I have a create an interactive map. This map can be zoomed via buttons. These buttons already work but I don't like the current style. It does not feel UX-friendly when by clicking the button the map is shaking a bit. I would like to zoom into the center of the map softly instead.
Here zoom-in code on the button:
d3.select('#zoomplusbutton').on('click', function () {
ardamap.zoomByFactor(1.3);
});
And here the function code with the strange zooming:
zoomByFactor: function (factor) {
d3.event.preventDefault();
var scale = zoom.scale();
var extent = zoom.scaleExtent();
var newScale = scale * factor;
if (extent[0] <= newScale && newScale <= extent[1]) {
var t = zoom.translate();
var c = [width / 2, height / 2];
zoom
.scale(newScale)
.translate([c[0] + (t[0] - c[0]) / scale * newScale, c[1] + (t[1] - c[1]) / scale * newScale])
.event(g.transition());
}
}
I really don't know anymore where I got this zooming code from.
So how can I really zoom to the center of the map softly? Feel free to change the JS-code on the website.
After several hours now figured out a 'OK' solution. It's not perfectly the center but at the end without shaking and any other bad behaviour:
zoomButton: function (zoom_in) {
var scale = zoom.scale(),
extent = zoom.scaleExtent(),
translate = zoom.translate(),
x = translate[0], y = translate[1],
factor = zoom_in ? 1.3 : 1/1.3,
target_scale = scale * factor;
if (target_scale === extent[0] || target_scale === extent[1] || target_scale > extent[1] || target_scale < extent[0]) { return false; }
var clamped_target_scale = Math.max(extent[0], Math.min(extent[1], target_scale));
if (clamped_target_scale != target_scale){
target_scale = clamped_target_scale;
factor = target_scale / scale;
}
x = (x - center[0]) * factor + center[0];
y = (y - center[1]) * factor + center[1];
if (zoom_in){
x = x - 500;
}else{
x = x + 500;
}
d3.transition().duration(450).tween("zoom", function () {
var interpolate_scale = d3.interpolate(scale, target_scale),
interpolate_trans = d3.interpolate(translate, [x,y]);
return function (t) {
zoom.scale(interpolate_scale(t))
.translate(interpolate_trans(t));
ardamap.zoomedButton();
};
});
}
These calculations work pretty well. And here the two button raising events:
d3.select('#zoomplusbutton').on('click', function(){
ardamap.zoomButton(true);
});
d3.select('#zoomminusbutton').on('click', function () {
ardamap.zoomButton(false);
});
You can find the code update on arda-maps.org as well. If you have I fix for really going to the center of the current map, feel free to edit my answer. I'm still interested in improving this!
Related
I'm trying to create an algorithm that detects discontinuities (like vertical asymptotes) within functions between an interval for the purpose of plotting graphs without these discontinuous connecting lines. Also, I only want to evaluate within the interval so bracketing methods like bisection seems good for that.
EDIT
https://en.wikipedia.org/wiki/Classification_of_discontinuities
I realize now there are a few different kinds of discontinuities. I'm mostly interested in jump discontinuities for graphical purposes.
I'm using a bisection method as I've noticed that discontinuities occur where the slope tends to infinity or becomes vertical, so why not narrow in on those sections where the slope keeps increasing and getting steeper and steeper. The point where the slope is a vertical line, that's where the discontinuity exists.
Approach
Currently, my approach is as follows. If you subdivide the interval using a midpoint into 2 sections and compare which section has the steepest slope, then that section with the steepest slope becomes the new subinterval for the next evaluation.
Termination
This repeats until it converges by either slope becoming undefined (reaching infinity) or the left side or the right side of the interval equaling the middle (I think this is because the floating-point decimal runs out of precision and cannot divide any further)
(1.5707963267948966 + 1.5707963267948968) * .5 = 1.5707963267948966
Example
function - floor(x)
(blue = start leftX and rightX, purple = midpoint, green = 2nd iteration midpoints points, red = slope lines per iteration)
As you can see from the image, each bisection narrows into the discontinuity and the slope keeps getting steeper until it becomes a vertical line at the discontinuity point at x=1.
To my surprise this approach seems to work for step functions like floor(x) and tan(x), but it's not that great for 1/x as it takes too many iterations (I'm thinking of creating a hybrid method where I use either illinois or ridders method on the inverse of 1/x as it those tend to find the root in just one iteration).
Javascript Code
/* Math function to test on */
function fn(x) {
//return (Math.pow(Math.tan(x), 3));
return 1/x;
//return Math.floor(x);
//return x*((x-1-0.001)/(x-1));
}
function slope(x1, y1, x2, y2) {
return (y2 - y1) / (x2 - x1);
}
function findDiscontinuity(leftX, rightX, fn) {
while (true) {
let leftY = fn(leftX);
let rightY = fn(rightX);
let middleX = (leftX + rightX) / 2;
let middleY = fn(middleX);
let leftSlope = Math.abs(slope(leftX, leftY, middleX, middleY));
let rightSlope = Math.abs(slope(middleX, middleY, rightX, rightY));
if (!isFinite(leftSlope) || !isFinite(rightSlope)) return middleX;
if (middleX === leftX || middleX === rightX) return middleX;
if (leftSlope > rightSlope) {
rightX = middleX;
rightY = middleY;
} else {
leftX = middleX;
leftY = middleY;
}
}
}
Problem 1 - Improving detection
For the function x*((x-1-0.001)/(x-1)), the current algorithm has a hard time detecting the discontinuity at x=1 unless I make the interval really small. As an alternative, I could also add most subdivisions but I think the real problem is using slopes as they trick the algorithm into choosing the incorrect subinterval (as demonstrated in the image below), so this approach is not robust enough. Maybe there are some statistical methods that can help determine a more probable interval to select. Maybe something like least squares for measuring the differences and maybe applying weights or biases!
But I don't want the calculations to get too heavy and 5 points of evaluation are the max I would go with per iteration.
EDIT
After looking at problem 1 again, where it selects the wrong (left-hand side) subinterval. I noticed that the only difference between the subintervals was the green midpoint distance from their slope line. So taking inspiration from linear regression, I get the squared distance from the slope line to the midpoints [a, fa] and [b, fb] corresponding to their (left/right) subintervals. And which subinterval has the greatest change/deviation is the one chosen for further subdivision, that is, the greater of the two residuals.
This further improvement resolves problem 1. Although, it now takes around 593 iterations to find the discontinuity for 1/x. So I've created a hybrid function that uses ridders method to find the roots quicker for some functions and then fallback to this new approach. I have given up on slopes as they don't provide enough accurate information.
Problem 2 - Jump Threshold
I'm not sure how to incorporate a jump threshold and what to use for that calculation, don't think slopes would help.
Also, if the line thickness for the graph is 2px and 2 lines of a step function were on top of each other then you wouldn't be able to see the gap of 2px between those lines. So the minimum jump gap would be calculated as such
jumpThreshold = height / (ymax-ymin) = cartesian distance per pixel
minJumpGap = jumpThreshold * 2
But I don't know where to go from here! And once again, maybe there are statistical methods that can help to determine the change in function so that the algorithm can terminate quickly if there's no indication of a discontinuity.
Overall, any help or advice in improving what I got already would be much appreciated!
EDIT
As the above images explains, the more divergent the midpoints are the greater the need for more subdivisions for further inspection for that subinterval. While, if the points mostly follow a straight line trend where the midpoints barely deviate then should exit early. So now it makes sense to use the jumpThreshold in this context.
Maybe there's further analysis that could be done like measuring the curvature of the points in the interval to see whether to terminate early and further optimize this method. Zig zag points or sudden dips would be the most promising. And maybe after a certain number of intervals, keep widening the jumpThreshold as for a discontinuity you expect the residual distance to rapidly increase towards infinity!
Updated code
let ymax = 5, ymin = -5; /* just for example */
let height = 500; /* 500px screen height */
let jumpThreshold = Math.pow(.5 * (ymax - ymin) / height, 2); /* fraction(half) of a pixel! */
/* Math function to test on */
function fn(x) {
//return (Math.pow(Math.tan(x), 3));
return 1 / x;
//return Math.floor(x);
//return x * ((x - 1 - 0.001) / (x - 1));
//return x*x;
}
function findDiscontinuity(leftX, rightX, jumpThreshold, fn) {
/* try 5 interations of ridders method */
/* usually this approach can find the exact reciprocal root of a discountinuity
* in 1 iteration for functions like 1/x compared to the bisection method below */
let iterations = 5;
let root = inverseRidderMethod(leftX, rightX, iterations, fn);
let limit = fn(root);
if (Math.abs(limit) > 1e+16) {
if (root >= leftX && root <= rightX) return root;
return NaN;
}
root = discontinuityBisection(leftX, rightX, jumpThreshold, fn);
return root;
}
function discontinuityBisection(leftX, rightX, jumpThreshold, fn) {
while (true) {
let leftY = fn(leftX);
let rightY = fn(rightX);
let middleX = (leftX + rightX) * .5;
let middleY = fn(middleX);
let a = (leftX + middleX) * .5;
let fa = fn(a);
let b = (middleX + rightX) * .5;
let fb = fn(b);
let leftResidual = Math.pow(fa - (leftY + middleY) * .5, 2);
let rightResidual = Math.pow(fb - (middleY + rightY) * .5, 2);
/* if both subinterval midpoints (fa,fb) barely deviate from their slope lines
* i.e. they're under the jumpThreshold, then return NaN,
* indicating no discountinuity with the current threshold,
* both subintervals are mostly straight */
if (leftResidual < jumpThreshold && rightResidual < jumpThreshold) return NaN;
if (!isFinite(fa) || a === leftX || a === middleX) return a;
if (!isFinite(fb) || b === middleX || b === rightX) return b;
if (leftResidual > rightResidual) {
/* left hand-side subinterval */
rightX = middleX;
middleX = a;
} else {
/* right hand-side subinterval */
leftX = middleX;
middleX = b;
}
}
}
function inverseRidderMethod(min, max, iterations, fn) {
/* Modified version of RiddersSolver from Apache Commons Math
* http://commons.apache.org/
* https://www.apache.org/licenses/LICENSE-2.0.txt
*/
let x1 = min;
let y1 = 1 / fn(x1);
let x2 = max;
let y2 = 1 / fn(x2);
// check for zeros before verifying bracketing
if (y1 == 0) {
return min;
}
if (y2 == 0) {
return max;
}
let functionValueAccuracy = 1e-55;
let relativeAccuracy = 1e-16;
let oldx = Number.POSITIVE_INFINITY;
let i = 0;
while (i < iterations) {
// calculate the new root approximation
let x3 = 0.5 * (x1 + x2);
let y3 = 1 / fn(x3);
if (!isFinite(y3)) return NaN;
if (Math.abs(y3) <= functionValueAccuracy) {
return x3;
}
let delta = 1 - (y1 * y2) / (y3 * y3); // delta > 1 due to bracketing
let correction = (signum(y2) * signum(y3)) * (x3 - x1) / Math.sqrt(delta);
let x = x3 - correction; // correction != 0
if (!isFinite(x)) return NaN;
let y = 1 / fn(x);
// check for convergence
let tolerance = Math.max(relativeAccuracy * Math.abs(x), 1e-16);
if (Math.abs(x - oldx) <= tolerance) {
return x;
}
if (Math.abs(y) <= functionValueAccuracy) {
return x;
}
// prepare the new interval for the next iteration
// Ridders' method guarantees x1 < x < x2
if (correction > 0.0) { // x1 < x < x3
if (signum(y1) + signum(y) == 0.0) {
x2 = x;
y2 = y;
} else {
x1 = x;
x2 = x3;
y1 = y;
y2 = y3;
}
} else { // x3 < x < x2
if (signum(y2) + signum(y) == 0.0) {
x1 = x;
y1 = y;
} else {
x1 = x3;
x2 = x;
y1 = y3;
y2 = y;
}
}
oldx = x;
}
}
function signum(a) {
return (a < 0.0) ? -1.0 : ((a > 0.0) ? 1.0 : a);
}
/* TEST */
console.log(findDiscontinuity(.5, .6, jumpThreshold, fn));
Python Code
I don't mind if the solution is provided in Javascript or Python
import math
def fn(x):
try:
# return (math.pow(math.tan(x), 3))
# return 1 / x
# return math.floor(x)
return x * ((x - 1 - 0.001) / (x - 1))
except ZeroDivisionError:
return float('Inf')
def slope(x1, y1, x2, y2):
try:
return (y2 - y1) / (x2 - x1)
except ZeroDivisionError:
return float('Inf')
def find_discontinuity(leftX, rightX, fn):
while True:
leftY = fn(leftX)
rightY = fn(rightX)
middleX = (leftX + rightX) / 2
middleY = fn(middleX)
leftSlope = abs(slope(leftX, leftY, middleX, middleY))
rightSlope = abs(slope(middleX, middleY, rightX, rightY))
if not math.isfinite(leftSlope) or not math.isfinite(rightSlope):
return middleX
if middleX == leftX or middleX == rightX:
return middleX
if leftSlope > rightSlope:
rightX = middleX
rightY = middleY
else:
leftX = middleX
leftY = middleY
I use this as reference: https://bl.ocks.org/iamkevinv/0a24e9126cd2fa6b283c6f2d774b69a2
Adjusted some syntax to fit for version 5
Scale works, Translate looks like it works too because if I change the value, it zooms on different place..
But the problem is it doesn't zoom on the correct place I clicked.
I think this doesn't get to the place correctly because I use d3.geoMercator().fitSize([width, height], geoJSONFeatures) instead:
var bounds = path.bounds(d),
dx = bounds[1][0] - bounds[0][0],
dy = bounds[1][1] - bounds[0][1],
x = (bounds[0][0] + bounds[1][0]) / 2,
y = (bounds[0][1] + bounds[1][1]) / 2,
scale = Math.max(1, Math.min(8, 0.9 / Math.max(dx / width, dy / height))),
translate = [width / 2 - scale * x, height / 2 - scale * y];
Already tried to change the values to fit mine but failed, I can't get it.
Here is my projection:
var width = 500;
var height = 600;
d3.json("/regions50mtopo.json")
.then((geoJSON) => {
var geoJSONFeatures = topojson.feature(geoJSON, geoJSON.objects["Regions.50m"]);
// My Projection
var projection = d3.geoMercator().fitSize([width, height], geoJSONFeatures);
...
Any help, guide or reference?
Note: I'm mapping different country and fitSize(...) solves the
problem easily to fit on my svg that's why I can't use the same as in
the reference link I provided.
Found an answer: https://bl.ocks.org/veltman/77679636739ea2fc6f0be1b4473cf03a
centered = centered !== d && d;
var paths = svg.selectAll("path")
.classed("active", d => d === centered);
// Starting translate/scale
var t0 = projection.translate(),
s0 = projection.scale();
// Re-fit to destination
projection.fitSize([960, 500], centered || states);
// Create interpolators
var interpolateTranslate = d3.interpolate(t0, projection.translate()),
interpolateScale = d3.interpolate(s0, projection.scale());
var interpolator = function(t) {
projection.scale(interpolateScale(t))
.translate(interpolateTranslate(t));
paths.attr("d", path);
};
d3.transition()
.duration(750)
.tween("projection", function() {
return interpolator;
});
Exactly what I'm looking for. It works now as expected.
But maybe somebody also have suggestions on how to optimise it, because as the author said too, it feels slow and "laggy" when zooming in/out.
im stuck with a trigonometry problem in a javascript game im trying to make.
with a origin point(xa,ya) a radius and destination point (ya,yb) I need to find the position of a new point.
//calculate a angle in degree
function angle(xa, ya, xb, yb)
{
var a= Math.atan2(yb - ya, xb - xa);
a*= 180 / Math.PI;
return a;
}
function FindNewPointPosition()
{
//radius origine(xa,xb) destination(ya,yb)
var radius=30;
var a = angle(xa, xb, ya, yb);
newpoint.x = xa + radius * Math.cos(a);
newpoint.y = ya + radius * Math.sin(a);
return newpoint;
}
Imagine a image because I dont have enough reputation to post one :
blue square is the map (5000x5000), black square (500x500) what players see (hud).
Cross(400,400) is the origin and sun(4200,4200) the destination.
The red dot (?,?) indicate to player which direction take to find the sun ..
But sun and cross position can be reverse or in different corner or anywhere !
At the moment the red dot do not do that at all ..
Tks for your help.
Why did you use ATAN2? Change to Math.atan() - you will get angle in var A
Where you have to place your red dot? inside hud?
Corrected code
https://jsfiddle.net/ka9xr07j/embedded/result/
var obj = FindNewPointPosition(400,4200,400,4200); - new position 417. 425
Finally I find a solution without using angle.
function newpointposition(origin, destination)
{
// radius distance between cross and red dot
var r=30;
// calculate a vector
var xDistance = destination.x - origin.x;
var yDistance = destination.y - origin.y;
// normalize vector
var length = Math.sqrt(xDistance * xDistance + yDistance * yDistance);
xDistance /= length;
yDistance /= length;
// add the radius
xDistance = xDistance * r;
yDistance = yDistance * r;
var newpoint = { x: 0, y: 0 };
newpoint.x = origin.x + xDistance;
newpoint.y = origin.y + yDistance;
return newpoint;
}
var radar = newpointposition({
x: 500,
y: 800
}, {
x: 3600,
y: 2850
});
alert(radar.x + ' ' + radar.y);
ty Trike, using jsfiddle really help me.
Preamble: there's an issue logged with the Google Maps API, requesting the ability to correct the roll angle of street view tiles to compensate for hills. I've come up with a client-side workaround involving some css sorcery on the tile container. Here's my rotate function:
rotate: function() {
var tilesLoaded = setInterval(function() {
var tiles = $('map-canvas').getElementsByTagName('img');
for (var i=0; i<tiles.length; i++) {
if (tiles[i].src.indexOf(maps.panorama.getPano()) > -1) {
if (typeof maps.panorama.getPhotographerPov != 'undefined') {
var pov = maps.panorama.getPhotographerPov(),
pitch = pov.pitch,
cameraHeading = pov.heading;
/**************************
// I need help with my logic here.
**************************/
var yaw = pov.heading - 90;
if (yaw < 0) yaw += 360;
var scale = ((Math.abs(maps.heading - yaw) / 90) - 1) * -1;
pitch = pov.pitch * scale;
tiles[i].parentNode.parentNode.style.transform = 'rotate(' + pitch + 'deg)';
clearInterval(tilesLoaded);
return;
}
}
}
}, 20);
}
A full (and more thoroughly commented) proof-of-concept is at this JSFiddle. Oddly, the horizon is just about perfectly level if I do no calculation at all on the example in the JSFiddle, but that result isn't consistent for every Lat/Lng. That's just a coincidence.
So, I need to calculate the roll at the client's heading, given the client heading, photographer's heading, and photographer's pitch. Assume the photographer is either facing uphill or downhill, and pov.pitch is superlative (at the min or max limit). How can I calculate the desired pitch facing the side at a certain degree?
Edit: I found an equation that seems to work pretty well. I updated the code and the fiddle. While it seems to be pretty close to the answer, my algorithm is linear. I believe the correct equation should be logarithmic, resulting in subtler adjustments closer to the camera heading and opposite, while to the camera's left and right adjustments are larger.
I found the answer I was looking for. The calculation involves spherical trigonometry, which I didn't even know existed before researching this issue. If anyone notices any problems, please comment. Or if you have a better solution than the one I found, feel free to add your answer and I'll probably accept it if it's more reliable or significantly more efficient than my own.
Anyway, if the tile canvas is a sphere, 0 pitch (horizon) is a plane, and camera pitch is another plane intersecting at the photographer, the two planes project a spherical lune onto the canvas. This lune can be used to calculate a spherical triangle where:
polar angle = Math.abs(camera pitch)
base = camera heading - client heading
one angle = 90° (for flat horizon)
With two angles and a side available, other properties of a spherical triangle can be calculated using the spherical law of sines. The entire triangle isn't needed -- only the side opposite the polar angle. Because this is math beyond my skills, I had to borrow the logic from this spherical triangle calculator. Special thanks to emfril!
The jsfiddle has been updated. My production roll getter has been updated as follows:
function $(what) { return document.getElementById(what); }
var maps = {
get roll() {
function acos(what) {
return (Math.abs(Math.abs(what) - 1) < 0.0000000001)
? Math.round(Math.acos(what)) : Math.acos(what);
}
function sin(what) { return Math.sin(what); }
function cos(what) { return Math.cos(what); }
function abs(what) { return Math.abs(what); }
function deg2rad(what) { return what * Math.PI / 180; }
function rad2deg(what) { return what * 180 / Math.PI; }
var roll=0;
if (typeof maps.panorama.getPhotographerPov() != 'undefined') {
var pov = maps.panorama.getPhotographerPov(),
clientHeading = maps.panorama.getPov().heading;
while (clientHeading < 0) clientHeading += 360;
while (clientHeading > 360) clientHeading -= 360;
// Spherical trigonometry method
a1 = deg2rad(abs(pov.pitch));
a2 = deg2rad(90);
yaw = deg2rad((pov.heading < 0 ? pov.heading + 360 : pov.heading) - clientHeading);
b1 = acos((cos(a1) * cos(a2)) + (sin(a1) * sin(a2) * cos(yaw)));
if (sin(a1) * sin(a2) * sin(b1) !== 0) {
roll = acos((cos(a1) - (cos(a2) * cos(b1))) / (sin(a2) * sin(b1)));
direction = pov.heading - clientHeading;
if (direction < 0) direction += 360;
if (pov.pitch < 0)
roll = (direction < 180) ? rad2deg(roll) * -1 : rad2deg(roll);
else
roll = (direction > 180) ? rad2deg(roll) * -1 : rad2deg(roll);
} else {
// Fall back to algebraic estimate to avoid divide-by-zero
var yaw = pov.heading - 90;
if (yaw < 0) yaw += 360;
var scale = ((abs(clientHeading - yaw) / 90) - 1) * -1;
roll = pov.pitch * scale;
if (abs(roll) > abs(pov.pitch)) {
var diff = (abs(roll) - abs(pov.pitch)) * 2;
roll = (roll < 0) ? roll + diff : roll - diff;
}
}
}
return roll;
}, // end maps.roll getter
// ... rest of maps object...
} // end maps{}
After rotating the panorama tile container, the container also needs to be expanded to hide the blank corners. I was originally using the 2D law of sines for this, but I found a more efficient shortcut. Thanks Mr. Tan!
function deg2rad(what) { return what * Math.PI / 180; }
function cos(what) { return Math.cos(deg2rad(what)); }
function sin(what) { return Math.sin(deg2rad(what)); }
var W = $('map-canvas').clientWidth,
H = $('map-canvas').clientHeight,
Rot = Math.abs(maps.originPitch);
// pixels per side
maps.growX = Math.round(((W * cos(Rot) + H * cos(90 - Rot)) - W) / 2);
maps.growY = Math.round(((W * sin(Rot) + H * sin(90 - Rot)) - H) / 2);
There will be no more edits to this answer, as I don't wish to have it converted to a community wiki answer yet. As updates occur to me, they will be applied to the fiddle.
I'm developing a user-interface for positioning an image on a google map.
I started from : http://overlay-tiler.googlecode.com/svn/trunk/upload.html which is pretty close to what I want.
But instead of 3 contact points I want a rotate tool, a scale tool and a translate tool (the later exists).
I tried to add a rotate tool but it doesn't work as I expected :
I put a dot on the left bottom corner that control the rotation (around the center of the image). The mouse drag the control dot and I calculate the 3 others points.
My code is based on the mover object but I changed the onMouseMove function :
overlaytiler.Rotater.prototype.rotateDot_ = function(dot, theta, origin) {
dot.x = ((dot.x - origin.x) * Math.cos(theta) - (dot.y - origin.y) * Math.sin(theta)) + origin.x;
dot.y = ((dot.x - origin.x) * Math.sin(theta) + (dot.y - origin.y) * Math.cos(theta)) + origin.y;
dot.render();
};
overlaytiler.Rotater.prototype.onMouseMove_ = function(e) {
var dots = this.controlDots_;
var center = overlaytiler.Rotater.prototype.getCenter_(dots);
// Diagonal length
var r = Math.sqrt(Math.pow(this.x - center.x, 2) + Math.pow(this.y - center.y, 2));
var old = {
x: this.x,
y: this.y
};
// Real position
var newPos = {
x: this.x + e.clientX - this.cx,
y: this.y + e.clientY - this.cy
}
var newR = Math.sqrt(Math.pow(newPos.x - center.x, 2) + Math.pow(newPos.y - center.y, 2));
var theta = - Math.acos((2 * r * r - (Math.pow(newPos.x - old.x, 2) + Math.pow(newPos.y - old.y, 2))) / (2 * r * r));
// Fixed distance position
this.x = (newPos.x - center.x) * (r / newR) + center.x;
this.y = (newPos.y - center.y) * (r / newR) + center.y;
dots[1].x = center.x + (center.x - this.x);
dots[1].y = center.y + (center.y - this.y);
dots[1].render();
overlaytiler.Rotater.prototype.rotateDot_(dots[2], theta, center);
overlaytiler.Rotater.prototype.rotateDot_(dots[0], theta, center);
// Render
this.render();
this.cx = e.clientX;
this.cy = e.clientY;
};
Unfortunately there is a problem with precision and angle sign.
http://jsbin.com/iQEbIzo/4/
After a few rotations the image is highly distorted and rotation is supported only in one direction.
I wonder how I can achieve a great precision and without any distortion.
Maybe my approach is useless here (try to move the corners at the right coordinates), I tried to rotate the image with the canvas but my attempts were unsuccessful.
Edit : Full working version : http://jsbin.com/iQEbIzo/7/
Here is my version of it. #efux and #Ben answers are far more complete and well designed however the maps don't scale in/out when you zoom in/out. Overlays very likely need to do this since they are used to put a "second map" or photograph over the existing map.
Here is the JSFiddle: http://jsfiddle.net/adelriosantiago/3tzzwmsx/4/
The code that does the drawing is the following:
DebugOverlay.prototype.draw = function() {
var overlayProjection = this.getProjection();
var sw = overlayProjection.fromLatLngToDivPixel(this.bounds_.getSouthWest());
var ne = overlayProjection.fromLatLngToDivPixel(this.bounds_.getNorthEast());
var div = this.div_;
div.style.left = sw.x + 'px';
div.style.top = ne.y + 'px';
div.style.width = (ne.x - sw.x) + 'px';
div.style.height = (sw.y - ne.y) + 'px';
div.style.transform = 'rotate(' + rot + 'deg)';
};
For sure this code could be implemented on efux and Ben code if needed but I haven't tried yet.
Note that the box marker does not updates its position when the rotation marker moves...
rotation is supported only in one direction
This is due to how you calculate the angle between two vectors.
It always gives you the same vector no matter if the mouse is right of the dot or not. I've found a solution in a german math board (unfortunately I cant access the site without using the cache of Google : cached version).
Note that in this example the angle α is on both sides the same and not as you would expect -α in the second one. To find out if the vector a is always on "the same side" of vector b you can use this formula.
ax*by - ay*bx
This is either positive or negative. You you simply can change the sign of the angle to α * -1.
I modified some parts of your code.
overlaytiler.Rotater.prototype.rotateDot_ = function(dot, theta, origin) {
// translate to origin
dot.x -= origin.x ;
dot.y -= origin.y ;
// perform rotation
newPos = {
x: dot.x*Math.cos(theta) - dot.y*Math.sin(theta),
y: dot.x*Math.sin(theta) + dot.y*Math.cos(theta)
} ;
dot.x = newPos.x ;
dot.y = newPos.y ;
// translate back to center
dot.x += origin.x ;
dot.y += origin.y ;
dot.render();
};
If you want to know, how I rotate the points please reference to this site and this one.
overlaytiler.Rotater.prototype.onMouseMove_ = function(e) {
var dots = this.controlDots_;
var center = overlaytiler.Rotater.prototype.getCenter_(dots);
// get the location of the canvas relative to the screen
var rect = new Array() ;
rect[0] = dots[0].canvas_.getBoundingClientRect() ;
rect[1] = dots[1].canvas_.getBoundingClientRect() ;
rect[2] = dots[2].canvas_.getBoundingClientRect() ;
// calculate the relative center of the image
var relCenter = {
x: (rect[0].left + rect[2].left) / 2,
y: (rect[0].top + rect[2].top) / 2
} ;
// calculate a vector from the center to the bottom left of the image
dotCorner = {
x: rect[1].left - (rect[1].left - relCenter.x) * 2 - relCenter.x,
y: rect[1].top - (rect[1].top - relCenter.y) * 2 - relCenter.y
} ;
// calculate a vector from the center to the mouse position
mousePos = {
x: e.clientX - relCenter.x,
y: e.clientY - relCenter.y
} ;
// calculate the angle between the two vector
theta = calculateAngle(dotCorner, mousePos) ;
// is the mouse-vector left of the dot-vector -> refer to the german math board
if(dotCorner.y*mousePos.x - dotCorner.x*mousePos.y > 0) {
theta *= -1 ;
}
// calculate new position of the dots and render them
overlaytiler.Rotater.prototype.rotateDot_(dots[2], theta, center);
overlaytiler.Rotater.prototype.rotateDot_(dots[1], theta, center);
overlaytiler.Rotater.prototype.rotateDot_(dots[0], theta, center);
// Render
this.render();
this.cx = e.clientX;
this.cy = e.clientY;
};
You can see that I wrote some function for vector calculations (just to make the code more readable):
function calculateScalarProduct(v1,v2)
{
return (v1.x * v2.x + v1.y * v2.y) ;
}
function calculateLength(v1)
{
return (Math.sqrt(v1.x*v1.x + v1.y*v1.y)) ;
}
function calculateAngle(v1, v2)
{
return (Math.acos(calculateScalarProduct(v1,v2) / (calculateLength(v1)*calculateLength(v2)))) ;
}
This is my working solution. Comment if you don't understand something, so I can make my answer more comprehensive.
Working example: JSBin
Wow, this was a tough one.