Why defining function inside an if is a bad idea? - javascript

From Eloquent Javascript by Marijn Haverbeke
Different JavaScript platforms in different browsers have
traditionally done different things in that situation, and the latest
standard actually forbids it.
but why is it bad?
function example () {
function a () {} // Okay
if ( something ) {
function b () {} // Danger !
}
}

It's considered "bad" because its behavior is inconsistent and sometimes doesn't do what most people would expect. Consider the following snippet:
if (true) {
function f() { return "t"; }
} else {
function f() { return "f"; }
}
What would calling f() return? On IE and Firefox, it will return "t", but on Chrome and Safari, it will return "f". Why? A combination of hoisting and JavaScript's scoping rules. For information on how that works, see this question on JavaScript scoping and hoisting.
Effectively, this means that, on some browsers, the branch is completely ignored when it comes to function definitions using the function name() { ... } form. If you really need to do something like this (and you probably don't, since it would be very poor style, anyway), use the name = function () { ... } form instead, since that will not be hoisted, so the behavior is well-defined and will not be inconsistent across platforms.

This is standardized in ES6 and is valid to nest function declaration inside blocks. Here is the spec Block-Level-Function-Declarations
You can try in latest browsers with strict-mode turned on.
And for reasons why that behavior is present in old environments look here:
Functions

The short answer is already given to you, namely: such practice negatively affects the portability/compatibility of the solution between various browsers. What is even worse: it leads to the added ambiguity regarding the local variables, namely: which variables will be "visible" to which nested functions. Even though it could be considered allowed technique, but it doesn't mean that such technique is a good practice. "Code for the clarity" is the utterly important programming paradigm, so always try avoiding the practices which add to the ambiguity. Best regards,

Related

Approach to passing named arguments to a JavaScript Function. Any problems?

This is related to, but in my mind not a duplicate of, Passing named arguments to a Javascript function [duplicate] and Named parameters in javascript.
Various answers and comments on those questions propose approaches to deal with the lack of JavaScript language support for named arguments.
The original poster's concern was this:
Calling a Javascript function with something like
someFunction(1, true, 'foo');
is not very clear without familiarity with the function.
Let's say someFunction is declared elsewhere in the code as:
function someFunction(numberOfClowns,wearingHat,screamingAtTopOfLungs) {
console.log(arguments)
}
Is there any particular reason why you couldn't call the function like this?
someFunction(numberOfClowns=1, wearingHat=true,screamingAtTopOfLungs='foo')
From my preliminary testing, this seems to not result in any errors, and certainly addresses any issues of clarity.
I guess you would need to var all of the variables beforehand, and be aware that variable assignment is occurring, so not be too surprised that numberOfClowns is now equal to 1. Anything else that I'm not considering?
Since you're just using the assignments as labels anyway, why not simply use comments?
someFunction(/*numberOfClowns=*/1, /*wearingHat=*/true, /*screamingAtTopOfLungs=*/'foo')
I've seen this done in C code (particularly for functions with 5 or more arguments), and it would avoid the nasty side-effects you mention.
Since there aren't actually any checks being done with the var-assignment version, this seems to have all the same benefits without the downsides.
I guess you would need to var all of the variables beforehand, and be aware that variable assignment is occurring
This is a major problem in my eyes. It makes this a whole more complicated than any of the other approaches, and it's not a local solution - you're polluting your scope.
Anything else that I'm not considering?
The main argument of named parameters/named arguments is that you can order and omit them however you want, and the right values will still end up in the right variables. Your approach does not provide this. Better just use objects as everyone does.
I'd wager there will be more problems than without the assignments.
As you say, assignments return the assigned value, so if the variables are properly declared, there is no problem. To avoid conflicts with other code in the same function, I suggest wrapping the call inside a block, and declaring the parameters with let.
function someFunction(numberOfClowns, wearingHat, screamingAtTopOfLungs) {
console.log(numberOfClowns, wearingHat, screamingAtTopOfLungs);
}
{
let numberOfClowns, wearingHat, screamingAtTopOfLungs;
someFunction(numberOfClowns=1, wearingHat=true, screamingAtTopOfLungs='foo');
}
You may also be interested in destructuring objects:
function someFunction({numberOfClowns, wearingHat, screamingAtTopOfLungs}) {
console.log(numberOfClowns, wearingHat, screamingAtTopOfLungs);
}
someFunction({numberOfClowns: 1, wearingHat: true, screamingAtTopOfLungs: 'foo'});

Correct use of the JavaScript interface keyword

First of all, no, I'm not trying to create any sort of Java-like interface for my JavaScript code. I've seen those questions all over, and while I'm still a relative novice to JavaScript, I know those aren't part of the language.
However, I'm curious what the actual intended use of the interface keyword is. For example, Math is an interface, containing definitions (but not implementations). I believe (and may be totally wrong) that these are there to provide a means for the definers of the language to enforce a set of behaviors to be implemented in various JavaScript engines. Is that correct?
Furthermore, I have a desire to have a "static class" that contains a bunch of utility methods. I like that Math.sqrt(3) has an outer namespace ('Math') which is capitalized, and a number of logically similar methods and values in it. Maybe it's just my Java/Ruby background that makes me want a capital on the grouping objects. Is that bad form?
var ShapeInspections = {
isSymmetrical: function (s) {
// determine if shape is symmetrical
},
numAngles: function (s) {
// return the number of angles
}
}
A purely contrived example, but is it anti-idiomatic to name the "module" this way?
Okay, so as with other answers, you know that the keyword interface has no real use case in Javascript world, yet.
Your Math example made me suspicous that you are talking about a design pattern, called Module Pattern, widely used for scoping Javascript code. There are many ways of making your code modular. For example just like OddDev answered you , the famous Prototype Pattern can embed your code in a modular fashion (just like your Math example). Here is the Revealing Prototype Pattern example with also private variables and functions for additional flexibility:
/* Example from:
http://www.innoarchitech.com/scalable-maintainable-javascript-modules */
var myPrototypeModule = (function (){
var privateVar = "Alex Castrounis",
count = 0;
function PrototypeModule(name){
this.name = name;
}
function privateFunction() {
console.log( "Name:" + privateVar );
count++;
}
PrototypeModule.prototype.setName = function(strName){
this.name = strName;
};
PrototypeModule.prototype.getName = function(){
privateFunction();
};
return PrototypeModule;
})();
but that is not all. Other options include Scoped module pattern, POJO module pattern and many more. Have a look at How to Write Highly Scalable and Maintainable JavaScript: Modules, it has a very simple and yet thorough set of examples.
So far, we talked about plain Javascript. If you have the ability to use libraries in your code, then amazing set of libraries such as Requirejs, CommonsJS are there to help you on this with out-of-the-box functionalities. Have a look at Addy Osmani's post about Writing Modular JavaScript With AMD, CommonJS & ES Harmony.
The interface keyword in javascript is a FutureReservedWord, so it does absolutely nothing right now, though that may change in the future specifications. (See ECMAScript 5.1, section 7.6.1.2). In the ES6 draft, this is also the same.
As for you module, this is a perfectly idiomatic solution. It is always a good idea to "namespace" your functions, as it keeps the global scope as clean as possible.
I believe (and may be totally wrong) that these are there to provide a means for the definers of the language to enforce a set of behaviors to be implemented in various JS engines. Is that correct?
No, this is not correct. Things like "Math" etc. are objects containing functions. If you use for eyample "Math.pow(...)" you just execute the function stored in the "Math" object. Check this example:
var Math = {};
Math.prototype.pow = function(){
alert("stuff");
}
var ShapeInspections = { isSymmetrical: function (s) {
// determine if shape is symmetrical }, numAngles: function (s) {
// return the number of angles } } A purely contrived example, but is it anti-idomatic to name the "module" this way?
It's okay to name your objects like this. As already discussed "Math" is also just an object and follows these naming conventions.
To make things clear for the interface keyword:
The following tokens are also considered to be FutureReservedWords
when they occur within strict mode code (see 10.1.1). The occurrence
of any of these tokens within strict mode code in any context where
the occurrence of a FutureReservedWord would produce an error must
also produce an equivalent error:
implements let private public yield
interface package protected static
It's just reserved cause it's "may" needed in the future. So don't worry too much about it :) http://www.ecma-international.org/ecma-262/5.1/#sec-7.6
Do not confuse the "interfaces" that are specified in IDL with the interface keyword.
The latter is reserved for potential future use, but is not yet actually used in ECMAScript (not even in ES6).

Given the following code, how many complex objects are created in memory?

Given the following code, how many complex objects are created in memory?
function Foo() {
this.one = function() {
return "one";
}
}
var f = new Foo();
Foo.two = function() {
return "two";
};
My guess:
Foo constructor function object
f.__proto__ instance of Foo constructor function object
f
one function object
two function object
This question is tricky since the specification does not say anything about objects created in memory.
JavaScript has a lot of different implementations like v8 in Chrome, JSC in Safari, SpiderMonkey in Firefox, JScript and Chakra in IE, Rhino as a scripting engine in Java and so on. Not to mention other more esoteric implementations.
Even worse, the implementation does specify things like a VariableEnvironment of the function and mentions that it's not implementation detail but just a deductive tool to make the specification easier to read.
Given the code above - a "clever" engine can allocate exactly zero objects here.
Why? The code above has no side effects at all. You're not calling Foo or using f anywhere and it's 'dead code' in the sense it's not really used.
That said, ignoring that "tiny" issue - there are a few things depending on how the code is used: For one - the strings "foo" and "one" might be allocated (they're primitive, but might need boxing depending on use).
Alternatively the engine can inline these functions altogether. If it does, one and two don't get allocated but rather inlined directly.
So - this question is really impossible to answer accurately :)

JavaScript Function Syntax Explanation: function object.myFunction(){..}

I would consider myself to be reasonably competent with JavaScript and familiar with many of the different ways of achieving the same thing. But today I came across some function syntax which I hadn't seen before:
function document.body.onload()
{
alert('loaded');
}
If I were to write such code I would have done it like this:
document.body.onload = function()
{
alert('loaded');
}
Ignoring the fact that this is not the best way to handle the onload event, is this actually valid JavaScript? It appears to causes syntax errors in FireFox (and JSLint), so I am guessing that it is Internet Explorer only syntax? If it is IE only then I would like to remove it but I am concerned that it might have some quirky side effect.
function document.body.onload is non-standard JavaScript syntax. Use the second format, and fire whomever wrote the original code.
Don't forget the semi-colon after the end }
document.body.onload = function () {
...code...
}; //this is easy to miss
No, it's not valid. the function X() {} variant requires that the name of the function only contains letters, digits, '$' and '_'.
If you want to check other syntax, you can get the standard here, but the syntax diagrams in the back of JavaScript: The Good Parts are much easier to digest.

Which of these cross-browser Javascript functions performs better?

As a rule of thumb, which of these methods of writing cross-browser Javascript functions will perform better?
Method 1
function MyFunction()
{
if (document.browserSpecificProperty)
doSomethingWith(document.browserSpecificProperty);
else
doSomethingWith(document.someOtherProperty);
}
Method 2
var MyFunction;
if(document.browserSpecificProperty) {
MyFunction = function() {
doSomethingWith(document.browserSpecificProperty);
};
} else {
MyFunction = function() {
doSomethingWith(document.someOtherProperty);
};
}
Edit: Upvote for all the fine answers so far. I've fixed the function to a more correct syntax.
Couple of points about the answers so far - whilst in the majority of cases it is a fairly pointless performance enhancement, there are a few reasons one might want to still spend some time analyzing the code:
Has to run on
slow computers, mobile devices, old
browsers etc.
Curiosity
Use the same
general principal to performance
enhance other scenarios where the
evaluation of the IF statement does
take some time.
Unless you're doing this a trillion times, it doesn't matter. Go with the one that is more readable and maintainable to you and/or your organization. The productivity gains you will get from writing clean, simple code matters way more than shaving a tenth of a microsecond off your JS execution time.
You should only even start thinking about what performs better when and only when you've written code and it is unacceptably slow. Then you should start tracking down the bottleneck, which will never be something like this. You will never get a measurable performance gain out of switching from one to the other here.
Unfortunately the code above is not actually cross-browser friendly as it relies on a mozilla quirk not present in other browsers -- namely that function statements are treated as function expressions inside branches. On browsers other that aren't built on mozilla the above code will always use the second function definition. I made a simple testcase to demonstrate this here.
Basically the ECMAScript spec says that function statements are treated similarly to var declarations, eg. they all get hoisted to the top of the current execution scope (eg. the start of a <script> tag, the start of a function, or the start of an eval block).
To clarify olliej's answer, your second method is technically a syntax error. You could rewrite it this way:
var MyFunction;
if(document.browserSpecificProperty) {
MyFunction = function() {
doSomethingWith(document.browserSpecificProperty);
};
} else {
MyFunction = function() {
doSomethingWith(document.someOtherProperty);
};
}
Which is at least correct syntax, but note that MyFunction would only be available in the scope in which that occurs. (Omit var MyFunction;, and preferably use window.MyFunction = function() ... for global.)
Technically, I would say that the second one would perform better, because the if statement is only executed once, rather than every time the function is run.
The difference, however, would be negligible to the point of being meaningless. The performance penalty of a single if statement such as this would be insignificant even compared to the performance penalty of simply calling a function. It would make a smallish difference even if if is called a million times.
The first one is easier to understand, because it doesn't have the awkwardness of defining the same function twice based on a condition, with both versions behaving differently. That seems to be a recipe for confusion later on.
I wouldn't be the first person to say that unless you are really insane about this optimization thing, you'll get more of a win out of code readability.
I generally prefer the second version, as the condition only has to be evaluated once and not on every call, but there are times when it's not really feasible because it will hamper readability.
Btw, this is a case where you might want to use the ?: operator, e.g (taken from production code):
var addEvent =
document.addEventListener ? function(type, listener) {
document.addEventListener(type, listener, false);
} :
document.attachEvent ? function(type, listener) {
document.attachEvent('on' + type, listener);
} :
throwError;
For your simplified example I would do what's below assuming that your browser property check only needs to be done once:
var MyFunction = (function() {
var rightProperty = document.browserSpecificProperty || document.someOtherProperty;
return function doSomethingWith() {
// use the rightProperty variable in your function
}
})();
The performance should be nearly equal!
Thing about using Frameworks like JQuery to get rid of the Browser compability problems!
If performance is your main goal, have a look at SlickSpeed! It is a page which benchmarks different JavaScript frameworks!

Categories

Resources