Javascript: Set Data Structure: intersect - javascript

Trying to get two data sets to intersect but I can't do it. For example, in my code below, intersecting mySet and mySet2 should yield "1" since they both have a value of "1" in their set.
var mySet = new Set();
var mySet2=new Set();
mySet.add(1);
mySet.add(2);
mySet.add("HELLOOOOO");
mySet2.add("hi");
mySet2.add(1);
var a = Array(mySet, mySet2);
console.log(a);
mySet.forEach(function(value) {
console.log(value);
});
mySet2.forEach(function(value) {
console.log(value);
});
function intersection_destructive(a, b)
{
var result = new Array();
while( mySet.length > 0 && mySet2.length > 0 )
{
if (mySet[0] < mySet2[0] ){ mySet.shift(); }
else if (mySet[0] > mySet2[0] ){ mySet2.shift(); }
else /* they're equal */
{
result.push(mySet.shift());
mySet2.shift();
}
}
return result;
}
Set 1 and Set 2 both have "1" in it but my function (intersection_destructive) doesn't return it. I'm not sure how to intersect them, I searched stackoverflow and found intersection_destructive but it didn't work for me, I also tried:
array1.filter(function(n) {
return array2.indexOf(n) != -1
});
as per this: Simplest code for array intersection in javascript
but I get an error on filter when I try to run it.

Sadly as you've figured out there are no native intersection or union operations. It's not terribly complex to find the intersection though:
let a = new Set([1,2,3])
let b = new Set([1,2,4])
let intersect = new Set([...a].filter(i => b.has(i)));
console.log(...intersect)

To get the intersection, you can iterate the items of a set and check if they belong to the other one:
var intersect = new Set();
for(var x of mySet1) if(mySet2.has(x)) intersect.add(x);
In ES7 you can simplify it with array comprehensions or generator comprehensions:
var intersect = new Set((for (x of mySet1) if (mySet2.has(x)) x));

You have been trying array intersections methods. You cannot use them on ES6 sets. Instead, use
function intersect(...sets) {
if (!sets.length) return new Set();
const i = sets.reduce((m, s, i) => s.size < sets[m].size ? i : m, 0);
const [smallest] = sets.splice(i, 1);
const res = new Set();
for (let val of smallest)
if (sets.every(s => s.has(val)))
res.add(val);
return res;
}

One technique for intersecting sets is to take the smallest set and check for each of its values in the other sets, removing the value if any set does not contain it. Although runtime is O(n x m), where n is the set length and m is the number of sets, the n is likely to be much smaller if the sets are not all the same length.
function setsIntersection(...sets) {
if (sets.length < 1) {
return new Set();
}
let min_size = sets[0].size;
let min_set_index = 0;
for (let i = 1; i < sets.length; i++) {
const size = sets[i].size;
if (size < min_size) {
min_size = size;
min_set_index = i;
}
}
const temp_swap_set = sets[0];
sets[0] = sets[min_set_index];
sets[min_set_index] = temp_swap_set;
const result = new Set(sets[min_set_index]);
for (let i = 1; i < sets.length; i++) {
for (const v of result) {
if (!sets[i].has(v)) {
result.delete(v);
}
}
}
return result;
}

You could iterate the set and create a new set for the common values.
const
intersectSets = (a, b) => {
const c = new Set;
a.forEach(v => b.has(v) && c.add(v));
return c;
},
a = new Set([1, 2, 3]),
b = new Set([1, 2, 4]),
c = new Set([1, 2, 4, 5]),
n = new Set([1, 2]);
console.log(...[a, b, c, n].reduce(intersectSets));

This will work on both Sets and Arrays. It will return whatever the type of set1 is. Arguments can be mixed types.
/**
* Returns the intersection of ES6 Set objects. i.e., returns a new set with only elements contained in all the given sets.
*
* #param {Set|Array} set1 First set
* #param {Array<Array|Set>} sets Other sets
* #returns {Set|Array} Intersection
*/
export function intersection(set1, ...sets) {
if(!sets.length) {
return set1;
}
const tmp = [...set1].filter(x => sets.every(y => Array.isArray(y) ? y.includes(x) : y.has(x)));
return Array.isArray(set1) ? tmp : new Set(tmp);
}
I built it for working with Sets, but then I realized it's probably more expensive to convert an array into a set just so I can use .has on it once than to just use .includes.

With the currently Stage 3 proposal https://github.com/tc39/proposal-set-methods, you could use:
mySet.intersection(mySet2);
const set1 = new Set([1, 2, 3]);
const set2 = new Set([1, 2, 4]);
const intersect = set1.intersection(set2);
console.log(...intersect);
<script src="https://unpkg.com/core-js-bundle#3.27.1/minified.js"></script>
Until then, you could use Immutable.js's Set, which inspired that proposal:
Immutable.Set(mySet).intersect(mySet2);

From the example: intersection_destructive takes 2 ARRAYS not 2 SETS. Here is your code working with the intersection_destructive example.
// These must be sorted arrays!
var mySet = [1,2,6];
var mySet2 = [1,2,5];
// Takes 2 Arrays
// array properties: shift
function intersection_destructive(a, b)
{
var result = [];
while( a.length > 0 && b.length > 0 )
{
if (a[0] < b[0] ){ b.shift(); }
else if (a[0] > b[0] ){ b.shift(); }
else /* they're equal */
{
result.push(a.shift());
b.shift();
}
}
return result;
};
var result = intersection_destructive(mySet, mySet2);
console.log(result); // Output: [1,2]

To use the Array.filter() is a useful pattern. You need to convert your sets to array's using Array.from(). Also make sure that you filter through smaller set into the bigger one.
see fiddle
var mySet = new Set();
var mySet2=new Set();
mySet.add(1);
mySet.add(2);
mySet.add("HELLOOOOO");
mySet2.add("hi");
mySet2.add(1);
console.log(intersection_destructive(mySet, mySet2));
function intersection_destructive(a, b)
{
// filter over the shorter set and convert sets to Array's so we have filter
if (a.length > b.length) {
var array1 = Array.from(a);
var array2 = Array.from(b);
} else {
var array1 = Array.from(b);
var array2 = Array.from(a);
}
var result = array1.filter(function(n) {
return array2.indexOf(n) != -1
});
return result;
}

Related

JavaScript: Randomly select a limited number of objects from an array to be placed into a second array? [duplicate]

I am working on 'how to access elements randomly from an array in javascript'. I found many links regarding this. Like:
Get random item from JavaScript array
var item = items[Math.floor(Math.random()*items.length)];
But in this, we can choose only one item from the array. If we want more than one elements then how can we achieve this? How can we get more than one element from an array?
Just two lines :
// Shuffle array
const shuffled = array.sort(() => 0.5 - Math.random());
// Get sub-array of first n elements after shuffled
let selected = shuffled.slice(0, n);
DEMO:
Try this non-destructive (and fast) function:
function getRandom(arr, n) {
var result = new Array(n),
len = arr.length,
taken = new Array(len);
if (n > len)
throw new RangeError("getRandom: more elements taken than available");
while (n--) {
var x = Math.floor(Math.random() * len);
result[n] = arr[x in taken ? taken[x] : x];
taken[x] = --len in taken ? taken[len] : len;
}
return result;
}
There is a one-liner unique solution here
array.sort(() => Math.random() - Math.random()).slice(0, n)
lodash _.sample and _.sampleSize.
Gets one or n random elements at unique keys from collection up to the size of collection.
_.sample([1, 2, 3, 4]);
// => 2
_.sampleSize([1, 2, 3], 2);
// => [3, 1]
_.sampleSize([1, 2, 3], 3);
// => [2, 3, 1]
Getting 5 random items without changing the original array:
const n = 5;
const sample = items
.map(x => ({ x, r: Math.random() }))
.sort((a, b) => a.r - b.r)
.map(a => a.x)
.slice(0, n);
(Don't use this for big lists)
create a funcion which does that:
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
result.push(sourceArray[Math.floor(Math.random()*sourceArray.length)]);
}
return result;
}
you should also check if the sourceArray has enough elements to be returned. and if you want unique elements returned, you should remove selected element from the sourceArray.
Porting .sample from the Python standard library:
function sample(population, k){
/*
Chooses k unique random elements from a population sequence or set.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
Sampling without replacement entails tracking either potential
selections (the pool) in a list or previous selections in a set.
When the number of selections is small compared to the
population, then tracking selections is efficient, requiring
only a small set and an occasional reselection. For
a larger number of selections, the pool tracking method is
preferred since the list takes less space than the
set and it doesn't suffer from frequent reselections.
*/
if(!Array.isArray(population))
throw new TypeError("Population must be an array.");
var n = population.length;
if(k < 0 || k > n)
throw new RangeError("Sample larger than population or is negative");
var result = new Array(k);
var setsize = 21; // size of a small set minus size of an empty list
if(k > 5)
setsize += Math.pow(4, Math.ceil(Math.log(k * 3) / Math.log(4)))
if(n <= setsize){
// An n-length list is smaller than a k-length set
var pool = population.slice();
for(var i = 0; i < k; i++){ // invariant: non-selected at [0,n-i)
var j = Math.random() * (n - i) | 0;
result[i] = pool[j];
pool[j] = pool[n - i - 1]; // move non-selected item into vacancy
}
}else{
var selected = new Set();
for(var i = 0; i < k; i++){
var j = Math.random() * n | 0;
while(selected.has(j)){
j = Math.random() * n | 0;
}
selected.add(j);
result[i] = population[j];
}
}
return result;
}
Implementation ported from Lib/random.py.
Notes:
setsize is set based on characteristics in Python for efficiency. Although it has not been adjusted for JavaScript, the algorithm will still function as expected.
Some other answers described in this page are not safe according to the ECMAScript specification due to the misuse of Array.prototype.sort. This algorithm however is guaranteed to terminate in finite time.
For older browsers that do not have Set implemented, the set can be replaced with an Array and .has(j) replaced with .indexOf(j) > -1.
Performance against the accepted answer:
https://jsperf.com/pick-random-elements-from-an-array
The performance difference is the greatest on Safari.
If you want to randomly get items from the array in a loop without repetitions you can remove the selected item from the array with splice:
var items = [1, 2, 3, 4, 5];
var newItems = [];
for (var i = 0; i < 3; i++) {
var idx = Math.floor(Math.random() * items.length);
newItems.push(items[idx]);
items.splice(idx, 1);
}
console.log(newItems);
ES6 syntax
const pickRandom = (arr,count) => {
let _arr = [...arr];
return[...Array(count)].map( ()=> _arr.splice(Math.floor(Math.random() * _arr.length), 1)[0] );
}
I can't believe that no one didn't mention this method, pretty clean and straightforward.
const getRnd = (a, n) => new Array(n).fill(null).map(() => a[Math.floor(Math.random() * a.length)]);
Array.prototype.getnkill = function() {
var a = Math.floor(Math.random()*this.length);
var dead = this[a];
this.splice(a,1);
return dead;
}
//.getnkill() removes element in the array
//so if you like you can keep a copy of the array first:
//var original= items.slice(0);
var item = items.getnkill();
var anotheritem = items.getnkill();
Here's a nicely typed version. It doesn't fail. Returns a shuffled array if sample size is larger than original array's length.
function sampleArr<T>(arr: T[], size: number): T[] {
const setOfIndexes = new Set<number>();
while (setOfIndexes.size < size && setOfIndexes.size < arr.length) {
setOfIndexes.add(randomIntFromInterval(0, arr.length - 1));
}
return Array.from(setOfIndexes.values()).map(i => arr[i]);
}
const randomIntFromInterval = (min: number, max: number): number =>
Math.floor(Math.random() * (max - min + 1) + min);
In this answer, I want to share with you the test that I have to know the best method that gives equal chances for all elements to have random subarray.
Method 01
array.sort(() => Math.random() - Math.random()).slice(0, n)
using this method, some elements have higher chances comparing with others.
calculateProbability = function(number=0 ,iterations=10000,arraySize=100) {
let occ = 0
for (let index = 0; index < iterations; index++) {
const myArray= Array.from(Array(arraySize).keys()) //=> [0, 1, 2, 3, 4, ... arraySize]
/** Wrong Method */
const arr = myArray.sort(function() {
return val= .5 - Math.random();
});
if(arr[0]===number) {
occ ++
}
}
console.log("Probability of ",number, " = ",occ*100 /iterations,"%")
}
calculateProbability(0)
calculateProbability(0)
calculateProbability(0)
calculateProbability(50)
calculateProbability(50)
calculateProbability(50)
calculateProbability(25)
calculateProbability(25)
calculateProbability(25)
Method 2
Using this method, the elements have the same probability:
const arr = myArray
.map((a) => ({sort: Math.random(), value: a}))
.sort((a, b) => a.sort - b.sort)
.map((a) => a.value)
calculateProbability = function(number=0 ,iterations=10000,arraySize=100) {
let occ = 0
for (let index = 0; index < iterations; index++) {
const myArray= Array.from(Array(arraySize).keys()) //=> [0, 1, 2, 3, 4, ... arraySize]
/** Correct Method */
const arr = myArray
.map((a) => ({sort: Math.random(), value: a}))
.sort((a, b) => a.sort - b.sort)
.map((a) => a.value)
if(arr[0]===number) {
occ ++
}
}
console.log("Probability of ",number, " = ",occ*100 /iterations,"%")
}
calculateProbability(0)
calculateProbability(0)
calculateProbability(0)
calculateProbability(50)
calculateProbability(50)
calculateProbability(50)
calculateProbability(25)
calculateProbability(25)
calculateProbability(25)
The correct answer is posted in in the following link: https://stackoverflow.com/a/46545530/3811640
2020
non destructive functional programing style, working in a immutable context.
const _randomslice = (ar, size) => {
let new_ar = [...ar];
new_ar.splice(Math.floor(Math.random()*ar.length),1);
return ar.length <= (size+1) ? new_ar : _randomslice(new_ar, size);
}
console.log(_randomslice([1,2,3,4,5],2));
EDIT: This solution is slower than others presented here (which splice the source array) if you want to get only a few elements. The speed of this solution depends only on the number of elements in the original array, while the speed of the splicing solution depends on the number of elements required in the output array.
If you want non-repeating random elements, you can shuffle your array then get only as many as you want:
function shuffle(array) {
var counter = array.length, temp, index;
// While there are elements in the array
while (counter--) {
// Pick a random index
index = (Math.random() * counter) | 0;
// And swap the last element with it
temp = array[counter];
array[counter] = array[index];
array[index] = temp;
}
return array;
}
var arr = [0,1,2,3,4,5,7,8,9];
var randoms = shuffle(arr.slice(0)); // array is cloned so it won't be destroyed
randoms.length = 4; // get 4 random elements
DEMO: http://jsbin.com/UHUHuqi/1/edit
Shuffle function taken from here: https://stackoverflow.com/a/6274398/1669279
I needed a function to solve this kind of issue so I'm sharing it here.
const getRandomItem = function(arr) {
return arr[Math.floor(Math.random() * arr.length)];
}
// original array
let arr = [4, 3, 1, 6, 9, 8, 5];
// number of random elements to get from arr
let n = 4;
let count = 0;
// new array to push random item in
let randomItems = []
do {
let item = getRandomItem(arr);
randomItems.push(item);
// update the original array and remove the recently pushed item
arr.splice(arr.indexOf(item), 1);
count++;
} while(count < n);
console.log(randomItems);
console.log(arr);
Note: if n = arr.length then basically you're shuffling the array arr and randomItems returns that shuffled array.
Demo
Here's an optimized version of the code ported from Python by #Derek, with the added destructive (in-place) option that makes it the fastest algorithm possible if you can go with it. Otherwise it either makes a full copy or, for a small number of items requested from a large array, switches to a selection-based algorithm.
// Chooses k unique random elements from pool.
function sample(pool, k, destructive) {
var n = pool.length;
if (k < 0 || k > n)
throw new RangeError("Sample larger than population or is negative");
if (destructive || n <= (k <= 5 ? 21 : 21 + Math.pow(4, Math.ceil(Math.log(k*3) / Math.log(4))))) {
if (!destructive)
pool = Array.prototype.slice.call(pool);
for (var i = 0; i < k; i++) { // invariant: non-selected at [i,n)
var j = i + Math.random() * (n - i) | 0;
var x = pool[i];
pool[i] = pool[j];
pool[j] = x;
}
pool.length = k; // truncate
return pool;
} else {
var selected = new Set();
while (selected.add(Math.random() * n | 0).size < k) {}
return Array.prototype.map.call(selected, i => pool[i]);
}
}
In comparison to Derek's implementation, the first algorithm is much faster in Firefox while being a bit slower in Chrome, although now it has the destructive option - the most performant one. The second algorithm is simply 5-15% faster. I try not to give any concrete numbers since they vary depending on k and n and probably won't mean anything in the future with the new browser versions.
The heuristic that makes the choice between algorithms originates from Python code. I've left it as is, although it sometimes selects the slower one. It should be optimized for JS, but it's a complex task since the performance of corner cases is browser- and their version-dependent. For example, when you try to select 20 out of 1000 or 1050, it will switch to the first or the second algorithm accordingly. In this case the first one runs 2x faster than the second one in Chrome 80 but 3x slower in Firefox 74.
Sampling with possible duplicates:
const sample_with_duplicates = Array(sample_size).fill().map(() => items[~~(Math.random() * items.length)])
Sampling without duplicates:
const sample_without_duplicates = [...Array(items.length).keys()].sort(() => 0.5 - Math.random()).slice(0, sample_size).map(index => items[index]);
Since without duplicates requires sorting the whole index array first, it is considerably slow than with possible duplicates for big items input arrays.
Obviously, the max size of without duplicates is <= items.length
Check this fiddle: https://jsfiddle.net/doleron/5zw2vequ/30/
It extracts random elements from srcArray one by one while it get's enough or there is no more elements in srcArray left for extracting.
Fast and reliable.
function getNRandomValuesFromArray(srcArr, n) {
// making copy to do not affect original srcArray
srcArr = srcArr.slice();
resultArr = [];
// while srcArray isn't empty AND we didn't enough random elements
while (srcArr.length && resultArr.length < n) {
// remove one element from random position and add this element to the result array
resultArr = resultArr.concat( // merge arrays
srcArr.splice( // extract one random element
Math.floor(Math.random() * srcArr.length),
1
)
);
}
return resultArr;
}
Here's a function I use that allows you to easily sample an array with or without replacement:
// Returns a random sample (either with or without replacement) from an array
const randomSample = (arr, k, withReplacement = false) => {
let sample;
if (withReplacement === true) { // sample with replacement
sample = Array.from({length: k}, () => arr[Math.floor(Math.random() * arr.length)]);
} else { // sample without replacement
if (k > arr.length) {
throw new RangeError('Sample size must be less than or equal to array length when sampling without replacement.')
}
sample = arr.map(a => [a, Math.random()]).sort((a, b) => {
return a[1] < b[1] ? -1 : 1;}).slice(0, k).map(a => a[0]);
};
return sample;
};
Using it is simple:
Without Replacement (default behavior)
randomSample([1, 2, 3], 2) may return [2, 1]
With Replacement
randomSample([1, 2, 3, 4, 5, 6], 4) may return [2, 3, 3, 2]
var getRandomElements = function(sourceArray, requiredLength) {
var result = [];
while(result.length<requiredLength){
random = Math.floor(Math.random()*sourceArray.length);
if(result.indexOf(sourceArray[random])==-1){
result.push(sourceArray[random]);
}
}
return result;
}
const items = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'I', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 1, 2, 3, 4, 5];
const fetchRandomArray = ({pool=[], limit=1})=>{
let query = []
let selectedIndices = {}
while(query.length < limit){
const index = Math.floor(Math.random()*pool.length)
if(typeof(selectedIndices[index])==='undefined'){
query.push(items[index])
selectedIndices[index] = index
}
}
console.log(fetchRandomArray({pool:items, limit:10})
2019
This is same as Laurynas Mališauskas answer, just that the elements are unique (no duplicates).
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
var index = Math.floor(Math.random() * sourceArray.length);
result.push(sourceArray[index]);
sourceArray.splice(index, 1);
}
return result;
}
Now to answer original question "How to get multiple random elements by jQuery", here you go:
var getMeRandomElements = function(sourceArray, neededElements) {
var result = [];
for (var i = 0; i < neededElements; i++) {
var index = Math.floor(Math.random() * sourceArray.length);
result.push(sourceArray[index]);
sourceArray.splice(index, 1);
}
return result;
}
var $set = $('.someClass');// <<<<< change this please
var allIndexes = [];
for(var i = 0; i < $set.length; ++i) {
allIndexes.push(i);
}
var totalRandom = 4;// <<<<< change this please
var randomIndexes = getMeRandomElements(allIndexes, totalRandom);
var $randomElements = null;
for(var i = 0; i < randomIndexes.length; ++i) {
var randomIndex = randomIndexes[i];
if($randomElements === null) {
$randomElements = $set.eq(randomIndex);
} else {
$randomElements.add($set.eq(randomIndex));
}
}
// $randomElements is ready
$randomElements.css('backgroundColor', 'red');
Here is the most correct answer and it will give you Random + Unique elements.
function randomize(array, n)
{
var final = [];
array = array.filter(function(elem, index, self) {
return index == self.indexOf(elem);
}).sort(function() { return 0.5 - Math.random() });
var len = array.length,
n = n > len ? len : n;
for(var i = 0; i < n; i ++)
{
final[i] = array[i];
}
return final;
}
// randomize([1,2,3,4,5,3,2], 4);
// Result: [1, 2, 3, 5] // Something like this
items.sort(() => (Math.random() > 0.5 ? 1 : -1)).slice(0, count);

Is there a way to make this Javascript code more efficient?

It is a simple exercise that I am doing for mere practice and leisure, I have done it in various ways but I was wondering if there is an even more practical way or to reduce the lines of code making use of the many methods of JavaScript.
The exercise is about receiving an array (arr) and a number (target) and returning another array with a pair of numbers found in 'arr' whose sum is equal to 'target'.
function targetSum3(arr, target) {
let newArr = [];
let copyArray = arr;
for (let i of copyArray) {
let x = Math.abs(i - target);
copyArray.pop(copyArray[i]);
if (copyArray.includes(x) && (copyArray.indexOf(x) != copyArray.indexOf(i))) {
newArr.push(i);
newArr.push(x);
return newArr;
}
}
return newArr;
}
If you are fine with a function that just returns a pair of numbers (the first match so to speak) whose sum equals the targets value, this might be enough:
function sumPair (arr, target) {
while(arr.length) {
let sum1 = arr.shift();
let sum2 = arr.find(val => sum1 + val === target);
if (sum2) return [sum2, sum1];
}
return null;
}
const targetSum = (arr, target) => {
const first = arr.find((v,i,a) => arr.includes(target-v) && (arr.indexOf(target-v) !== i));
return first ? [first, target - first] : null;
};
const values = [1,2,3,4,5,6,7,8,9];
console.log(targetSum(values, 1)); // null
console.log(targetSum(values, 2)); // null
console.log(targetSum(values, 3)); // [1, 2]
console.log(targetSum(values, 15)); // [6, 9]
console.log(targetSum(values, 20)); // null
I changed for loop with forEach (more efficient) and there is no need for the copyArray array so I removed it. I also changed pop() with shift(), I think you want to shift the array and not pop-it (if I understand the task correctly).
function targetSum3(arr, target) {
let newArr = [];
arr.forEach(element => {
let x = Math.abs(element - target); // calc x
arr.shift(); // removes first element from arr (current element)
if (arr.includes(x) && (arr.indexOf(x) != arr.indexOf(element))) {
newArr.push(element);
newArr.push(x);
return;
}
});
return newArr;
}
use Array.filter to find the target sum for all values in an given array. See comments in the snippet.
sumsForTargetInArray();
document.addEventListener(`click`,
evt => evt.target.id === `redo` && sumsForTargetInArray());
function sumsInArray(arr, target) {
// clone the array
const clone = arr.slice();
let result = [];
while (clone.length) {
// retrieve the current value (shifting it from the clone)
const current = clone.shift();
// filter arr: all values where value + sum = target
const isTarget = arr.filter(v => current + v === target);
// add to result.
// Sorting is to prevent duplicates later
if (isTarget.length) {
result = [...result, ...isTarget.map(v => [current, v].sort())];
}
}
// weed out duplicates (e.g. 0 + 3, 3 + 0)
const unique = new Set();
result.forEach(r => unique.add(`${r[0]},${r[1]}`));
// return array of array(2)
return [...unique].map(v => v.split(`,`).map(Number));
}
function sumsForTargetInArray() {
const testArr = [...Array(20)].map((_, i) => i);
const target = Math.floor(Math.random() * 30);
document.querySelector(`pre`).textContent = `testArray: ${
JSON.stringify(testArr)}\ntarget: ${target}\nResult: ${
JSON.stringify(sumsInArray(testArr, target))}`;
}
<pre></pre>
<button id="redo">Again</button>

Checking whether the number of unique numbers within array exceeds n

Just as title reads, I need to check whether the number of unique entries within array exceeds n.
Array.prototype.some() seems to fit perfectly here, as it will stop cycling through the array right at the moment, positive answer is found, so, please, do not suggest the methods that filter out non-unique records and measure the length of resulting dataset as performance matters here.
So far, I use the following code, to check if there's more than n=2 unique numbers:
const res = [1,1,2,1,1,3,1,1,4,1].some((e,_,s,n=2) => s.indexOf(e) != s.lastIndexOf(e) ? false : n-- ? false : true);
console.log(res);
.as-console-wrapper { min-height: 100%}
And it returns false while there's, obviously 3 unique numbers (2,3,4).
Your help to figure out what's my (stupid) mistake here is much appreciated.
p.s. I'm looking for a pure JS solution
You can use a Map() with array values as map keys and count as values. Then iterate over map values to find the count of unique numbers. If count exceeds the limit return true, if not return false.
Time complexity is O(n). It can't get better than O(n) because every number in the array must be visited to find the count of unique numbers.
var data = [1, 1, 2, 1, 1, 3, 1, 1, 4, 1];
function exceedsUniqueLimit(limit) {
var map = new Map();
for (let value of data) {
const count = map.get(value);
if (count) {
map.set(value, count + 1);
} else {
map.set(value, 1);
}
}
var uniqueNumbers = 0;
for (let count of map.values()) {
if (count === 1) {
uniqueNumbers++;
}
if (uniqueNumbers > limit) {
return true;
}
}
return false;
}
console.log(exceedsUniqueLimit(2));
To know if a value is unique or duplicate, the whole array needs to be scanned at least once (Well, on a very large array there could be a test to see how many elements there is left to scan, but the overhead for this kind of test will make it slower)
This version uses two Set
function uniqueLimit(data,limit) {
let
dup = new Set(),
unique = new Set(),
value = null;
for (let i = 0, len = data.length; i < len; ++i) {
value = data[i];
if ( dup.has(value) ) continue;
if ( unique.has(value) ) {
dup.add(value);
unique.delete(value);
continue;
}
unique.add(value);
}
return unique.size > limit;
}
I also tried this version, using arrays:
function uniqueLimit(data, limit) {
let unique=[], dup = [];
for (let idx = 0, len = data.length; idx < len; ++idx) {
const value = data[idx];
if ( dup.indexOf(value) >= 0 ) continue;
const pos = unique.indexOf(value); // get position of value
if ( pos >= 0 ) {
unique.splice(pos,1); // remove value
dup.push(value);
continue;
}
unique.push(value);
}
return unique.length > limit;
};
I tested several of the solutions in this thread, and you can find the result here. If there are only a few unique values, the method by using arrays is the fastest, but if there are many unique values it quickly becomes the slowest, and on large arrays slowest by several magnitudes.
More profiling
I did some more tests with node v12.10.0. The results are normalized after the fastest method for each test.
Worst case scenario: 1000000 entries, all unique:
Set 1.00 // See this answer
Map 1.26 // See answer by Nikhil
Reduce 1.44 // See answer by Bali Balo
Array Infinity // See this answer
Best case scenario: 1000000 entries, all the same:
Array 1.00
Set 1.16
Map 2.60
Reduce 3.43
Question test case: [1, 1, 2, 1, 1, 3, 1, 1, 4, 1]
Array 1.00
Map 1.29
Set 1.47
Reduce 4.25
Another test case: [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,
1,1,1,1,1,1,1,3,4,1,1,1,1,1,1,1,2,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,5 ]
Array 1.00
Set 1.13
Map 2.24
Reduce 2.39
Conclusion
The method that uses Set works for both small and large arrays, and performs well regardless of if there are many unique values or not. The version that are using arrays can be faster if there are few unique values, but quickly becomes very slow if there are many unique values.
Using sets, We count hypothetical unique set size and duplicateSet size and delete unique set element for each duplicate found. If unique set size goes below n, we stop iterating.
function uniqueGtN(res, n) {
let uniqSet = new Set(res);
let max = uniqSet.size;
if (max <= n) return false;
let dupSet = new Set();
return !res.some(e => {
if (dupSet.has(e)) {
if (uniqSet.has(e)) {
uniqSet.delete(e);
console.log(...uniqSet);
return (--max <= n);
}
} else {
dupSet.add(e);
}
});
}
console.log(uniqueGtN([1, 1, 2, 1, 1, 3, 3, 1], 2));
From your original solution, I have changed few things, it seems to be working fine:
(function() {
const array = [1,1,2,1,1,3,1,1,4,1];
function hasExceedingUniqueNumber(array, number) {
return array.some((e,_,s,n=number) => {
let firstIndex = s.indexOf(e);
let lastIndex = s.lastIndexOf(e);
// NOT unique
if (firstIndex != lastIndex) {
return false;
}
// unique
return e > n;
});
}
console.log('1', hasExceedingUniqueNumber(array, 1));
console.log('2', hasExceedingUniqueNumber(array, 2));
console.log('3', hasExceedingUniqueNumber(array, 3));
console.log('4', hasExceedingUniqueNumber(array, 4));
})();
So the shorter version looks like this:
(function() {
const array = [1,1,2,1,1,3,1,1,4,1];
function hasExceedingUniqueNumber(array, number) {
return array.some((e,_,s,n=number) => s.indexOf(e) != s.lastIndexOf(e) ? false : e > n);
}
console.log('1', hasExceedingUniqueNumber(array, 1));
console.log('2', hasExceedingUniqueNumber(array, 2));
console.log('3', hasExceedingUniqueNumber(array, 3));
console.log('4', hasExceedingUniqueNumber(array, 4));
})();
The code listed in your question does not work because m is not shared across the calls to the some callback function. It is a parameter, and its value is 2 at each iteration.
To fix this, either put m outside, or use the thisArg of the some function (but that means you can't use an arrow function)
let m = 2;
const res = [1,1,1,2,1,1,3,1,1,1,4,1,1]
.sort((a,b) => a-b)
.some((n,i,s) => i > 0 && n == s[i-1] ? !(m--) : false);
// ----- or -----
const res = [1,1,1,2,1,1,3,1,1,1,4,1,1]
.sort((a,b) => a-b)
.some(function(n,i,s) { return i > 0 && n == s[i-1] ? !(this.m--) : false; }, { m: 2 });
Note: this code seems to count if the number of duplicates exceeds a certain value, not the number of unique values.
As another side note, I know you mentioned you did not want to use a duplicate removal algorithm, but performant ones (for example hash-based) would result in something close to O(n).
Here is a solution to count all the values appearing exactly once in the initial array. It is a bit obfuscated and hard to read, but you seem to be wanting something concise. It is the most performant I can think of, using 2 objects to store values seen at least once and the ones seen multiple times:
let res = [1,1,2,3,4].reduce((l, e) => (l[+!l[1][e]][e] = true, l), [{},{}]).map(o => Object.keys(o).length).reduce((more,once) => once-more) > 2;
Here is the less minified version for people who don't like the short version:
let array = [1,1,2,3,4];
let counts = array.reduce((counts, element) => {
if (!counts.atLeastOne[element]) {
counts.atLeastOne[element] = true;
} else {
counts.moreThanOne[element] = true;
}
return counts;
}, { atLeastOne: {}, moreThanOne: {} });
let exactlyOnceCount = Object.keys(counts.atLeastOne).length - Object.keys(counts.moreThanOne).length;
let isOverLimit = exactlyOnceCount > 2;
Whenever I have a type of problem like this, I always like to peek at how the underscore JS folks have done it.
[Ed again: removed _.countBy as it isn't relevant to the answer]
Use the _.uniq function to return a list of unique values in the array:
var u = _.uniq([1,1,2,2,2,3,4,5,5]); // [1,2,3,4,5]
if (u.length > n) { ...};
[ed:] Here's how we might use that implementation to write our own, opposite function that returns only non-unique collection items
function nonUnique(array) {
var result = [];
var seen = [];
for (var i = 0, length = array.length; i < length; i++) {
var value = array[i];
if (seen.indexOf(value) === -1) { // warning! naive assumption
seen.push(value);
} else {
result.push(value);
}
}
console.log("non-unique result", result);
return result;
};
function hasMoreThanNUnique(array, threshold) {
var uArr = nonUnique(array);
var accum = 0;
for (var i = 0; i < array.length; i++) {
var val = array[i];
if (uArr.indexOf(val) === -1) {
accum++;
}
if (accum > threshold) return true;
}
return false;
}
var testArrA = [1, 1, 2, 2, 2, 3, 4, 5]; // unique values: [3, 4, 5]
var testArrB = [1, 1, 1, 1, 4]; // [4]
var testResultsA = hasMoreThanNUnique(testArrA, 3)
console.log("testArrA and results", testResultsA);
var testResultsB = hasMoreThanNUnique(testArrB, 3);
console.log("testArrB and results", testResultsB);
So far, I came up with the following:
const countNum = [1,1,1,2,1,1,3,1,1,1,4,1,1].reduce((r,n) => (r[n]=(r[n]||0)+1, r), {});
const res = Object.entries(countNum).some(([n,q]) => q == 1 ? !(m--) : false, m=2);
console.log(res);
.as-console-wrapper{min-height:100%}
But I don't really like array->object->array conversion about that. Is there a faster and (at the same time compact) solution?

Compare multiple arrays for common values [duplicate]

What's the simplest, library-free code for implementing array intersections in javascript? I want to write
intersection([1,2,3], [2,3,4,5])
and get
[2, 3]
Use a combination of Array.prototype.filter and Array.prototype.includes:
const filteredArray = array1.filter(value => array2.includes(value));
For older browsers, with Array.prototype.indexOf and without an arrow function:
var filteredArray = array1.filter(function(n) {
return array2.indexOf(n) !== -1;
});
NB! Both .includes and .indexOf internally compares elements in the array by using ===, so if the array contains objects it will only compare object references (not their content). If you want to specify your own comparison logic, use Array.prototype.some instead.
Destructive seems simplest, especially if we can assume the input is sorted:
/* destructively finds the intersection of
* two arrays in a simple fashion.
*
* PARAMS
* a - first array, must already be sorted
* b - second array, must already be sorted
*
* NOTES
* State of input arrays is undefined when
* the function returns. They should be
* (prolly) be dumped.
*
* Should have O(n) operations, where n is
* n = MIN(a.length, b.length)
*/
function intersection_destructive(a, b)
{
var result = [];
while( a.length > 0 && b.length > 0 )
{
if (a[0] < b[0] ){ a.shift(); }
else if (a[0] > b[0] ){ b.shift(); }
else /* they're equal */
{
result.push(a.shift());
b.shift();
}
}
return result;
}
Non-destructive has to be a hair more complicated, since we’ve got to track indices:
/* finds the intersection of
* two arrays in a simple fashion.
*
* PARAMS
* a - first array, must already be sorted
* b - second array, must already be sorted
*
* NOTES
*
* Should have O(n) operations, where n is
* n = MIN(a.length(), b.length())
*/
function intersect_safe(a, b)
{
var ai=0, bi=0;
var result = [];
while( ai < a.length && bi < b.length )
{
if (a[ai] < b[bi] ){ ai++; }
else if (a[ai] > b[bi] ){ bi++; }
else /* they're equal */
{
result.push(a[ai]);
ai++;
bi++;
}
}
return result;
}
If your environment supports ECMAScript 6 Set, one simple and supposedly efficient (see specification link) way:
function intersect(a, b) {
var setA = new Set(a);
var setB = new Set(b);
var intersection = new Set([...setA].filter(x => setB.has(x)));
return Array.from(intersection);
}
Shorter, but less readable (also without creating the additional intersection Set):
function intersect(a, b) {
var setB = new Set(b);
return [...new Set(a)].filter(x => setB.has(x));
}
Note that when using sets you will only get distinct values, thus new Set([1, 2, 3, 3]).size evaluates to 3.
Using Underscore.js or lodash.js
_.intersection( [0,345,324] , [1,0,324] ) // gives [0,324]
// Return elements of array a that are also in b in linear time:
function intersect(a, b) {
return a.filter(Set.prototype.has, new Set(b));
}
// Example:
console.log(intersect([1,2,3], [2,3,4,5]));
I recommend above succinct solution which outperforms other implementations on large inputs. If performance on small inputs matters, check the alternatives below.
Alternatives and performance comparison:
See the following snippet for alternative implementations and check https://jsperf.com/array-intersection-comparison for performance comparisons.
function intersect_for(a, b) {
const result = [];
const alen = a.length;
const blen = b.length;
for (let i = 0; i < alen; ++i) {
const ai = a[i];
for (let j = 0; j < blen; ++j) {
if (ai === b[j]) {
result.push(ai);
break;
}
}
}
return result;
}
function intersect_filter_indexOf(a, b) {
return a.filter(el => b.indexOf(el) !== -1);
}
function intersect_filter_in(a, b) {
const map = b.reduce((map, el) => {map[el] = true; return map}, {});
return a.filter(el => el in map);
}
function intersect_for_in(a, b) {
const result = [];
const map = {};
for (let i = 0, length = b.length; i < length; ++i) {
map[b[i]] = true;
}
for (let i = 0, length = a.length; i < length; ++i) {
if (a[i] in map) result.push(a[i]);
}
return result;
}
function intersect_filter_includes(a, b) {
return a.filter(el => b.includes(el));
}
function intersect_filter_has_this(a, b) {
return a.filter(Set.prototype.has, new Set(b));
}
function intersect_filter_has_arrow(a, b) {
const set = new Set(b);
return a.filter(el => set.has(el));
}
function intersect_for_has(a, b) {
const result = [];
const set = new Set(b);
for (let i = 0, length = a.length; i < length; ++i) {
if (set.has(a[i])) result.push(a[i]);
}
return result;
}
Results in Firefox 53:
Ops/sec on large arrays (10,000 elements):
filter + has (this) 523 (this answer)
for + has 482
for-loop + in 279
filter + in 242
for-loops 24
filter + includes 14
filter + indexOf 10
Ops/sec on small arrays (100 elements):
for-loop + in 384,426
filter + in 192,066
for-loops 159,137
filter + includes 104,068
filter + indexOf 71,598
filter + has (this) 43,531 (this answer)
filter + has (arrow function) 35,588
My contribution in ES6 terms. In general it finds the intersection of an array with indefinite number of arrays provided as arguments.
Array.prototype.intersect = function(...a) {
return [this,...a].reduce((p,c) => p.filter(e => c.includes(e)));
}
var arrs = [[0,2,4,6,8],[4,5,6,7],[4,6]],
arr = [0,1,2,3,4,5,6,7,8,9];
document.write("<pre>" + JSON.stringify(arr.intersect(...arrs)) + "</pre>");
How about just using associative arrays?
function intersect(a, b) {
var d1 = {};
var d2 = {};
var results = [];
for (var i = 0; i < a.length; i++) {
d1[a[i]] = true;
}
for (var j = 0; j < b.length; j++) {
d2[b[j]] = true;
}
for (var k in d1) {
if (d2[k])
results.push(k);
}
return results;
}
edit:
// new version
function intersect(a, b) {
var d = {};
var results = [];
for (var i = 0; i < b.length; i++) {
d[b[i]] = true;
}
for (var j = 0; j < a.length; j++) {
if (d[a[j]])
results.push(a[j]);
}
return results;
}
The performance of #atk's implementation for sorted arrays of primitives can be improved by using .pop rather than .shift.
function intersect(array1, array2) {
var result = [];
// Don't destroy the original arrays
var a = array1.slice(0);
var b = array2.slice(0);
var aLast = a.length - 1;
var bLast = b.length - 1;
while (aLast >= 0 && bLast >= 0) {
if (a[aLast] > b[bLast] ) {
a.pop();
aLast--;
} else if (a[aLast] < b[bLast] ){
b.pop();
bLast--;
} else /* they're equal */ {
result.push(a.pop());
b.pop();
aLast--;
bLast--;
}
}
return result;
}
I created a benchmark using jsPerf. It's about three times faster to use .pop.
If you need to have it handle intersecting multiple arrays:
const intersect = (a1, a2, ...rest) => {
const a12 = a1.filter(value => a2.includes(value))
if (rest.length === 0) { return a12; }
return intersect(a12, ...rest);
};
console.log(intersect([1,2,3,4,5], [1,2], [1, 2, 3,4,5], [2, 10, 1]))
Sort it
check one by one from the index 0, create new array from that.
Something like this, Not tested well though.
function intersection(x,y){
x.sort();y.sort();
var i=j=0;ret=[];
while(i<x.length && j<y.length){
if(x[i]<y[j])i++;
else if(y[j]<x[i])j++;
else {
ret.push(x[i]);
i++,j++;
}
}
return ret;
}
alert(intersection([1,2,3], [2,3,4,5]));
PS:The algorithm only intended for Numbers and Normal Strings, intersection of arbitary object arrays may not work.
Using jQuery:
var a = [1,2,3];
var b = [2,3,4,5];
var c = $(b).not($(b).not(a));
alert(c);
A tiny tweak to the smallest one here (the filter/indexOf solution), namely creating an index of the values in one of the arrays using a JavaScript object, will reduce it from O(N*M) to "probably" linear time. source1 source2
function intersect(a, b) {
var aa = {};
a.forEach(function(v) { aa[v]=1; });
return b.filter(function(v) { return v in aa; });
}
This isn't the very simplest solution (it's more code than filter+indexOf), nor is it the very fastest (probably slower by a constant factor than intersect_safe()), but seems like a pretty good balance. It is on the very simple side, while providing good performance, and it doesn't require pre-sorted inputs.
For arrays containing only strings or numbers you can do something with sorting, as per some of the other answers. For the general case of arrays of arbitrary objects I don't think you can avoid doing it the long way. The following will give you the intersection of any number of arrays provided as parameters to arrayIntersection:
var arrayContains = Array.prototype.indexOf ?
function(arr, val) {
return arr.indexOf(val) > -1;
} :
function(arr, val) {
var i = arr.length;
while (i--) {
if (arr[i] === val) {
return true;
}
}
return false;
};
function arrayIntersection() {
var val, arrayCount, firstArray, i, j, intersection = [], missing;
var arrays = Array.prototype.slice.call(arguments); // Convert arguments into a real array
// Search for common values
firstArray = arrays.pop();
if (firstArray) {
j = firstArray.length;
arrayCount = arrays.length;
while (j--) {
val = firstArray[j];
missing = false;
// Check val is present in each remaining array
i = arrayCount;
while (!missing && i--) {
if ( !arrayContains(arrays[i], val) ) {
missing = true;
}
}
if (!missing) {
intersection.push(val);
}
}
}
return intersection;
}
arrayIntersection( [1, 2, 3, "a"], [1, "a", 2], ["a", 1] ); // Gives [1, "a"];
Simplest, fastest O(n) and shortest way:
function intersection (a, b) {
const setA = new Set(a);
return b.filter(value => setA.has(value));
}
console.log(intersection([1,2,3], [2,3,4,5]))
#nbarbosa has almost the same answer but he cast both arrays to Set and then back to array. There is no need for any extra casting.
Another indexed approach able to process any number of arrays at once:
// Calculate intersection of multiple array or object values.
function intersect (arrList) {
var arrLength = Object.keys(arrList).length;
// (Also accepts regular objects as input)
var index = {};
for (var i in arrList) {
for (var j in arrList[i]) {
var v = arrList[i][j];
if (index[v] === undefined) index[v] = 0;
index[v]++;
};
};
var retv = [];
for (var i in index) {
if (index[i] == arrLength) retv.push(i);
};
return retv;
};
It works only for values that can be evaluated as strings and you should pass them as an array like:
intersect ([arr1, arr2, arr3...]);
...but it transparently accepts objects as parameter or as any of the elements to be intersected (always returning array of common values). Examples:
intersect ({foo: [1, 2, 3, 4], bar: {a: 2, j:4}}); // [2, 4]
intersect ([{x: "hello", y: "world"}, ["hello", "user"]]); // ["hello"]
EDIT: I just noticed that this is, in a way, slightly buggy.
That is: I coded it thinking that input arrays cannot itself contain repetitions (as provided example doesn't).
But if input arrays happen to contain repetitions, that would produce wrong results. Example (using below implementation):
intersect ([[1, 3, 4, 6, 3], [1, 8, 99]]);
// Expected: [ '1' ]
// Actual: [ '1', '3' ]
Fortunately this is easy to fix by simply adding second level indexing. That is:
Change:
if (index[v] === undefined) index[v] = 0;
index[v]++;
by:
if (index[v] === undefined) index[v] = {};
index[v][i] = true; // Mark as present in i input.
...and:
if (index[i] == arrLength) retv.push(i);
by:
if (Object.keys(index[i]).length == arrLength) retv.push(i);
Complete example:
// Calculate intersection of multiple array or object values.
function intersect (arrList) {
var arrLength = Object.keys(arrList).length;
// (Also accepts regular objects as input)
var index = {};
for (var i in arrList) {
for (var j in arrList[i]) {
var v = arrList[i][j];
if (index[v] === undefined) index[v] = {};
index[v][i] = true; // Mark as present in i input.
};
};
var retv = [];
for (var i in index) {
if (Object.keys(index[i]).length == arrLength) retv.push(i);
};
return retv;
};
intersect ([[1, 3, 4, 6, 3], [1, 8, 99]]); // [ '1' ]
With some restrictions on your data, you can do it in linear time!
For positive integers: use an array mapping the values to a "seen/not seen" boolean.
function intersectIntegers(array1,array2) {
var seen=[],
result=[];
for (var i = 0; i < array1.length; i++) {
seen[array1[i]] = true;
}
for (var i = 0; i < array2.length; i++) {
if ( seen[array2[i]])
result.push(array2[i]);
}
return result;
}
There is a similar technique for objects: take a dummy key, set it to "true" for each element in array1, then look for this key in elements of array2. Clean up when you're done.
function intersectObjects(array1,array2) {
var result=[];
var key="tmpKey_intersect"
for (var i = 0; i < array1.length; i++) {
array1[i][key] = true;
}
for (var i = 0; i < array2.length; i++) {
if (array2[i][key])
result.push(array2[i]);
}
for (var i = 0; i < array1.length; i++) {
delete array1[i][key];
}
return result;
}
Of course you need to be sure the key didn't appear before, otherwise you'll be destroying your data...
function intersection(A,B){
var result = new Array();
for (i=0; i<A.length; i++) {
for (j=0; j<B.length; j++) {
if (A[i] == B[j] && $.inArray(A[i],result) == -1) {
result.push(A[i]);
}
}
}
return result;
}
For simplicity:
// Usage
const intersection = allLists
.reduce(intersect, allValues)
.reduce(removeDuplicates, []);
// Implementation
const intersect = (intersection, list) =>
intersection.filter(item =>
list.some(x => x === item));
const removeDuplicates = (uniques, item) =>
uniques.includes(item) ? uniques : uniques.concat(item);
// Example Data
const somePeople = [bob, doug, jill];
const otherPeople = [sarah, bob, jill];
const morePeople = [jack, jill];
const allPeople = [...somePeople, ...otherPeople, ...morePeople];
const allGroups = [somePeople, otherPeople, morePeople];
// Example Usage
const intersection = allGroups
.reduce(intersect, allPeople)
.reduce(removeDuplicates, []);
intersection; // [jill]
Benefits:
dirt simple
data-centric
works for arbitrary number of lists
works for arbitrary lengths of lists
works for arbitrary types of values
works for arbitrary sort order
retains shape (order of first appearance in any array)
exits early where possible
memory safe, short of tampering with Function / Array prototypes
Drawbacks:
higher memory usage
higher CPU usage
requires an understanding of reduce
requires understanding of data flow
You wouldn't want to use this for 3D engine or kernel work, but if you have problems getting this to run in an event-based app, your design has bigger problems.
I'll contribute with what has been working out best for me:
if (!Array.prototype.intersect){
Array.prototype.intersect = function (arr1) {
var r = [], o = {}, l = this.length, i, v;
for (i = 0; i < l; i++) {
o[this[i]] = true;
}
l = arr1.length;
for (i = 0; i < l; i++) {
v = arr1[i];
if (v in o) {
r.push(v);
}
}
return r;
};
}
A functional approach with ES2015
A functional approach must consider using only pure functions without side effects, each of which is only concerned with a single job.
These restrictions enhance the composability and reusability of the functions involved.
// small, reusable auxiliary functions
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
const apply = f => x => f(x);
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
// run it
console.log( intersect(xs) (ys) );
Please note that the native Set type is used, which has an advantageous
lookup performance.
Avoid duplicates
Obviously repeatedly occurring items from the first Array are preserved, while the second Array is de-duplicated. This may be or may be not the desired behavior. If you need a unique result just apply dedupe to the first argument:
// auxiliary functions
const apply = f => x => f(x);
const comp = f => g => x => f(g(x));
const afrom = apply(Array.from);
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// de-duplication
const dedupe = comp(afrom) (createSet);
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
// unique result
console.log( intersect(dedupe(xs)) (ys) );
Compute the intersection of any number of Arrays
If you want to compute the intersection of an arbitrarily number of Arrays just compose intersect with foldl. Here is a convenience function:
// auxiliary functions
const apply = f => x => f(x);
const uncurry = f => (x, y) => f(x) (y);
const createSet = xs => new Set(xs);
const filter = f => xs => xs.filter(apply(f));
const foldl = f => acc => xs => xs.reduce(uncurry(f), acc);
// intersection
const intersect = xs => ys => {
const zs = createSet(ys);
return filter(x => zs.has(x)
? true
: false
) (xs);
};
// intersection of an arbitrarily number of Arrays
const intersectn = (head, ...tail) => foldl(intersect) (head) (tail);
// mock data
const xs = [1,2,2,3,4,5];
const ys = [0,1,2,3,3,3,6,7,8,9];
const zs = [0,1,2,3,4,5,6];
// run
console.log( intersectn(xs, ys, zs) );
.reduce to build a map, and .filter to find the intersection. delete within the .filter allows us to treat the second array as though it's a unique set.
function intersection (a, b) {
var seen = a.reduce(function (h, k) {
h[k] = true;
return h;
}, {});
return b.filter(function (k) {
var exists = seen[k];
delete seen[k];
return exists;
});
}
I find this approach pretty easy to reason about. It performs in constant time.
I have written an intesection function which can even detect intersection of array of objects based on particular property of those objects.
For instance,
if arr1 = [{id: 10}, {id: 20}]
and arr2 = [{id: 20}, {id: 25}]
and we want intersection based on the id property, then the output should be :
[{id: 20}]
As such, the function for the same (note: ES6 code) is :
const intersect = (arr1, arr2, accessors = [v => v, v => v]) => {
const [fn1, fn2] = accessors;
const set = new Set(arr2.map(v => fn2(v)));
return arr1.filter(value => set.has(fn1(value)));
};
and you can call the function as:
intersect(arr1, arr2, [elem => elem.id, elem => elem.id])
Also note: this function finds intersection considering the first array is the primary array and thus the intersection result will be that of the primary array.
This function avoids the N^2 problem, taking advantage of the power of dictionaries. Loops through each array only once, and a third and shorter loop to return the final result.
It also supports numbers, strings, and objects.
function array_intersect(array1, array2)
{
var mergedElems = {},
result = [];
// Returns a unique reference string for the type and value of the element
function generateStrKey(elem) {
var typeOfElem = typeof elem;
if (typeOfElem === 'object') {
typeOfElem += Object.prototype.toString.call(elem);
}
return [typeOfElem, elem.toString(), JSON.stringify(elem)].join('__');
}
array1.forEach(function(elem) {
var key = generateStrKey(elem);
if (!(key in mergedElems)) {
mergedElems[key] = {elem: elem, inArray2: false};
}
});
array2.forEach(function(elem) {
var key = generateStrKey(elem);
if (key in mergedElems) {
mergedElems[key].inArray2 = true;
}
});
Object.values(mergedElems).forEach(function(elem) {
if (elem.inArray2) {
result.push(elem.elem);
}
});
return result;
}
If there is a special case that cannot be solved, just by modifying the generateStrKey function, it could surely be solved. The trick of this function is that it uniquely represents each different data according to type and value.
This variant has some performance improvements. Avoid loops in case any array is empty. It also starts by walking through the shorter array first, so if it finds all the values of the first array in the second array, exits the loop.
function array_intersect(array1, array2)
{
var mergedElems = {},
result = [],
firstArray, secondArray,
firstN = 0,
secondN = 0;
function generateStrKey(elem) {
var typeOfElem = typeof elem;
if (typeOfElem === 'object') {
typeOfElem += Object.prototype.toString.call(elem);
}
return [typeOfElem, elem.toString(), JSON.stringify(elem)].join('__');
}
// Executes the loops only if both arrays have values
if (array1.length && array2.length)
{
// Begins with the shortest array to optimize the algorithm
if (array1.length < array2.length) {
firstArray = array1;
secondArray = array2;
} else {
firstArray = array2;
secondArray = array1;
}
firstArray.forEach(function(elem) {
var key = generateStrKey(elem);
if (!(key in mergedElems)) {
mergedElems[key] = {elem: elem, inArray2: false};
// Increases the counter of unique values in the first array
firstN++;
}
});
secondArray.some(function(elem) {
var key = generateStrKey(elem);
if (key in mergedElems) {
if (!mergedElems[key].inArray2) {
mergedElems[key].inArray2 = true;
// Increases the counter of matches
secondN++;
// If all elements of first array have coincidence, then exits the loop
return (secondN === firstN);
}
}
});
Object.values(mergedElems).forEach(function(elem) {
if (elem.inArray2) {
result.push(elem.elem);
}
});
}
return result;
}
Here is underscore.js implementation:
_.intersection = function(array) {
if (array == null) return [];
var result = [];
var argsLength = arguments.length;
for (var i = 0, length = array.length; i < length; i++) {
var item = array[i];
if (_.contains(result, item)) continue;
for (var j = 1; j < argsLength; j++) {
if (!_.contains(arguments[j], item)) break;
}
if (j === argsLength) result.push(item);
}
return result;
};
Source: http://underscorejs.org/docs/underscore.html#section-62
Create an Object using one array and loop through the second array to check if the value exists as key.
function intersection(arr1, arr2) {
var myObj = {};
var myArr = [];
for (var i = 0, len = arr1.length; i < len; i += 1) {
if(myObj[arr1[i]]) {
myObj[arr1[i]] += 1;
} else {
myObj[arr1[i]] = 1;
}
}
for (var j = 0, len = arr2.length; j < len; j += 1) {
if(myObj[arr2[j]] && myArr.indexOf(arr2[j]) === -1) {
myArr.push(arr2[j]);
}
}
return myArr;
}
I think using an object internally can help with computations and could be performant too.
// Approach maintains a count of each element and works for negative elements too
function intersect(a,b){
const A = {};
a.forEach((v)=>{A[v] ? ++A[v] : A[v] = 1});
const B = {};
b.forEach((v)=>{B[v] ? ++B[v] : B[v] = 1});
const C = {};
Object.entries(A).map((x)=>C[x[0]] = Math.min(x[1],B[x[0]]))
return Object.entries(C).map((x)=>Array(x[1]).fill(Number(x[0]))).flat();
}
const x = [1,1,-1,-1,0,0,2,2];
const y = [2,0,1,1,1,1,0,-1,-1,-1];
const result = intersect(x,y);
console.log(result); // (7) [0, 0, 1, 1, 2, -1, -1]
I am using map even object could be used.
//find intersection of 2 arrs
const intersections = (arr1,arr2) => {
let arrf = arr1.concat(arr2)
let map = new Map();
let union = [];
for(let i=0; i<arrf.length; i++){
if(map.get(arrf[i])){
map.set(arrf[i],false);
}else{
map.set(arrf[i],true);
}
}
map.forEach((v,k)=>{if(!v){union.push(k);}})
return union;
}
This is a proposed standard: With the currently stage 2 proposal https://github.com/tc39/proposal-set-methods, you could use
mySet.intersection(mySet2);
Until then, you could use Immutable.js's Set, which inspired that proposal
Immutable.Set(mySet).intersect(mySet2)
I extended tarulen's answer to work with any number of arrays. It also should work with non-integer values.
function intersect() {
const last = arguments.length - 1;
var seen={};
var result=[];
for (var i = 0; i < last; i++) {
for (var j = 0; j < arguments[i].length; j++) {
if (seen[arguments[i][j]]) {
seen[arguments[i][j]] += 1;
}
else if (!i) {
seen[arguments[i][j]] = 1;
}
}
}
for (var i = 0; i < arguments[last].length; i++) {
if ( seen[arguments[last][i]] === last)
result.push(arguments[last][i]);
}
return result;
}
If your arrays are sorted, this should run in O(n), where n is min( a.length, b.length )
function intersect_1d( a, b ){
var out=[], ai=0, bi=0, acurr, bcurr, last=Number.MIN_SAFE_INTEGER;
while( ( acurr=a[ai] )!==undefined && ( bcurr=b[bi] )!==undefined ){
if( acurr < bcurr){
if( last===acurr ){
out.push( acurr );
}
last=acurr;
ai++;
}
else if( acurr > bcurr){
if( last===bcurr ){
out.push( bcurr );
}
last=bcurr;
bi++;
}
else {
out.push( acurr );
last=acurr;
ai++;
bi++;
}
}
return out;
}

Are there such things as dynamic-dimensional arrays in JavaScript?

What I mean by dynamic-dimensional arrays is multidimensional arrays that can have various dimensions. I need to create a function that does something to elements of multidimensional arrays, regardless of their dimensions. I wrote a function that should loop through all elements of a multidimensional array, but I can't find a way to get them. Here's what I wrote:
function loopThrough (multiArray, dimensions) {
var i, indexes = new Array(dimensions.length);
// stores the current position in multiArray as index combination
for (i in indexes) indexes[i] = 0; // position is initialised with [0, 0, ... 0]
while (i >= 0) {
doStuff(multiArray[indexes[0], indexes[1], ... indexes[?]]); // this is where I got stuck
for (i = indexes.length - 1; i >= 0 && ++indexes[i] >= dimensions[i]; indexes[i--] = 0);
// creates the next index combination
}
}
I also need a way to create such arrays. Say in an object's constructor, like:
function MultiArray (dimensions) {
this.array = [];
// create multidimensional array
}
For example, if I want to create a 5x3x8 array I should be able to call MultiArray([5,3,8]); just the same as calling MultiArray([4,6]); for a 4x6 array, or MultiArray([7]); for a plain 7-lengthed array.
You can use something like this:
function MultiArray(dimensions) {
var a = [];
if (dimensions > 1) {
a.push(MultiArray(dimensions -1));
}
return a;
}
var m = MultiArray(4);
function MultiArray(dimensions) {
this.elements = [];
var leaf = dimensions.length == 1;
var dimension = dimensions.shift();
for (var i = 0; i < dimension; ++i) {
this.elements.push(leaf ? undefined : new MultiArray(dimensions));
}
}
MultiArray.prototype.get(indexes) {
var leaf = indexes.length == 1;
var index = indexes.shift();
return leaf ? this.elements[index] : this.elements[index].get(indexes);
}
MultiArray.prototype.set(indexes, value) {
var leaf = indexes.length == 1;
var index = indexes.shift();
if (leaf) {
this.elements[index] = value;
} else {
this.elements[index].set(indexes, value);
}
return this;
}
var m = new MultiArray([4, 3, 5]);
m.set([1, 2, 4], "i'm a value in a multi dimensional array");
m.get([1, 2, 4]); // should return "i'm a value in a multi dimensional array"
m.get([2, 0, 3]); // should return undefined
m.get([0, 1]); // should return an array of 5 elements

Categories

Resources