat this pattern horizontally and vertically, we can fill the canvas with the completed pattern.
We can see there are five tiles that overlap with our pattern block. However we don't need to draw them all when we draw each pattern block. We can take advantage of the fact that blocks are repeated, and we can leave the drawing of some tiles to later rows and columns.
Let's assume we are drawing the pattern blocks from left to right and top to bottom. Which tiles do we need to draw, at a minimum, to ensure this pattern block gets completely drawn (taking into account adjacent pattern blocks)?
Since we will be starting at the top left (and moving right and downwards), we'll need to draw tile 2. That's because that tile won't get drawn by either the block below us, or the block to the right of us. The same applies to tile 3.
It turns out those two are all we'll need to draw for each pattern block. Tile 1 and 4 will be drawn when the pattern block below us draws their tile 2 and 3 respectively. Tile 5 will be drawn when the pattern block to the south-east of us draws their tile 1.
We just need to remember that we may need to draw an extra column on the right-hand side, and at the bottom, to ensure those end-of-row and end-of-column pattern blocks get completely drawn.
The last thing to work out is how big our pattern blocks are.
Let's call the short side of the tile a and the long side b. We know that b = 2 * a. And we can work out, using Pythagoras Theorem, that the height of the pattern block will be:
h = sqrt(a^2 + a^2)
= sqrt(2 * a^2)
= sqrt(2) * a
The width of the pattern block we can see will be w = 2 * h.
Now that we've worked out how to draw the pattern, let's implement our algorithm.
const a = 60;
const b = 120;
const h = 50 * Math.sqrt(2);
const w = h * 2;
const h2 = h / 2; // How far tile 1 sticks out to the left of the pattern block
// Set of colours for the tiles
const colours = ["red","cornsilk","black","limegreen","deepskyblue",
"mediumorchid", "lightgrey", "grey"]
const canvas = document.getElementById("herringbone");
const ctx = canvas.getContext("2d");
// Set a universal stroke colour and width
ctx.strokeStyle = "black";
ctx.lineWidth = 4;
// Loop through the pattern block rows
for (var y=0; y < (canvas.height + h); y+=h)
{
// Loop through the pattern block columns
for (var x=0; x < (canvas.width + w); x+=w)
{
// Draw tile "2"
// I'm just going to draw a path for simplicity, rather than
// worrying about drawing a rectangle with rotation and translates
ctx.beginPath();
ctx.moveTo(x - h2, y - h2);
ctx.lineTo(x, y - h);
ctx.lineTo(x + h, y);
ctx.lineTo(x + h2, y + h2);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
// Draw tile "3"
ctx.beginPath();
ctx.moveTo(x + h2, y + h2);
ctx.lineTo(x + w - h2, y - h2);
ctx.lineTo(x + w, y);
ctx.lineTo(x + h, y + h);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
}
}
<canvas id="herringbone" width="500" height="400"></canvas>

How Can I draw a Text Along arc path with HTML 5 Canvas?

I want to draw a canvas graphic like this flash animation:
http://www.cci.com.tr/tr/bizi-taniyin/tarihcemiz/
I drew six arcs and I want to write six words in these arcs. Any ideas?
I have a jsFiddle to apply text to any arbitrary Bezier curve definition. Enjoy http://jsfiddle.net/Makallus/hyyvpp8g/
var first = true;
startIt();
function startIt() {
canvasDiv = document.getElementById('canvasDiv');
canvasDiv.innerHTML = '<canvas id="layer0" width="300" height="300"></canvas>'; //for IE
canvas = document.getElementById('layer0');
ctx = canvas.getContext('2d');
ctx.fillStyle = "black";
ctx.font = "18px arial black";
curve = document.getElementById('curve');
curveText = document.getElementById('text');
$(curve).keyup(function(e) {
changeCurve();
});
$(curveText).keyup(function(e) {
changeCurve();
});
if (first) {
changeCurve();
first = false;
}
}
function changeCurve() {
points = curve.value.split(',');
if (points.length == 8) drawStack();
}
function drawStack() {
Ribbon = {
maxChar: 50,
startX: points[0],
startY: points[1],
control1X: points[2],
control1Y: points[3],
control2X: points[4],
control2Y: points[5],
endX: points[6],
endY: points[7]
};
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.save();
ctx.beginPath();
ctx.moveTo(Ribbon.startX, Ribbon.startY);
ctx.bezierCurveTo(Ribbon.control1X, Ribbon.control1Y,
Ribbon.control2X, Ribbon.control2Y,
Ribbon.endX, Ribbon.endY);
ctx.stroke();
ctx.restore();
FillRibbon(curveText.value, Ribbon);
}
function FillRibbon(text, Ribbon) {
var textCurve = [];
var ribbon = text.substring(0, Ribbon.maxChar);
var curveSample = 1000;
xDist = 0;
var i = 0;
for (i = 0; i < curveSample; i++) {
a = new bezier2(i / curveSample, Ribbon.startX, Ribbon.startY, Ribbon.control1X, Ribbon.control1Y, Ribbon.control2X, Ribbon.control2Y, Ribbon.endX, Ribbon.endY);
b = new bezier2((i + 1) / curveSample, Ribbon.startX, Ribbon.startY, Ribbon.control1X, Ribbon.control1Y, Ribbon.control2X, Ribbon.control2Y, Ribbon.endX, Ribbon.endY);
c = new bezier(a, b);
textCurve.push({
bezier: a,
curve: c.curve
});
}
letterPadding = ctx.measureText(" ").width / 4;
w = ribbon.length;
ww = Math.round(ctx.measureText(ribbon).width);
totalPadding = (w - 1) * letterPadding;
totalLength = ww + totalPadding;
p = 0;
cDist = textCurve[curveSample - 1].curve.cDist;
z = (cDist / 2) - (totalLength / 2);
for (i = 0; i < curveSample; i++) {
if (textCurve[i].curve.cDist >= z) {
p = i;
break;
}
}
for (i = 0; i < w; i++) {
ctx.save();
ctx.translate(textCurve[p].bezier.point.x, textCurve[p].bezier.point.y);
ctx.rotate(textCurve[p].curve.rad);
ctx.fillText(ribbon[i], 0, 0);
ctx.restore();
x1 = ctx.measureText(ribbon[i]).width + letterPadding;
x2 = 0;
for (j = p; j < curveSample; j++) {
x2 = x2 + textCurve[j].curve.dist;
if (x2 >= x1) {
p = j;
break;
}
}
}
} //end FillRibon
function bezier(b1, b2) {
//Final stage which takes p, p+1 and calculates the rotation, distance on the path and accumulates the total distance
this.rad = Math.atan(b1.point.mY / b1.point.mX);
this.b2 = b2;
this.b1 = b1;
dx = (b2.x - b1.x);
dx2 = (b2.x - b1.x) * (b2.x - b1.x);
this.dist = Math.sqrt(((b2.x - b1.x) * (b2.x - b1.x)) + ((b2.y - b1.y) * (b2.y - b1.y)));
xDist = xDist + this.dist;
this.curve = {
rad: this.rad,
dist: this.dist,
cDist: xDist
};
}
function bezierT(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY) {
//calculates the tangent line to a point in the curve; later used to calculate the degrees of rotation at this point.
this.mx = (3 * (1 - t) * (1 - t) * (control1X - startX)) + ((6 * (1 - t) * t) * (control2X - control1X)) + (3 * t * t * (endX - control2X));
this.my = (3 * (1 - t) * (1 - t) * (control1Y - startY)) + ((6 * (1 - t) * t) * (control2Y - control1Y)) + (3 * t * t * (endY - control2Y));
}
function bezier2(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY) {
//Quadratic bezier curve plotter
this.Bezier1 = new bezier1(t, startX, startY, control1X, control1Y, control2X, control2Y);
this.Bezier2 = new bezier1(t, control1X, control1Y, control2X, control2Y, endX, endY);
this.x = ((1 - t) * this.Bezier1.x) + (t * this.Bezier2.x);
this.y = ((1 - t) * this.Bezier1.y) + (t * this.Bezier2.y);
this.slope = new bezierT(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY);
this.point = {
t: t,
x: this.x,
y: this.y,
mX: this.slope.mx,
mY: this.slope.my
};
}
function bezier1(t, startX, startY, control1X, control1Y, control2X, control2Y) {
//linear bezier curve plotter; used recursivly in the quadratic bezier curve calculation
this.x = ((1 - t) * (1 - t) * startX) + (2 * (1 - t) * t * control1X) + (t * t * control2X);
this.y = ((1 - t) * (1 - t) * startY) + (2 * (1 - t) * t * control1Y) + (t * t * control2Y);
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<table>
<TR>
<TH>Bezier Curve</TH>
<TD>
<input size="80" type="text" id="curve" name="curve" value="99.2,177.2,130.02,60.0,300.5,276.2,300.7,176.2">
</TD>
</TR>
<TR>
<TH>Text</TH>
<TD>
<input size="80" type="text" id="text" name="text" value="testing 1234567890">
</TD>
</TR>
<TR>
<TD colspan=2>
<div id="canvasDiv"></div>
</TD>
</TR>
</table>
An old old question... nevertheless, on my blog, I take a fairly close look at creating circular text using HTML5 Canvas:
html5graphics.blogspot.com
In the example, options include rounded text alignment (left, center and right) from a given angle, inward and outward facing text, kerning (adjustable gap between characters) and text inside or outside the radius.
There is also a jsfiddle with a working example.
It is as follows:
document.body.appendChild(getCircularText("ROUNDED TEXT LOOKS BEST IN CAPS!", 250, 0, "center", true, true, "Arial", "18pt", 0));
function getCircularText(text, diameter, startAngle, align, textInside, inwardFacing, fName, fSize, kerning) {
// text: The text to be displayed in circular fashion
// diameter: The diameter of the circle around which the text will
// be displayed (inside or outside)
// startAngle: In degrees, Where the text will be shown. 0 degrees
// if the top of the circle
// align: Positions text to left right or center of startAngle
// textInside: true to show inside the diameter. False draws outside
// inwardFacing: true for base of text facing inward. false for outward
// fName: name of font family. Make sure it is loaded
// fSize: size of font family. Don't forget to include units
// kearning: 0 for normal gap between letters. positive or
// negative number to expand/compact gap in pixels
//------------------------------------------------------------------------
// declare and intialize canvas, reference, and useful variables
align = align.toLowerCase();
var mainCanvas = document.createElement('canvas');
var ctxRef = mainCanvas.getContext('2d');
var clockwise = align == "right" ? 1 : -1; // draw clockwise for aligned right. Else Anticlockwise
startAngle = startAngle * (Math.PI / 180); // convert to radians
// calculate height of the font. Many ways to do this
// you can replace with your own!
var div = document.createElement("div");
div.innerHTML = text;
div.style.position = 'absolute';
div.style.top = '-10000px';
div.style.left = '-10000px';
div.style.fontFamily = fName;
div.style.fontSize = fSize;
document.body.appendChild(div);
var textHeight = div.offsetHeight;
document.body.removeChild(div);
// in cases where we are drawing outside diameter,
// expand diameter to handle it
if (!textInside) diameter += textHeight * 2;
mainCanvas.width = diameter;
mainCanvas.height = diameter;
// omit next line for transparent background
mainCanvas.style.backgroundColor = 'lightgray';
ctxRef.font = fSize + ' ' + fName;
// Reverse letter order for align Left inward, align right outward
// and align center inward.
if (((["left", "center"].indexOf(align) > -1) && inwardFacing) || (align == "right" && !inwardFacing)) text = text.split("").reverse().join("");
// Setup letters and positioning
ctxRef.translate(diameter / 2, diameter / 2); // Move to center
startAngle += (Math.PI * !inwardFacing); // Rotate 180 if outward
ctxRef.textBaseline = 'middle'; // Ensure we draw in exact center
ctxRef.textAlign = 'center'; // Ensure we draw in exact center
// rotate 50% of total angle for center alignment
if (align == "center") {
for (var j = 0; j < text.length; j++) {
var charWid = ctxRef.measureText(text[j]).width;
startAngle += ((charWid + (j == text.length-1 ? 0 : kerning)) / (diameter / 2 - textHeight)) / 2 * -clockwise;
}
}
// Phew... now rotate into final start position
ctxRef.rotate(startAngle);
// Now for the fun bit: draw, rotate, and repeat
for (var j = 0; j < text.length; j++) {
var charWid = ctxRef.measureText(text[j]).width; // half letter
ctxRef.rotate((charWid/2) / (diameter / 2 - textHeight) * clockwise); // rotate half letter
// draw char at "top" if inward facing or "bottom" if outward
ctxRef.fillText(text[j], 0, (inwardFacing ? 1 : -1) * (0 - diameter / 2 + textHeight / 2));
ctxRef.rotate((charWid/2 + kerning) / (diameter / 2 - textHeight) * clockwise); // rotate half letter
}
// Return it
return (mainCanvas);
}
You can try the following code to see how to write text along an Arc Path using HTML5 Canvas
function drawTextAlongArc(context, str, centerX, centerY, radius, angle) {
var len = str.length,
s;
context.save();
context.translate(centerX, centerY);
context.rotate(-1 * angle / 2);
context.rotate(-1 * (angle / len) / 2);
for (var n = 0; n < len; n++) {
context.rotate(angle / len);
context.save();
context.translate(0, -1 * radius);
s = str[n];
context.fillText(s, 0, 0);
context.restore();
}
context.restore();
}
var canvas = document.getElementById('myCanvas'),
context = canvas.getContext('2d'),
centerX = canvas.width / 2,
centerY = canvas.height - 30,
angle = Math.PI * 0.8,
radius = 150;
context.font = '30pt Calibri';
context.textAlign = 'center';
context.fillStyle = 'blue';
context.strokeStyle = 'blue';
context.lineWidth = 4;
drawTextAlongArc(context, 'Text along arc path', centerX, centerY, radius, angle);
// draw circle underneath text
context.arc(centerX, centerY, radius - 10, 0, 2 * Math.PI, false);
context.stroke();
<!DOCTYPE HTML>
<html>
<head>
<style>
body {
margin: 0px;
padding: 0px;
}
</style>
</head>
<body>
<canvas id="myCanvas" width="578" height="250"></canvas>
</body>
</html>
You can't in any built in way. Please note that SVG natively does support text along paths, so you might want to consider SVG instead!
But you can write custom code in order to achieve the same effect, as some of us did for this question here: HTML5 Canvas Circle Text

Categories

Resources