I am trying to control the inflow for a slow subscriber. Tried the below in NodeJS
var xmlNodeStream = Rx.Observable.from([1,2,3,4,5,6,7,8,9,10,11]);
var commJson = xmlNodeStream.bufferWithCount(2).publish();
var FastSubscriber = commJson.subscribe(
function (x) { console.log('----------\nFastSub: onNext: %s', x); },
function (e) { console.log('FastSub: onError: %s', e); },
function () { console.log('FastSub: onCompleted'); });
var slowSubscriber = commJson.subscribe(function (x) {
setTimeout(function () { console.log("============\nSlowsub called: ", x); }, 5000);
});
commJson.connect();
When I run the above code, I would expect the slow subscriber to pause for 5 seconds everytime before next data-batch is received.
But that is not happening. After an initial 5 second delay, all data is flooded to slowSubscriber in batches of 2.
What is the right way to control the inflow so that slow subscibers can take their time (and preferably fast ones can wait for the slow ones to complete) ?
It isn't pausing because setTimeout will not block execution it just schedules work to be done at a later time, i.e. after 2 seconds, then more data comes in and it gets scheduled for 2 seconds + some tiny delta from now. The result being that the fast and slow subscriber will finish at the same time, but the results of slow subscriber won't be visualized until 2 seconds later.
If the slow subscriber in your actual use case is really non-blocking then you have two options for controlling the flow of the events, either you need to control the flow from the source of the messages, where ever that may be. Or you need to use one of the back pressure operators like controlled()
var xmlNodeStream = Rx.Observable.from([1,2,3,4,5,6,7,8,9,10,11]);
var controller = xmlNodeStream.bufferWithCount(2).controlled();
var commJson = controller.publish().refCount();
var FastSubscriber = commJson.subscribe(
function (x) { console.log('----------\nFastSub: onNext: %s', x); },
function (e) { console.log('FastSub: onError: %s', e); },
function () { console.log('FastSub: onCompleted'); });
var slowSubscriber = commJson.subscribe(function (x) {
setTimeout(function () {
console.log("============\nSlowsub called: ", x);
controller.request(1);
}, 5000);
});
commJson.request(1);
Related
I have an open Websocket connection and it's handing out events. All good, but once a new event arrives, I need to do a whole lot of things and sometimes events arrive so quickly one after the other that there is no time to get the stuff done properly. I need some sort of queue inside this function that tells the events to take it easy and only keep going at most one per second, and otherwise wait in some sort of queue until the second elapses to go ahead and continue.
edit: No external libraries allowed, unfortunately.
ws = new WebSocket(`wss://hallo.com/ws/`);
ws.onmessage = readMessage;
async function readMessage(event) {
print(event)
//do important things
//but not too frequently!
}
How do I do that?
I found this but it goes over my simple head:
"You can have a queue-like promise that keeps on accumulating promises to make sure they run sequentially:
let cur = Promise.resolve();
function enqueue(f) {
cur = cur.then(f); }
function someAsyncWork() {
return new Promise(resolve => {
setTimeout(() => {
resolve('async work done');
}, 5);
}); } async function msg() {
const msg = await someAsyncWork();
console.log(msg); }
const main = async() => {
web3.eth.subscribe('pendingTransactions').on("data", function(tx) {
enqueue(async function() {
console.log('1st print: ',tx);
await msg();
console.log('2nd print: ',tx);
});
}) }
main();
"
I'd honestly use something like lodash's throttle to do this. The following snippet should solve your problem.
ws = new WebSocket(`wss://hallo.com/ws/`);
ws.onmessage = _.throttle(readMessage, 1000);
async function readMessage(event) {
print(event)
//do important things
//but not too frequently!
}
For achieving queuing, you can make use of "settimeout" in simple/core javascript.
Whenever you receive a message from websocket, put the message processing function in a settimeout, this will ensure that the message is processed not immediately as its received, but with a delay, hence in a way you can achieve queuing.
The problem with this is that it does not guarantee that the processing of messages is sequential as they are received if that is needed.
By default settimeout in javascript does give the guarantee of when the function inside will be triggered after the time given is elapsed.
Also it may not reduce the load on your message processor service for a high volume situation and since individual messages are queued two/more functions can become ready to be processed from setimeout within some time frame.
An ideal way to do so would be to create a queue. On a high level code flow this can be achieved as follows
var queue = [];
function getFromQueue() {
return queue.shift();
}
function insertQueue(msg) { //called whenever a new message arrives
queue.push(msg);
console.log("Queue state", queue);
}
// can be used if one does not want to wait for previous message processing to finish
// (function executorService(){
// setTimeout(async () => {
// const data = getFromQueue();
// await processData(data);
// executorService();
// }, 1000)
// })()
(function executorService(){
return new Promise((res, rej) => {
setTimeout(async () => {
const data = getFromQueue();
console.log("Started processing", data)
const resp = await processData(data); //waiting for async processing of message to finish
res(resp);
}, 2000)
}).then((data) =>{
console.log("Successfully processed event", data)
}).catch((err) => {
console.log(err)
}).finally(() => {
executorService();
})
})()
// to simulate async processing of messages
function processData(data){
return new Promise((res, rej) => {
setTimeout(async () => {
console.log("Finished processing", data)
res(data);
}, 4000)
})
}
// to simulate message received by web socket
var i = 0;
var insertRand = setInterval(function(){
insertQueue(i); // this must be called on when web socket message received
i+=1;
}, 1000)
How to implement a timeout in Javascript, not the window.timeout but something like session timeout or socket timeout - basically - a "function timeout"
A specified period of time that will be allowed to elapse in a system
before a specified event is to take place, unless another specified
event occurs first; in either case, the period is terminated when
either event takes place.
Specifically, I want a javascript observing timer that will observe the execution time of a function and if reached or going more than a specified time then the observing timer will stop/notify the executing function.
Any help is greatly appreciated! Thanks a lot.
I'm not entirely clear what you're asking, but I think that Javascript does not work the way you want so it cannot be done. For example, it cannot be done that a regular function call lasts either until the operation completes or a certain amount of time whichever comes first. That can be implemented outside of javascript and exposed through javascript (as is done with synchronous ajax calls), but can't be done in pure javascript with regular functions.
Unlike other languages, Javascript is single threaded so that while a function is executing a timer will never execute (except for web workers, but they are very, very limited in what they can do). The timer can only execute when the function finishes executing. Thus, you can't even share a progress variable between a synchronous function and a timer so there's no way for a timer to "check on" the progress of a function.
If your code was completely stand-alone (didn't access any of your global variables, didn't call your other functions and didn't access the DOM in anyway), then you could run it in a web-worker (available in newer browsers only) and use a timer in the main thread. When the web-worker code completes, it sends a message to the main thread with it's results. When the main thread receives that message, it stops the timer. If the timer fires before receiving the results, it can kill the web-worker. But, your code would have to live with the restrictions of web-workers.
Soemthing can also be done with asynchronous operations (because they work better with Javascript's single-threaded-ness) like this:
Start an asynchronous operation like an ajax call or the loading of an image.
Start a timer using setTimeout() for your timeout time.
If the timer fires before your asynchronous operation completes, then stop the asynchronous operation (using the APIs to cancel it).
If the asynchronous operation completes before the timer fires, then cancel the timer with clearTimeout() and proceed.
For example, here's how to put a timeout on the loading of an image:
function loadImage(url, maxTime, data, fnSuccess, fnFail) {
var img = new Image();
var timer = setTimeout(function() {
timer = null;
fnFail(data, url);
}, maxTime);
img.onLoad = function() {
if (timer) {
clearTimeout(timer);
fnSuccess(data, img);
}
}
img.onAbort = img.onError = function() {
clearTimeout(timer);
fnFail(data, url);
}
img.src = url;
}
My question has been marked as a duplicate of this one so I thought I'd answer it even though the original post is already nine years old.
It took me a while to wrap my head around what it means for Javascript to be single-threaded (and I'm still not sure I understood things 100%) but here's how I solved a similar use-case using Promises and a callback. It's mostly based on this tutorial.
First, we define a timeout function to wrap around Promises:
const timeout = (prom, time, exception) => {
let timer;
return Promise.race([
prom,
new Promise((_r, rej) => timer = setTimeout(rej, time, exception))
]).finally(() => clearTimeout(timer));
}
This is the promise I want to timeout:
const someLongRunningFunction = async () => {
...
return ...;
}
Finally, I use it like this.
const TIMEOUT = 2000;
const timeoutError = Symbol();
var value = "some default value";
try {
value = await timeout(someLongRunningFunction(), TIMEOUT, timeoutError);
}
catch(e) {
if (e === timeoutError) {
console.log("Timeout");
}
else {
console.log("Error: " + e);
}
}
finally {
return callback(value);
}
This will call the callback function with the return value of someLongRunningFunction or a default value in case of a timeout. You can modify it to handle timeouts differently (e.g. throw an error).
You could execute the code in a web worker. Then you are still able to handle timeout events while the code is running. As soon as the web worker finishes its job you can cancel the timeout. And as soon as the timeout happens you can terminate the web worker.
execWithTimeout(function() {
if (Math.random() < 0.5) {
for(;;) {}
} else {
return 12;
}
}, 3000, function(err, result) {
if (err) {
console.log('Error: ' + err.message);
} else {
console.log('Result: ' + result);
}
});
function execWithTimeout(code, timeout, callback) {
var worker = new Worker('data:text/javascript;base64,' + btoa('self.postMessage((' + String(code) + '\n)());'));
var id = setTimeout(function() {
worker.terminate();
callback(new Error('Timeout'));
}, timeout);
worker.addEventListener('error', function(e) {
clearTimeout(id);
callback(e);
});
worker.addEventListener('message', function(e) {
clearTimeout(id);
callback(null, e.data);
});
}
I realize this is an old question/thread but perhaps this will be helpful to others.
Here's a generic callWithTimeout that you can await:
export function callWithTimeout(func, timeout) {
return new Promise((resolve, reject) => {
const timer = setTimeout(() => reject(new Error("timeout")), timeout)
func().then(
response => resolve(response),
err => reject(new Error(err))
).finally(() => clearTimeout(timer))
})
}
Tests/examples:
export function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms))
}
const func1 = async () => {
// test: func completes in time
await sleep(100)
}
const func2 = async () => {
// test: func does not complete in time
await sleep(300)
}
const func3 = async () => {
// test: func throws exception before timeout
await sleep(100)
throw new Error("exception in func")
}
const func4 = async () => {
// test: func would have thrown exception but timeout occurred first
await sleep(300)
throw new Error("exception in func")
}
Call with:
try {
await callWithTimeout(func, 200)
console.log("finished in time")
}
catch (err) {
console.log(err.message) // can be "timeout" or exception thrown by `func`
}
You can achieve this only using some hardcore tricks. Like for example if you know what kind of variable your function returns (note that EVERY js function returns something, default is undefined) you can try something like this: define variable
var x = null;
and run test in seperate "thread":
function test(){
if (x || x == undefined)
console.log("Cool, my function finished the job!");
else
console.log("Ehh, still far from finishing!");
}
setTimeout(test, 10000);
and finally run function:
x = myFunction(myArguments);
This only works if you know that your function either does not return any value (i.e. the returned value is undefined) or the value it returns is always "not false", i.e. is not converted to false statement (like 0, null, etc).
Here is my answer which essentially simplifies Martin's answer and is based upon the same tutorial.
Timeout wrapper for a promise:
const timeout = (prom, time) => {
const timeoutError = new Error(`execution time has exceeded the allowed time frame of ${time} ms`);
let timer; // will receive the setTimeout defined from time
timeoutError.name = "TimeoutErr";
return Promise.race([
prom,
new Promise((_r, rej) => timer = setTimeout(rej, time, timeoutError)) // returns the defined timeoutError in case of rejection
]).catch(err => { // handle errors that may occur during the promise race
throw(err);
}) .finally(() => clearTimeout(timer)); // clears timer
}
A promise for testing purposes:
const fn = async (a) => { // resolves in 500 ms or throw an error if a == true
if (a == true) throw new Error('test error');
await new Promise((res) => setTimeout(res, 500));
return "p2";
}
Now here is a test function:
async function test() {
let result;
try { // finishes before the timeout
result = await timeout(fn(), 1000); // timeouts in 1000 ms
console.log('• Returned Value :', result, '\n'); // result = p2
} catch(err) {
console.log('• Captured exception 0 : \n ', err, '\n');
}
try { // don't finish before the timeout
result = await timeout(fn(), 100); // timeouts in 100 ms
console.log(result); // not executed as the timeout error was triggered
} catch (err) {
console.log('• Captured exception 1 : \n ', err, '\n');
}
try { // an error occured during fn execution time
result = await timeout(fn(true), 100); // fn will throw an error
console.log(result); // not executed as an error occured
} catch (err) {
console.log('• Captured exception 2 : \n ', err, '\n');
}
}
that will produce this output:
• Returned Value : p2
• Captured exception 1 :
TimeoutErr: execution time has exceeded the allowed time frame of 100 ms
at C:\...\test-promise-race\test.js:33:34
at async test (C:\...\test-promise-race\test.js:63:18)
• Captured exception 2 :
Error: test error
at fn (C:\...\test-promise-race\test.js:45:26)
at test (C:\...\test-promise-race\test.js:72:32)
If you don't want to use try ... catch instructions in the test function you can alternatively replace the throw instructions in the catch part of the timeout promise wrapper by return.
By doing so the result variable will receive the error that is throwed otherwise. You can then use this to detect if the result variable actually contains an error.
if (result instanceof Error) {
// there was an error during execution
}
else {
// result contains the value returned by fn
}
If you want to check if the error is relative to the defined timeout you will have to check the error.name value for "TimeoutErr".
Share a variable between the observing timer and the executing function.
Implement the observing timer with window.setTimeout or window.setInterval. When the observing timer executes, it sets an exit value to the shared variable.
The executing function constantly checks for the variable value.. and returns if the exit value is specified.
I am running a HTTP Request to a file and depending on the response whether it be "200" or another response a success or error function is ran. This request takes place every second.
The problem I am facing is when I get lots of error responses they all run together and the last one doesn't stop e.g. End the interval to start a new one.
The red light begins to flash way too fast. Can anyone help me out. My code is below and I have been playing with it for a few hours now but can't seem to get to the bottom of it.
var requestResponses = {
greenLight: $('.cp_trafficLight_Light--greenDimmed'),
redLight: $('.cp_trafficLight_Light--redDimmed'),
greenBright: 'cp_trafficLight_Light--greenBright',
redBright: 'cp_trafficLight_Light--redBright',
init: function (url) {
setInterval(function () {
requestResponses.getResponse(url);
}, 1000);
},
successResponse: function () {
var redBright = requestResponses.redBright,
greenBright = requestResponses.greenBright;
requestResponses.errorCode = false;
requestResponses.redLight.removeClass(redBright);
requestResponses.greenLight.addClass(greenBright);
},
errorResponse: function () {
requestResponses.runOnInterval();
},
runOnInterval: function () {
// clearInterval(runInterval);
var redBright = requestResponses.redBright,
greenBright = requestResponses.greenBright,
redLight = requestResponses.redLight;
requestResponses.greenLight.removeClass(greenBright);
var runInterval = setInterval(function () {
if (requestResponses.errorCode === true) {
redLight.toggleClass(redBright);
}
}, 400);
},
getResponse: function (serverURL) {
$.ajax(serverURL, {
success: function () {
requestResponses.errorCode = false;
requestResponses.successResponse();
},
error: function () {
requestResponses.errorCode = true;
requestResponses.errorResponse();
},
});
},
errorCode: false
}
requestResponses.init('/status');
Appreciate the help.
Javascript is an event driven language. Do not loop inifinitely to check things periodically. There are places to do so but most of the time either calling a delay function (setTimeout) repeatedly when needed or using a callback would be better method.
Using setInterval with request, think what happens if requests start taking longer than your interval.
In your case, you have two loops created with setInterval. First one is the request which will run every 1 sec. Instead of using setInterval, you can modify your code to run setTimeout only after a request finishes and do other tasks just before re-running the next request :
function runRequest(...) {
$.ajax(serverURL, {
...
complete: function () {
setTimeout(runRequest, 1000);
}
...
});
}
function lightsOnOff() {
var redBright = requestResponses.redBright,
greenBright = requestResponses.greenBright,
redLight = requestResponses.redLight;
requestResponses.greenLight.removeClass(greenBright);
if (requestResponses.errorCode === true) {
redLight.toggleClass(redBright);
}
}
setInterval(lightsOnOff, 400);
The setInterval() method repeats itself over and over, not just one time. Your error response handler is then invoking the routine that creates another setInterval(), and so on. Until you have so many processes running that you get the flashing red light issue.
The solution is to only invoke the logic where the setInterval() call is made once. Or, even better, use setTimeout() to call the routine. It is run one-time and likely better for your use.
I am adding some qunit test cases for a module. Few of the test cases have sync processes which I am using the standard stop() and start() as per docs.
My questions is, isn't the fact that the extra 1 second from setTimeout(function () { start();}, 1000); is added to the runtime of the test run, making the results in accurate?
I am a little not satisfied that +1000ms is added to the runtime as outside of the testsuite, inside the real app that uses that module that process completes without the 1000ms added here to carry out the test.
So when I pass this interface to less technical tester I have to explain in the title of the test to subtract that 1000 from that test before adding them up or whatever to calculate overall speed etc. [I basically want a way to have that extra timeout removed from the results automatically]
Module code below:
define("tests/admin.connections.tests", ["mods/admin.connections", "datacontext"], function (connections, datacontext) {
module("ADMIN PAGE CONNECTION LIST MODULE", {
setup: function () {
//ok(true, "once extra assert per test for Search Modules");
}
});
test('Module is available?', function () {
equal(_.isUndefined(connections), false, "connections js module exists");
equal(_.isObject(connections), true, "connections js module is valid object");
});
test('HTML and CSS loading correctly? [Subtract 1 second from time to get the real time lapsed]', function () {
function testHtml(html) {
var d = document.createElement('htmlTestDiv');
d.innerHTML = html;
return d.innerHTML.replace(/\s+/g, ' ');;
}
stop();
$.get('http://media.concepglobal.com/cbaddons/templates/connections.html', function (data) {
equal(testHtml(connections.html), data.replace(/\s+/g, ' '), 'Html of the module was correctly loaded');
});
$.get('http://media.concepglobal.com/cbaddons/styles/connections.css', function (data) {
equal(testHtml(connections.css), data.replace(/\s+/g, ' '), 'CSS of the module was correctly loaded');
});
setTimeout(function () { start();}, 1000);
});
test('getConnectionsByUserId Async Method [Subtract 1 second from time to get the real time lapsed]', function () {
function getConnectionsByUserId(successCallback) {
amplify.request("getConnectionsByUserId", { uid: '0' }, function (data) {
connections.userConnectionsCallback(data);
successCallback();
});
}
stop();
getConnectionsByUserId(function () {
var connectionsReturnedData = connections.connectionListViewModel.connections();
expect(2);
ok(_.isArray(connectionsReturnedData), 'Valid array has been returned for connections: ' + connectionsReturnedData);
equal(connectionsReturnedData[0].type(), "sitecore", 'First returned object has a type property of "' + connectionsReturnedData[0].type() + '" and we expected it to be "sitecore"');
});
setTimeout(function () { start(); }, 1000);
});
});
QUnit saves the currently running test in QUnit.config.current, this allows you to change the test during it's execution.
What you probably want is to reset the timer of the test after the timeout.
I created a little example to show what I mean (see on jsFiddle):
asyncTest("Long running test with 2s timeout", function () {
expect(1);
ok(true);
setTimeout(function () {
QUnit.config.current.started = +new Date();
start();
}, 2000);
});
Like that the timer is reset once the timeout is over. This results in more accurate runtime in terms of what is executed. Now only the total time shows how much time was actually used to run all tests.
How to implement a timeout in Javascript, not the window.timeout but something like session timeout or socket timeout - basically - a "function timeout"
A specified period of time that will be allowed to elapse in a system
before a specified event is to take place, unless another specified
event occurs first; in either case, the period is terminated when
either event takes place.
Specifically, I want a javascript observing timer that will observe the execution time of a function and if reached or going more than a specified time then the observing timer will stop/notify the executing function.
Any help is greatly appreciated! Thanks a lot.
I'm not entirely clear what you're asking, but I think that Javascript does not work the way you want so it cannot be done. For example, it cannot be done that a regular function call lasts either until the operation completes or a certain amount of time whichever comes first. That can be implemented outside of javascript and exposed through javascript (as is done with synchronous ajax calls), but can't be done in pure javascript with regular functions.
Unlike other languages, Javascript is single threaded so that while a function is executing a timer will never execute (except for web workers, but they are very, very limited in what they can do). The timer can only execute when the function finishes executing. Thus, you can't even share a progress variable between a synchronous function and a timer so there's no way for a timer to "check on" the progress of a function.
If your code was completely stand-alone (didn't access any of your global variables, didn't call your other functions and didn't access the DOM in anyway), then you could run it in a web-worker (available in newer browsers only) and use a timer in the main thread. When the web-worker code completes, it sends a message to the main thread with it's results. When the main thread receives that message, it stops the timer. If the timer fires before receiving the results, it can kill the web-worker. But, your code would have to live with the restrictions of web-workers.
Soemthing can also be done with asynchronous operations (because they work better with Javascript's single-threaded-ness) like this:
Start an asynchronous operation like an ajax call or the loading of an image.
Start a timer using setTimeout() for your timeout time.
If the timer fires before your asynchronous operation completes, then stop the asynchronous operation (using the APIs to cancel it).
If the asynchronous operation completes before the timer fires, then cancel the timer with clearTimeout() and proceed.
For example, here's how to put a timeout on the loading of an image:
function loadImage(url, maxTime, data, fnSuccess, fnFail) {
var img = new Image();
var timer = setTimeout(function() {
timer = null;
fnFail(data, url);
}, maxTime);
img.onLoad = function() {
if (timer) {
clearTimeout(timer);
fnSuccess(data, img);
}
}
img.onAbort = img.onError = function() {
clearTimeout(timer);
fnFail(data, url);
}
img.src = url;
}
My question has been marked as a duplicate of this one so I thought I'd answer it even though the original post is already nine years old.
It took me a while to wrap my head around what it means for Javascript to be single-threaded (and I'm still not sure I understood things 100%) but here's how I solved a similar use-case using Promises and a callback. It's mostly based on this tutorial.
First, we define a timeout function to wrap around Promises:
const timeout = (prom, time, exception) => {
let timer;
return Promise.race([
prom,
new Promise((_r, rej) => timer = setTimeout(rej, time, exception))
]).finally(() => clearTimeout(timer));
}
This is the promise I want to timeout:
const someLongRunningFunction = async () => {
...
return ...;
}
Finally, I use it like this.
const TIMEOUT = 2000;
const timeoutError = Symbol();
var value = "some default value";
try {
value = await timeout(someLongRunningFunction(), TIMEOUT, timeoutError);
}
catch(e) {
if (e === timeoutError) {
console.log("Timeout");
}
else {
console.log("Error: " + e);
}
}
finally {
return callback(value);
}
This will call the callback function with the return value of someLongRunningFunction or a default value in case of a timeout. You can modify it to handle timeouts differently (e.g. throw an error).
You could execute the code in a web worker. Then you are still able to handle timeout events while the code is running. As soon as the web worker finishes its job you can cancel the timeout. And as soon as the timeout happens you can terminate the web worker.
execWithTimeout(function() {
if (Math.random() < 0.5) {
for(;;) {}
} else {
return 12;
}
}, 3000, function(err, result) {
if (err) {
console.log('Error: ' + err.message);
} else {
console.log('Result: ' + result);
}
});
function execWithTimeout(code, timeout, callback) {
var worker = new Worker('data:text/javascript;base64,' + btoa('self.postMessage((' + String(code) + '\n)());'));
var id = setTimeout(function() {
worker.terminate();
callback(new Error('Timeout'));
}, timeout);
worker.addEventListener('error', function(e) {
clearTimeout(id);
callback(e);
});
worker.addEventListener('message', function(e) {
clearTimeout(id);
callback(null, e.data);
});
}
I realize this is an old question/thread but perhaps this will be helpful to others.
Here's a generic callWithTimeout that you can await:
export function callWithTimeout(func, timeout) {
return new Promise((resolve, reject) => {
const timer = setTimeout(() => reject(new Error("timeout")), timeout)
func().then(
response => resolve(response),
err => reject(new Error(err))
).finally(() => clearTimeout(timer))
})
}
Tests/examples:
export function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms))
}
const func1 = async () => {
// test: func completes in time
await sleep(100)
}
const func2 = async () => {
// test: func does not complete in time
await sleep(300)
}
const func3 = async () => {
// test: func throws exception before timeout
await sleep(100)
throw new Error("exception in func")
}
const func4 = async () => {
// test: func would have thrown exception but timeout occurred first
await sleep(300)
throw new Error("exception in func")
}
Call with:
try {
await callWithTimeout(func, 200)
console.log("finished in time")
}
catch (err) {
console.log(err.message) // can be "timeout" or exception thrown by `func`
}
You can achieve this only using some hardcore tricks. Like for example if you know what kind of variable your function returns (note that EVERY js function returns something, default is undefined) you can try something like this: define variable
var x = null;
and run test in seperate "thread":
function test(){
if (x || x == undefined)
console.log("Cool, my function finished the job!");
else
console.log("Ehh, still far from finishing!");
}
setTimeout(test, 10000);
and finally run function:
x = myFunction(myArguments);
This only works if you know that your function either does not return any value (i.e. the returned value is undefined) or the value it returns is always "not false", i.e. is not converted to false statement (like 0, null, etc).
Here is my answer which essentially simplifies Martin's answer and is based upon the same tutorial.
Timeout wrapper for a promise:
const timeout = (prom, time) => {
const timeoutError = new Error(`execution time has exceeded the allowed time frame of ${time} ms`);
let timer; // will receive the setTimeout defined from time
timeoutError.name = "TimeoutErr";
return Promise.race([
prom,
new Promise((_r, rej) => timer = setTimeout(rej, time, timeoutError)) // returns the defined timeoutError in case of rejection
]).catch(err => { // handle errors that may occur during the promise race
throw(err);
}) .finally(() => clearTimeout(timer)); // clears timer
}
A promise for testing purposes:
const fn = async (a) => { // resolves in 500 ms or throw an error if a == true
if (a == true) throw new Error('test error');
await new Promise((res) => setTimeout(res, 500));
return "p2";
}
Now here is a test function:
async function test() {
let result;
try { // finishes before the timeout
result = await timeout(fn(), 1000); // timeouts in 1000 ms
console.log('• Returned Value :', result, '\n'); // result = p2
} catch(err) {
console.log('• Captured exception 0 : \n ', err, '\n');
}
try { // don't finish before the timeout
result = await timeout(fn(), 100); // timeouts in 100 ms
console.log(result); // not executed as the timeout error was triggered
} catch (err) {
console.log('• Captured exception 1 : \n ', err, '\n');
}
try { // an error occured during fn execution time
result = await timeout(fn(true), 100); // fn will throw an error
console.log(result); // not executed as an error occured
} catch (err) {
console.log('• Captured exception 2 : \n ', err, '\n');
}
}
that will produce this output:
• Returned Value : p2
• Captured exception 1 :
TimeoutErr: execution time has exceeded the allowed time frame of 100 ms
at C:\...\test-promise-race\test.js:33:34
at async test (C:\...\test-promise-race\test.js:63:18)
• Captured exception 2 :
Error: test error
at fn (C:\...\test-promise-race\test.js:45:26)
at test (C:\...\test-promise-race\test.js:72:32)
If you don't want to use try ... catch instructions in the test function you can alternatively replace the throw instructions in the catch part of the timeout promise wrapper by return.
By doing so the result variable will receive the error that is throwed otherwise. You can then use this to detect if the result variable actually contains an error.
if (result instanceof Error) {
// there was an error during execution
}
else {
// result contains the value returned by fn
}
If you want to check if the error is relative to the defined timeout you will have to check the error.name value for "TimeoutErr".
Share a variable between the observing timer and the executing function.
Implement the observing timer with window.setTimeout or window.setInterval. When the observing timer executes, it sets an exit value to the shared variable.
The executing function constantly checks for the variable value.. and returns if the exit value is specified.