React, ineffiencies of binding a new function for each event - javascript

My friend and I are having an argument. In the interest of full disclosure, I'm the one who's a big fan of React and its benefits.
In React components, when attaching a DOM event to each element in a list of elements, the traditional pattern is to bind() the generic click handler with the values you want to pass along to that function as parameters. As written below:
<button onClick={this.onButtonClick.bind(this, buttonIndex)}></button>
where buttonIndex is some value that changes as the list of buttons is iterated over. This pattern allows onButtonClick to be generic, and expect buttonIndex as a parameter. Like so:
onButtonClick: function(buttonIndex) {
... some logic
}
My friend argues that this way of doing things is extremely inefficient. This requires that a new function be created and kept in memory to handle each button's event. I agree with his point, but I feel that the React devs wouldn't encourage this pattern in their docs, (at least twice) if the library didn't efficiently handle the events and their handlers.
The pattern he used to avoid this was to use the data- attribute and get the value (in this example, buttonIndex) off the DOM element itself:
<button data-buttonIndex={buttonIndex} onClick={this.onButtonClick}></button>
...
onButtonClick: function() {
var buttonIndex = $(this).data('buttonIndex');
...some logic
}
Again, I'm biased cus I'm the React fan. But this feels wrong, for two reasons:
Getting values off the DOM to pass data around (as state) kinda defeats the purpose of React in a lot of ways, right?
data- attributes are extremely ambiguous in my opinion. They can be set from several different places (HTML, JS, PHP, etc.). And they don't suggest any implicit purpose. That "data" could be used anywhere, (JS, CSS, etc.)
Does React do some special magic to be efficent with its DOM events? And if not, is there an alternative pattern that doesn't use the data- attribute and is more explicit about its use?

I think in general binding functions directly in render is the idiomatic way because they do it in the docs as you pointed out and in our experience has not been significantly less performant. However, there are cases you don't want to rebind the function on every render, for example if you're comparing props in shouldComponentUpdate (like with PureRenderMixin). To do something very similar as your friend suggests but without looking at the DOM with jQuery (and I believe is a common pattern) you can pass the index as a prop.
class Parent extends React.Component {
render() {
return [...some array].map((item, index) => {
return <Child item={item} index={index} />;
});
}
}
class Child extends React.Component {
constructor() {
super();
this.handleClickButton = this.handleClickButton.bind(this);
}
handleClickButton() {
// use this.props.index here
}
render() {
return <button onClick={this.handleClickButton}></button>;
}
}
Note when using ES6 classes you need to bind to this manually in constructor since you're accessing this.props. You don't need to if you're using React.createClass. More about ES6 classes in React docs here.

I'm not sure this is a good idea, but... memoize!
class Foo {
constructor(){
this.getClickHandler = _.memoize(this.getClickHandler);
}
getClickHandler(index){
return (event) => {
doSomething();
};
}
render(){
// ...
<button onClick={this.getClickHandler(index)}>Click me</button>
// ...
}
}
This way you avoid creating a new function, avoid data-attributes, and avoid the performance cost of looking up anything in the dom.
I don't think I've ever profiled and found creating functions in render to be an issue. This is definitely something you should optimize only when the numbers tell you to do so.

Related

How to pass the set[State] function to a non-descendent trigger component

Here is the diagram. ChildComponentB has a state - stateX. In ChildComponentA, once the event occurs, it will change the stateX in ChildComponentB.
If the ChildComponentA is the child component of ChildComponentB, then it's easy, just pass the setStateX as a prop to ChildComponentA. But in this case, it's not.
The real scenario is the following. I have a canvas component, there are some static Rectangles already there, once there are mouse move over the line of the Rectangles, I'd like to add the indicator lines to another child component of the canvas component.
Hence, the rectComponent is not the descendent of the distanceIndicatorsComponent. So I can't pass the setLines to RectComponent.
What's your approach to do that?
If I use useContext approach, will it work?
Thank you, #KonradLinkowski to provide your solution. Here is his code. However, useContext is still lifing the state up to ParentComponent.
import React, { useContext, createContext, useState } from "react";
const Context = createContext();
function ChildComponentA(props) {
const { setStateX } = useContext(Context);
return (
<div>
componentA button:{" "}
<button onClick={() => setStateX((i) => i + 1)}>add</button>
</div>
);
}
function ChildComponentB(props) {
const { stateX } = useContext(Context);
return <div> stateX is {stateX} </div>;
}
export default function ParentComponent(props) {
const [stateX, setStateX] = useState(0);
return (
<>
<Context.Provider value={{ stateX, setStateX }}>
<ChildComponentA> </ChildComponentA>
<ChildComponentB> </ChildComponentB>
</Context.Provider>
</>
);
}
Regarding the reusbility of the ComponentB i.e. distanceIndicatorsComponent in this scenario, it includes the JSX and the states plus the interface in which there are logic to change the states. The are all parts which should be reusable in the furture.
From OOP perspective, the lines (state) belongs to DistanceIndicatorsComponent, and the how to change the lines (Add Line in this case) should be also reusable logic which belongs to distanceIndicatorsComponent.
However, from React perspective, to lift the setLines (this is the interface triggered under some event) is not "good enough" from OOP perspective. To lift the state - lines and state management function - setLines up to CanvasComponent is a "not good enough" in terms of the encapsulation. Put a wrap component on top of ComponentB is the same thing, the setLines still can't be passed to FrameComponent unless FrameComponent is a child-component of the wrap component.
It's very common to see there is a very heavy component holding all the state and the events at the top. It makes me feel that's a bad smell of the code. The reusability of the component should be based on a set of components, in this set of components, there is one uncontrolled component at the top, and underneath of this uncontrolled component are controlled components. This set of components is a external reusability unit.
Here, in this diagram, there should be more than one reusable unit rather than one. If lift the state up to CanvasComponent, it makes all the components underneath are un-reusable. In some extents, you still can re-use the JSX of this component, but I'd say, in terms of reusablity, it should invovle as many reusable logic as possible.
I might be wrong, please correct me. And thank you for sharing your valuable comments.
Requirements
First let us sum up the requirements.
Rect Component and Distance Indicators have not much to do with each other. Making them aware of each other or creating a dependency between them would be not desired in a good OOP design.
The interaction between both is very specific. Establishing a mechanism or a data structure just for this special sort of interaction would add an overhead to all components that don't need this sort of interaction.
General Concepts
So you must use a mechanism that is so generic that it does not add any sort of coupling. You need to establish something between these two components, which only these two components know and which for all the rest of your program is nonsense. What mechanisms serve for such a purpose?
Function pointers
Lambda functions
Events
Function pointers and lambda functions are complicated constructs. Not everybody prefers to use them. Now you see why events are so popular. They address a common requirement of connecting two components without revealing any of the details of them to anybody.
I personally recommend you to use lambda functions in this situation. Because this is one strength of JavaScript. Search in google for callback or asynchronous lambda function. This often adds the least overhead to existing code. Because a lambda functions has an important property:
With lambda functions you can do things very locally. Doing things locally is an important design principle. You don't need to define extra methods or functions or classes. You can just create them wherever you are, return them, pass them freely around to where you actually need them and store them there. You can store them even without knowing what is behind them.
I think, this is your answer. The only thing you need is a mechanism to pass lambda functions and to store your lambda functions. But this is on a very generic level and therefore adds no coupling.
With events you are on similar path. The event mechanism is already there. But therefore you already have a good answer.
Example with pure JavaScript
When applying this to JavaScript we can imagine that function pointers could be compared to function expressions in JavaScript. And lambda functions can be compared to arrow functions in JavaScript. (Note: Arrow functions also provide "closures", which is required in this case, see How do JavaScript closures work?).
A simple example illustrates this:
class DistanceIndicator {
constructor(height, width) {
this.height = height;
this.width = width;
}
resize(height){
this.height = height;
}
incorrect_resizer(height){
return this.resize;
}
resizer(){
return (height) => this.resize(height);
}
resizer_with_less_overhead(){
return (height) => this.height = height;
}
}
p = new DistanceIndicator();
p.resize(19);
// If you want to use this, you have to store p. You may see
// this as not so nice, because, you are not interested in what
// actually p is. And you don't want to expose the information
// that it has a method resize. You want to have the freedom
// of changing such details without the need of changing all
// the code where something happens with Rectangles.
console.log(p.height);
resizer = p.incorrect_resizer()
//resizer(18);
// In this example, resizer is a function pointer. It would be
// nice to store it and be able to call it whenever we want to
// inform Rectangle about something interesting. But it does not
// work because the resize method cannot be isolated from the
// class. The "this" is not there.
console.log(p.height);
resizer = p.resizer();
resizer(17);
// That works. Lambda functions do the job. They are able to
// include the "this" object.
console.log(p.height);
resizer = p.resizer_with_less_overhead();
resizer(16);
console.log(p.height);
// As you have now a resizer, you can store it wherever you want.
// You can call it without knowing what is behind it.
The idea in the example is that you can store the resizers wherever you want without knowing what they are. You shouldn't name them resizer, but give them a generic name like size_notification.
Example for React
The React concept for contexts is a typical candidate for data exchange between components. But the principle of React is a pure unidirectional data flow (top-down). This is also true for the context, which means, we cannot use a context for what we want.
React does not provide support for the implementation of the proposed idea. React is only responsible for the pure construction of the HTML page and a comfortable and performant rendering. It is not responsible for the "business" logic of our HTML page. This is done in full JavaScript. That makes sense because you want be able to develop complex web applications. Therefore you need all your favourite programming concepts. A real application does not follow the design principle of React. React is only a presentation layer. Most people like OOP progamming.
So when implementing something with React we must keep in mind that React is just a library for JavaScript. The full power of JavaScript is always available and should be used for our web application.
After realizing this, the problem becomes simple. See this code:
import React from 'react';
let sizeNotificator = (newValue) => {console.log(newValue)};
function Rect(props) {
return <button onClick={() => sizeNotificator("12")}>resize to 12</button>;
}
class DistanceIndicator extends React.Component {
state = {
size: "0",
};
setSize(newValue) {
this.setState({
size : newValue
});
};
componentDidMount(){
sizeNotificator = ((newValue) => {this.setSize(newValue);})
}
render() {
return <p>Current size: { this.state.size}</p>;
}
}
class App extends React.Component {
render() {
return(<div>
<DistanceIndicator/>
<Rect/>
</div>);
}
}
export default App;
With this code the requirement is fulfilled that none of the DistanceIndicator implementation details are revealed to the outside of DistanceIndicator.
Obviously this example code only works if there is not more than one DistanceIndicator. To solve this is a different topic with probably not only one good solution.
If keeping the shared state in the ParentComponent is the problem, you can extract the Context.Provider to a separate component and pass components as it's children, those children can access the context value via useContext hook.
function ParentContextProvider({ children }) {
const [stateX, setStateX] = useState(0);
return (
<Context.Provider value={{ stateX, setStateX }}>
{children}
</Context.Provider>
);
}
export default function ParentComponent(props) {
return (
<ParentContextProvider>
<ChildComponentA />
<ChildComponentB />
</ParentContextProvider>
);
}
Now you can add any new state/setState to the ParentContextProvider and can pass it to it's children
Have you looked at Redux stores? You could have a variable like "showLine" or "originX"/"originY", then have one child dispatch changes, and the other child useSelector for the values?
Do you know if Redux works for your use case?
I prefer to use a simple events pattern for this type of scenario. Eg using a component such as js-event-bus.
CHILD COMPONENT A
props.eventBus.emit('MouseOverRectangle', null, new MyEvent(23));
CHILD COMPONENT B
useEffect(() => {
startup();
return () => cleanup();
}, []);
function startup() {
props.eventBus.on('MouseOverRectangle', handleEvent);
}
function cleanup() {
props.eventBus.detach('MouseOverRectangle', handleEvent);
}
function handleEvent(e: MyEvent) {
// Update state of component B here
}
RESULTS
This tends to result in quite clean encapsulation and also simple code. Eg any React conponent can communicate with any other, without needing to reveal internal details.

Class properties for react lifecycle methods

Can I write React lifecycle methods as class properties?
I've been using class properties for a while as I like the fact that I no longer have to manually bind my methods, but I'd like to keep some consistency across my components and I'm wondering if there is any drawback on writing the React lifecycle methods as class properties
import React, { Component } from 'react';
class MyComponent extends Component {
render = () => {
return (
<div>Foo Bar</div>
);
}
}
export default MyComponent;
For example, is the context of this class property affected compared to the context in an equivalent method. Given that the render method in the above code is written as an arrow function, this concern seems relevant.
In a way, the true answer depends on your build pipeline and what the resulting Javascript output looks like. There are two primary possibilities:
Input Code
Let's start by saying you are writing the following before going through any sort of pipeline transformations (babel, typescript, etc):
class Test {
test = () => { console.log('test'); };
}
Output as class member variable.
In one possible world, your pipeline will also be outputting the test function as a member variable for the output class. In this case the output might look something like:
function Test() {
this.test = function() { console.log('test'); };
}
This means that whenever you write new Test() the test function is going to be recreated every single time.
Output as class prototype function
In the other major possibility, your pipeline could be recognizing this as a function property and escape it from the class instance to the prototype. In this case the output might look something like:
function Test() {
}
Test.prototype = {
test: function() { console.log('test'); }
}
This means that no matter how many times you call new Test() there will still be only one creation of the test function around in memory.
Desired behavior
Hopefully it's clear that you want your end result to have the function end up on the prototype object rather than being recreated on each class instance.
However, while you would want the function to not end up as a property, that doesn't necessarily mean you couldn't write it that way in your own code. As long as your build chain is making the correct transformations, you can write it any way you prefer.
Although, looking at the default babel settings (which your babeljs tag leads me to believe you are using) it does not make this transformation for you. You can see this in action here. On the left I've created one class with the function as a property and one class with the function as a class method. On the right hand side, where babel shows it's output, you can see that the class with the function as a property still has it being an instance-level property, meaning it will be recreated each time that class's constructor is called.
I did find this babel plugin, which seems like it might add this transformation in, but I've not used it for myself so I'm not positive.
In my experience, the most reason for writing a method as a class property is when the method will be passed as a callback, and you need it to always be bound to the instance. React lifecycle methods will always be called as a method, so there's no reason to bind them (and you incur a tiny memory penalty when you do). Where this makes a difference is when you're passing a function to a component as a callback (e.g. onClick or onChange).
Take this example:
class BrokenFoo extends React.Component {
handleClick() {
alert(this.props.message);
}
render() {
return (
<button onClick={this.handleClick}>
Click me
</button>
)
}
}
The function represented by this.handleClick is not automatically bound to the component instance, so when the method tries to read the value of this.props it will throw a TypeError because this is not defined. Read this article if you're not familiar with this; the problem described in section 4.2 "Pitfall: extracting methods improperly" is essentially what's happening when you pass around a method without making sure it's bound correctly.
Here's the class, rewritten with the handler as a class property:
class HappyFoo extends React.Component {
handleClick = () => {
alert(this.props.message);
}
render() {
return (
<button onClick={this.handleClick}>
Click me
</button>
)
}
}
Effectively, you can think of the handleClick definition in the second example as placing this code into the component's constructor (which is just about exactly the way Babel does it):
this.handleClick = () => {
alert(this.props.message);
}
This achieves the same thing as calling bind on the function (as described in the linked article) but does it a little differently. Because this function is defined in the constructor, the value of this in this.props.message is bound to the containing instance. What this means is that the function is now independent of the calling context; you can pass it around and it won't break.
The rule of thumb that I follow: by default, write methods as methods. This attaches the method to the prototype and will usually behave the way you'd expect. However, if the method is ever written without parentheses (i.e. you're passing the value and not calling it), then you likely want to make it a class property.

JSX props should not use .bind() - how to avoid using bind?

I have a container that I need to change the UI form showing the form or showing a success page.
The container has a state.showSuccess and I need the MyFormModule to be able to call the container to change the state.
The below code works but I'm getting the following warning:
JSX props should not use .bind()
How can I get this to work without using .bind()?
...
const myPage = class extends React.Component {
state = { showSuccess: false };
showSuccess() {
this.setState({
showSuccess: true,
});
}
render() {
const { showSuccess } = this.state;
if (showSuccess) {...}
....
<MyFormModule showSuccess={this.showSuccess.bind(this)} />
You should first understand WHY this is a bad practice.
The main reason here, is that .bind is returning a new function reference.
This will happen on each render call, which may lead to a performance hit.
You got 2 options:
Use the constructor to bind your handlers (this will run only once).
constructor(props) {
super(props);
this.showSuccess = this.showSuccess.bind(this);
}
Or create your handlers with arrow functions so they will use the
lexical context for this, hence you won't need to bind them at
all (you will need a babel plugin):
showSuccess = () => {
this.setState({
showSuccess: true,
});
}
You should not use this pattern (as others suggested):
showSuccess={() => this.showSuccess()}
Because this will as well create a new function on each render.
So you may bypass the warning but you are still writing your code in a bad practice design.
From the ESLint docs:
A bind call or arrow function in a JSX prop will create a brand new
function on every single render. This is bad for performance, as it
will result in the garbage collector being invoked way more than is
necessary. It may also cause unnecessary re-renders if a brand new
function is passed as a prop to a component that uses reference
equality check on the prop to determine if it should update.
Use an arrow function when defining showSuccess
showSuccess = () => {
this.setState({
showSuccess: true,
});
}
Use an arrow function since they automatically inherit the this context of wherever they are defined.
showSuccess={() => this.showSuccess()}
Here is a link to the facebook documentation on this subject, which lists this method among others as a solution. Interestingly, they also list using .bind in the prop as one of the solutions, even though it produces a warning when actually used.
From that documentation, you'll note that this is a potential performance issue, since the function will be recreated on every render:
Note:
Using an arrow function in render creates a new function each time the
component renders, which may have performance implications (see
below).
But also from the same link:
Is it OK to use arrow functions in render methods? Generally speaking,
yes, it is OK, and it is often the easiest way to pass parameters to
callback functions.
If you do have performance issues, by all means, optimize!
So I would say if your component will be re-rendering very frequently, you should use one of the other solutions: bind in the constructor, or define the method with an arrow function in the first place. But if not, use whatever method seems cleanest to you.

How to modularize JavaScript class (pull methods out of main file, import methods into main file)

Is it possible to pull class methods out of the class in JS? Forgive me, I am functional paradigm, so using React forces me to use classes and this keyword (so far anyway). Some of my components are getting large and I do not want this.
I can't find anything on Google about pulling methods out or modularizing a class.
Is there a way I can just say "get this method from './some_method.js' and use it as if it was declared inside this file&class" without much invasive changes?
Failing that, I'm hypothesizing about making them all functions and pass this into them. That feels pretty dirty, however.
I'd appreciate some guidance to what keywords I need to be looking at, or simply how to move methods out so I don't have 2000 line files that take me 20 minutes to find
toggleFullMenu() {
this.setState({ menuOpen: !this.state.menuOpen})
}
without pressing CTRL+F. That is my motivation.
I'd also like to know if there are any pro tips about this as relates to constructors. Any warnings from the class inheritance paradigm folks? I simply want the methods to sit by themselves in separate files, but I don't know what I'm looking for. I've never seen people talking about this.
Edit, I just found this in the MDN:
Sub classing with extends
The extends keyword is used in class declarations or class expressions to create a class as a child of another class.
Source: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
class Dog extends Animal {
speak() {
console.log(this.name + ' barks.');
}
}
Is this what I need? How would I go about pulling a bunch of extensions in? I don't want a child class though, that doesn't sound like what I am describing.
You can do so using Function.prototype.bind, so that you have control of the value of this.
In one module, you can export the "method" as a regular function:
// methods.js
export const toggleFullMenu = () => {
this.setState({ menuOpen: !this.state.menuOpen })
}
And in your component module:
import React from 'react'
import { toggleFullMenu } from './methods'
class SomeComponent extends React.Component {
constructor () {
super()
this.toggleFullMenu = toggleFullMenu.bind(this)
}
render () {
return <button onClick={this.toggleFullMenu}>Click Me</button>
}
}
The toggleFullMenu function could be bound to other contexts as well, so you could actually share that method across different components.
EDIT: There are many different ways to bind the context of a function, you are not limited to Function.prototype.bind. See this chapter for an explanation of the various ways to do so.
Right ahead I can say that Yes you can pull out different methods from other classes or files other than created in your component. There lots of different ways to go and it really depends on your preference. You can go from really simple to really complex structures.
First thing you need to search and learn about (if you don't already know) require() and/or ES6 import and export. You can create stand alone functions or objects and import them into your component to use them. If you have repeating functions that you use in different components or parts of your app this is the way to go.
If I comment on passing this as a parameter, it is not pretty like you said in your question. Rather than passing this, passing required parameters to functions and using callbacks or Promises is the way to go. Another technique you can use is to bind function to this. ES6 arrow functions don't need to be bind since they don't bind their own this.
If you would like to go a little more complex/complicated you can always create your own classes. Class structure can give ability to do more complex things. extends gives you ability to extend (like you can understand from its name) your class methods with others or overwrite them with new ones. For example, Beverages, Snacks, Meats can be classes that extends from Foods class. When you create a custom component you extend a React.Component and then you use its methods.
Another thing to consider is that having a 2000 lines component makes me think that you should also consider separating your components into smaller chunks. Parent/Child component relationship is most common and supported structure in React. If you use this pattern your code will automatically get smaller and it will be much more easier to follow and manage. There are lots of examples on how to pass functions as props to child components and run them in certain conditions with certain parameters and then manipulating parent component's state. You can look for those examples to get better understanding.
I hope these topics will help you to understand couple of thing and show you to where to start.
Webpack is a fully-featured javascript app bundler.
With Webpack you can import / export code like:
export default class CustomerView {
render() {
...
}
}
and
import CustomerView from './CustomerView'
`

How unperformant are anonymous functions in React component attributes?

You're not supposed to use anonymous functions in react attributes, e.g.
<a onClick=()=>doIt('myId')>Aaron</a>
I understand why this creates a performance problem for React's reconciliation because that anonymous function is recreated on every render pass and will thus always trigger a real DOM re-render of some kind. My question is, for a small component (i.e. not table where every row has a link) is this insignificant? I mean, React is smart enough just to replace the handler, not to re-render the DOM, right? so the cost is not that high?
I feel obliged to inform you that using an Anonymous function and Function.bind(this) in the render triggers a new render. This is because both
doIt.bind(this, 'myId') === doIt.bind(this, 'myId') // false
AND
() => doIt('myId') === () => doIt('myId') // false
are FALSE!
If you want to bind something to a function, use partial application with a method in the React class.
class myComponent extends Component {
doIt = (id) => () => {
// Do Something
}
render() {
<div>
<a onClick={this.doIt('myId')}>Aaron</a>
</div>
}
}
For:
small components: you are ok (almost no performance issues)
large components: the deeper you get the more try to avoid it
In React documentation about event handling, you can find:
In most cases, this is fine. However, if this callback is passed as a prop to lower components, those components might do an extra re-rendering. We generally recommend binding in the constructor or using the class fields syntax, to avoid this sort of performance problem.
Note: React is not handling callback props differently than other props. It always compares the old and new prop. Thus it re-renders when anonymous function is present because the anonymous function is always newly created.
Your JSX code sample should actually look like this:
<a onClick={ ()=>doIt('myId') }>Aaron</a>
Using an anonymous fat arrow function like this is perfectly valid. You are supposed to use anonymous functions in react attributes. That's okay.
Yes, it's not a best practice. If you want to solve the this context issue when using the ES6 class extends React.Component syntax I would advise you to bind the function in the class constructor.
No, for a 'small' component (i.e. not table where every row has a link) this is not a significant performance issue. You are safe.

Categories

Resources