Prototypical inheritance without creating a parent object - javascript

So I was reading the book Head First Javascript Programming, which is a great book btw, learned me a lot, when I stumbled into the subject of multiple inheritance.
The book taught me that to achieve multiple inheritance you should set the prototype of your constructor to a new object of your parent.
As an example:
//Parent
function Dog (name){
this.name = name;
};
//Child
function AwesomeDog(name){
Dog.call(this, name);
};
AwesomeDog.prototype = new Dog();
AwesomeDog.prototype.constructor = AwesomeDog;
AwesomeDog.prototype.isAwesome = true;
Now I don't agree that this is the best way to do it, you call the Dog constructor only for its prototype property, but you also get the name property with it, that you will typically never use and therefore always be undefined.
Why not just do this:
AwesomeDog.prototype = Dog.prototype;
You're only interested in the prototype anyway so why not?
In my opinion this is better because of 2 reasons:
The overhead of creating a new object is left out (insignificant, but it's something)
You don't have useless properties floating around in your child's prototype, that will probably always remain undefined.
Now this book has been brilliant in every way so that led me to believe that I perhaps missed something crucial, but I can not see what. I can not imagine any use cases where having double properties (one in the child object and the undefined version in your prototype) can be useful.
Is my way of thinking correct and can I stick with my method?

Object inheritance in JavaScript is also the basis of constructor inheritance.
Every function has a prototype property that can be modified or replaced. That prototype property is automatically assigned to be a new generic object that inherits from Object.prototype and has a single own property called constructor. In effect, the JavaScript engine does the following for you:
// you write this
function YourConstructor() {
// initialization
}
// JavaScript engine does this for you behind the scenes
YourConstructor.prototype = Object.create(Object.prototype, {
constructor: {
configurable: true,
enumerable: true,
value: YourConstructor
writable: true
}
});
So without doing anything extra, this code sets the constructor’s
prototype property to an object that inherits from Object.prototype,
which means any instances of YourConstructor also inherit from Object
.prototype. YourConstructor is a subtype of Object, and Object is a supertype
of YourConstructor.

Now I don't agree that this is the best way to do it, you call the Dog
constructor only for its prototype property, but you also get the name
property with it, that you will typically never use and therefore
always be undefined.
You are completely right. Using new has these problems, and thus is discouraged.
Why not just do this:
AwesomeDog.prototype = Dog.prototype;
This has a problem: both AwesomeDog and Dog instances share the same prototype. Therefore, they will inherit the same properties and methods, so there is no point in subclassing. And which should the constructor be, AwesomeDog or Dog?
Instead, the proper way is assigning AwesomeDog.prototype to an object which inherits from Dog.prototype, but without calling Dog. You can do this with Object.create:
AwesomeDog.prototype = Object.create(Dog.prototype);
AwesomeDog.prototype.constructor = AwesomeDog;

Related

Assign inheritance chain inside constructor through prototype [duplicate]

TL;DR? Why can't I overwrite a constructor's prototype from within the constructor?
I'm figuring out my pattern for prototypical inheritance. I don't like how prototypes are usually defined externally from a constructor, and want to logically encapsulate things better.
I found that the one magical line that I expected to work, doesn't.
function Orifice(){
this.exhaust=function(){};
this.ingest=function(){};
}
var standardOrifice = new Orifice();
function Sphincter(){
this.constructor.prototype = standardOrifice; // <-- does not work
this.relax=function(){};
this.tighten=function(){};
}
Interestingly, I can write individual properties to this.constructor.prototype, but I cannot overwrite the whole prototype object the same way one can outside of a constructor's definition.
So stuff like this works:
this.constructor.prototype.exhaust = standardOrifice.exhaust;
this.constructor.prototype.ingest = standardOrifice.ingest;
For which I can create a simple clone function to handle this:
function extend(target){
return {
from: function(obj){
target.__proto__ = obj.constructor.prototype;
for (key in obj) if (obj.hasOwnProperty(key)) target[key]=obj[key];
return target;
}
};
}
Thankfully in my tests so far, this technique appears to work well, though I'm not sure if there are details or performance cases I could be missing.
function Sphincter(){
extend(this.constructor.prototype).from(standardOrifice);
//...
}
Why can't I overwrite a constructor's prototype from within the constructor? Yet I can outside the constructor? And writing properties individually works from within a constructor?
Why can't I overwrite a constructor's prototype from within the constructor?
You can, but it's too late. The new instance has already been generated, inheriting from the old prototype. Maybe read how new works.
I don't like how prototypes are usually defined externally from a constructor.
That's just the way it is. You really should not setup the prototype from within the constructor - it would be executed everytime a new instance is created. That's specifically what prototypes are not supposed to be. See also Assigning prototype methods *inside* the constructor function - why not?
and want to logically encapsulate things better.
You might want to have a look at the various (revealing) module patterns. Or maybe even at some Class framework.
I'm currently looking for more concrete reasons that I should not go forth with the pattern I've been presenting.
It does not work in Internet Explorer. It would not work in any ES5-compliant environment that does not support the __proto__ property. You should never use it set a prototype on an existing object. Instead, use Object.create (or its shim) for Correct javascript inheritance - which requires that you overwrite the prototype outside of the constructor.
My suggestion is to call your extend helper outside the constructor on it, which still has a nice syntax.
Answer to the Specific Question
Why can't I overwrite a constructor's prototype from within the constructor?
It's because constructors are actually called after your object has already been instantiated. And since your object has managed to instantiate before your constructor has touched anything, your constructor has also already been assigned a "default" prototype.
Adding properties to this.constructor.prototype seems to work -- because you're actually manipulating the constructor's pre-assigned default prototype object, which all of your instances inherit from.
In my examples, this.constructor.prototype ended up referring to the default-assigned prototype of the constructor: so wholly overwriting it meant all new instances from that moment onward would have that new prototype -- as Bergi said, "too late" -- your current instance would not have that new prototype, as it still has the old default-assigned prototype because it's already been instantiated.
A Better Pattern for Avoiding Nonsense
I've come to understand, that the techniques presented in my question simply won't do. The question itself is generally misguided. By combining Bergi's wisdom with my own personal biases, I've come up with this pattern as a means to avoid having to find an answer to the original question altogether:
function extend(p){
return { to: function(C){ for (k in p) if (p.hasOwnProperty(k))
C.prototype[k]=p[k]; return C; } };
};
var orifice = new function Orifice(){
this.exhaust=function(){};
this.ingest=function(){};
};
var Sphincter = extend(orifice).to(function Sphincter(){
this.relax=function(){};
this.tighten=function(){};
});
Here's the extend function, expanded:
function extend(parentObject){
return {
to: function(ChildConstructor){
for (key in parentObject)
if (parentObject.hasOwnProperty(key))
ChildConstructor.prototype[key] = parentObject[key];
return ChildConstructor;
}
};
};
I used this to test that it works:
// TESTING
var s=new Sphincter();
var tests=['relax','tighten','exhaust','ingest'];
for (var i in tests) console.log("s."+tests[i]+"() is "+(tests[i]in s?"present :)":"MISSING!"));

this.constructor.prototype -- can't wholly overwrite, but can write individual props?

TL;DR? Why can't I overwrite a constructor's prototype from within the constructor?
I'm figuring out my pattern for prototypical inheritance. I don't like how prototypes are usually defined externally from a constructor, and want to logically encapsulate things better.
I found that the one magical line that I expected to work, doesn't.
function Orifice(){
this.exhaust=function(){};
this.ingest=function(){};
}
var standardOrifice = new Orifice();
function Sphincter(){
this.constructor.prototype = standardOrifice; // <-- does not work
this.relax=function(){};
this.tighten=function(){};
}
Interestingly, I can write individual properties to this.constructor.prototype, but I cannot overwrite the whole prototype object the same way one can outside of a constructor's definition.
So stuff like this works:
this.constructor.prototype.exhaust = standardOrifice.exhaust;
this.constructor.prototype.ingest = standardOrifice.ingest;
For which I can create a simple clone function to handle this:
function extend(target){
return {
from: function(obj){
target.__proto__ = obj.constructor.prototype;
for (key in obj) if (obj.hasOwnProperty(key)) target[key]=obj[key];
return target;
}
};
}
Thankfully in my tests so far, this technique appears to work well, though I'm not sure if there are details or performance cases I could be missing.
function Sphincter(){
extend(this.constructor.prototype).from(standardOrifice);
//...
}
Why can't I overwrite a constructor's prototype from within the constructor? Yet I can outside the constructor? And writing properties individually works from within a constructor?
Why can't I overwrite a constructor's prototype from within the constructor?
You can, but it's too late. The new instance has already been generated, inheriting from the old prototype. Maybe read how new works.
I don't like how prototypes are usually defined externally from a constructor.
That's just the way it is. You really should not setup the prototype from within the constructor - it would be executed everytime a new instance is created. That's specifically what prototypes are not supposed to be. See also Assigning prototype methods *inside* the constructor function - why not?
and want to logically encapsulate things better.
You might want to have a look at the various (revealing) module patterns. Or maybe even at some Class framework.
I'm currently looking for more concrete reasons that I should not go forth with the pattern I've been presenting.
It does not work in Internet Explorer. It would not work in any ES5-compliant environment that does not support the __proto__ property. You should never use it set a prototype on an existing object. Instead, use Object.create (or its shim) for Correct javascript inheritance - which requires that you overwrite the prototype outside of the constructor.
My suggestion is to call your extend helper outside the constructor on it, which still has a nice syntax.
Answer to the Specific Question
Why can't I overwrite a constructor's prototype from within the constructor?
It's because constructors are actually called after your object has already been instantiated. And since your object has managed to instantiate before your constructor has touched anything, your constructor has also already been assigned a "default" prototype.
Adding properties to this.constructor.prototype seems to work -- because you're actually manipulating the constructor's pre-assigned default prototype object, which all of your instances inherit from.
In my examples, this.constructor.prototype ended up referring to the default-assigned prototype of the constructor: so wholly overwriting it meant all new instances from that moment onward would have that new prototype -- as Bergi said, "too late" -- your current instance would not have that new prototype, as it still has the old default-assigned prototype because it's already been instantiated.
A Better Pattern for Avoiding Nonsense
I've come to understand, that the techniques presented in my question simply won't do. The question itself is generally misguided. By combining Bergi's wisdom with my own personal biases, I've come up with this pattern as a means to avoid having to find an answer to the original question altogether:
function extend(p){
return { to: function(C){ for (k in p) if (p.hasOwnProperty(k))
C.prototype[k]=p[k]; return C; } };
};
var orifice = new function Orifice(){
this.exhaust=function(){};
this.ingest=function(){};
};
var Sphincter = extend(orifice).to(function Sphincter(){
this.relax=function(){};
this.tighten=function(){};
});
Here's the extend function, expanded:
function extend(parentObject){
return {
to: function(ChildConstructor){
for (key in parentObject)
if (parentObject.hasOwnProperty(key))
ChildConstructor.prototype[key] = parentObject[key];
return ChildConstructor;
}
};
};
I used this to test that it works:
// TESTING
var s=new Sphincter();
var tests=['relax','tighten','exhaust','ingest'];
for (var i in tests) console.log("s."+tests[i]+"() is "+(tests[i]in s?"present :)":"MISSING!"));

Is there any benefit to using prototype instead of declaring properties on the object itself?

A prototype is used to declare properties and methods for a class of objects. One advantage of using prototype is that it conserves memory because all instances of a class point to the properties and methods of the prototype which conserves memory and effectively allows properties to be treated as static by all instances of a class.
Prototype is used for inheritance through prototype chaining.
My question is very simple. Why use prototype at all when you can just do:
function car() {
this.engine = "v8";
}
function mustang() {
// nm, no good way to inherit without using prototypes
}
Is that right? So the primary purpose of prototypes is threefold:
conserve memory
provide static properties
is the only way for a reference type to inherit from a super class
conserve memory
Yes it does, when you create hundreds of instances of Car and they all have their own functions (that have their own closure scopes) you'll consume more memory.
Can't find a reference for it but it has been suggested that Chrome optimises constructor functions that use prototype better than constructor functions with everything in the constructor body.
provide static properties
Static is more like Date.now(), every instance has members from the prototype but can be called on the instance.
is the only way for a reference type to inherit from a super class
You can inherit with Parent.apply(this,arguments); in Child but it makes extending Parent functions more complicated and doesn't make childInstance instanceof Parent true. What that code does is run Parent code with the to be created Child instance as the invoking object (this). Inheritance is usually done in 2 places.
In the Child body Parent.apply(this,arguments); to re use Parent initialisation code and make Parent instance members to be Child instance members (for example: this.name).
Setting Child.prototype to shallow copy of Parent.prototype Child.prototype=Object.create(Parent.prototype);Child.prototype.constructor=Child; This will ensure that shared Parent members are available on Child instances (like the function getName).
These points are explained in more detail here: https://stackoverflow.com/a/16063711/1641941
Concerning your three points:
Prototypes aren't necessarily more performant, especially for prototype chains that become long or contain many members. The smaller the prototype and shorter the chain, the more the browser's compiler can optimize it. Ultimately, this question needs to be asked for individual applications, their individual needs, and the browsers being targeted (which can vary widely in performance).
By definition, static members require objects. That is, static members belong to an object itself rather than to a specific instance. Objects are the only way to create static properties in JavaScript. Note that object literals, which are a "special" kind of Object, are essentially static.
One could implement his own type of object that would allow for something like inheritance (i.e., jQuery.extend), but as far as reference types go, prototypes are the only way to create inheritance.
Prototyping is a lot more than that.
You can also extend classes and already existing instances of objects with methods and properties during runtime.
This should explain it in a very understandable way: http://javascript.info/tutorial/inheritance
If you care about following conventions so that people (and you down the road) actually understand your code, you shouldn't put this.engine="v8" in the constructor. Prototype is meant to define properties for every single car, and the constructor is meant to define individual instances. So why would you put something that is true for every instance smack dab in the constructor? This belongs in the prototype. There's something to be said for putting things in their proper place even if doing both things end up doing accomplishing the same thing. Your code will be understandable by you and others.
Regarding your points:
There is definitely a performance boost, especially regarding functions - it's much better to declare functions on the prototype.
I think you meant to say "public" properties so that information is retrieved by writing some_instance.foo. "Static" properties/methods are different (see below).
Correct. Inheritance can only really happen from the prototype.
Let me explain some things to see if this helps. Creating new "classes" in javascript is a fairly straightforward process.
var MyClass = new Function();
At this point, the engine is aware of your new class and knows "what to do" (in terms of performance) when it creates new instances of your "class".
var my_instance = new MyClass();
If you want to modify the prototype, you can do so and know that every instance is going to get updated because they all share the same prototype.
MyClass.prototype.name = "default name";
console.log( my_instance.name ); //=> default name
Now the engine knows that there is a "name" property which expects a string value... it will allot those resources to all new AND existing instances of your class... which is very handy. Beware that modifying the prototype of an existing "class" like this is an expensive process and should not be performed frequently (but don't be afraid to do it either).
I can't really speak for the performance pros and cons of declaring ad-hoc properties/methods on an instance:
my_instance.foo = function() { /* this is not in the prototype chain */ };
My guess is that this is pretty simple for the engine and is no big deal unless you are doing this for tens of thousands of objects at the same time.
The main benefit of using the prototype IMO is that you can write code to extend a method's functionality and know that all instances of your "class" will get updated accordingly:
var old_foo = MyClass.prototype.foo;
MyClass.prototype.foo = function() {
/* new business logic here */
// now call the original method.
old_foo.apply(this, arguments);
};
Regarding "static" properties, you declare those on the "class" (constructor) itself:
// example static property
MyClass.num_instances = 0;
Now you can create init/destroy methods like this:
MyClass.prototype.init = function() {
this.constructor.num_instances++;
};
MyClass.prototype.destroy = function() {
this.constructor.num_instances--;
};
// and call the init method any time you create a new instance
my_instance.init();
console.log( MyClass.num_instances ); //=> 1
var instance_2 = new MyClass();
instance_2.init();
console.log( MyClass.num_instances ); //=> 2
instance_2.destroy();
console.log( MyClass.num_instances ); //=> 1
Hope that helps.
(1) I don't think conserving memory alone is a valid reason to utilize .prototype, unless you're getting really extreme with duplicating objects.
(2) The idea of static properties is not really a reason to use .prototype either (IMHO), because it doesn't behave like a traditional static property. You (as far as I know) always need an object instance before you can access the "static" property, which makes it not static at all.
function Car() {}
Car.prototype.Engine = "V8";
// I can't access Car.Engine... I'll always need an instance.
alert(new Car().Engine);
// or
var car1 = new Car();
alert(car1.Engine); //you always need an instance.
//unless you wanted to do
alert(Car.prototype.Engine); //this is more like a static property, but has an
//unintended consequence that every instance of Car also receives a .Engine
//behavior, so don't do this just to create a "static property."
It should be noted that this "static" idea not only applies to properties but all members, which includes methods (functions), from a traditional OO perspective.
It is better to think about prototypes (again, IMHO) as injected singleton objects with behaviors that get attached to instance objects. All instances of Car() can have their own instance members, but every instance of Car() will also "automatically" be injected with all Car.prototype's members/behaviors. It's not technically the same, but I find it convenient to think about prototypes in that way.
//define Car and Car.GoFast
function Car() {}
Car.prototype.GoFast = function () { alert('vroom!'); };
var car1 = new Car();
var car2 = new Car();
car1.GoFast();
car2.GoFast(); //both call to same GoFast implementation on Car.prototype
//change the GoFast implementation
Car.prototype.GoFast = function () { alert('vvvvvrrrrroooooooooommmmm!!!!!'); };
car1.GoFast();
car2.GoFast(); //both have been "updated" with the new implementation because
//both car1 and car2 are pointing to the same (singleton) Car.prototype object!
Car.prototype is behaving like a singleton object whose members/behaviors have been injected into instance objects of type Car.
(3) Prototypes shouldn't be confused for inheritance. You can get behavior that appears to be inheritance, but it is not. The members/behaviors on the prototype remain on the prototype object. They do not become members/behaviors of your derived class, like true inheritance. That is why I describe it more like the prototype being "injected" into your instance.
function Car() {}
Car.prototype.Engine = "V8";
var car1 = new Car();
var car2 = new Car();
alert(car1.Engine); //alerts "V8"
//There is no "Engine" variable defined within the instance scope of 'car1'.
//Javascript searches the scope of car1's Type.prototype object to find 'Engine'.
//Equivalent to: Object.getPrototypeOf(car1).Engine
//But if we create 'Engine' within the scope of car1
car1.Engine = "V6"; //Car.prototype was never accessed or updated
alert(car1.Engine); //we get "V6"
alert(car2.Engine); //we still get "V8"
alert(Object.getPrototypeOf(car1).Engine); //we still get "V8"!
So to answer the question directly: Is there any benefit to using prototype instead of declaring properties on the object itself?
Yes, when you want to share behavior implementation amongst instance objects of a given Type. As a coincidence, you will reduce your memory footprint, but that is not a reason alone to use prototypes. Neither is "creating static properties" (which they're not ), or for inheritance (which it is not).

Confused about JavaScript prototypal inheritance

In the book "JavaScript the definitive guide 5 edition", section 9.2 Prototypes and Inheritance, I find the following words:
In the previous section, I showed that
the new operator creates a new, empty
object and then invokes a constructor
function as a method of that object.
This is not the complete story,
however. After creating the empty
object, new sets the prototype of that
object. The prototype of an object is
the value of the prototype property of
its constructor function. All
functions have a prototype property
that is automatically created and
initialized when the function is
defined. The initial value of the
prototype property is an object with a
single property. This property is
named constructor and refers back to
the constructor function with which
the prototype is associated. (You
may recall the constructor property
from Chapter 7 ; this is why every
object has a constructor property.)
Any properties you add to this
prototype object will appear to be
properties of objects initialized by
the constructor.
Now, if that is true, how could prototypal inheritance exists? I mean, let's say the prototype object of a constructor function has a constructor property initially. Because the prototype object itself is an object, to determine its constructor we often use prototype_object.constructor. But now the prototype_object already has a constructor property itself, and it points to the constructor function with which the prototype is associated. In this situation how can inheritance exists?
The .constructor property honestly doesn't matter very much, and has very little to do with inheriting from other objects in JavaScript. It's just a convenient handle to an object's constructor.
For example, if you have an instance of something, and you'd like to create another instance of that thing, but you don't have a direct handle on its constructor, you could do something like this:
const myCar = new Racecar();
console.log(myCar.constructor); // [Function: Racecar]
const car2 = new myCar.constructor();
console.log(car2.constructor); // [Function: Racecar]
It's important to understand that the .constructor property and the class of an object are not synonymous. As you may have already guessed, the .constructor property is dynamic, just like most other things in JavaScript, so it should not be used for anything like type checking.
It's also important to understand that the .constructor property does not mean that something is a subclass of something else. In fact, there is no reliable way to find out if something is a subclass of something else in JavaScript. Because it's a dynamic language, and because there are so many ways to inherit properties from other objects (including copying properties from other objects after instantiation), type-safe subclasses don't exist in JavaScript like they exist in other languages.
The best way to know if something is a compatible type is to feature-test properties. In other words, duck type.
The instanceof operator ignores the .constructor property. Instead, it checks whether or not the constructor's .prototype exists (with an identity check) in the prototype chain of the object.
With manual constructor functions, inheritance can confuse the .constructor property connection (making it refer to the wrong constructor). You can fix it by manually wiring up the connection. For example, the canonical way to do so in ES5 is this:
function Car () {}
console.log(Car.prototype.constructor); // Car
function Racecar () {}
Racecar.prototype = Object.create(Car.prototype);
// To preserve the same relationship we have with the Car
// constructor, we'll need to reassign the .prototype.constructor:
Racecar.prototype.constructor = Racecar;
var myCar = new Racecar();
console.log(myCar.constructor); // [Function: Racecar]
ES6 classes do this for you automatically:
// ES6
class Car {}
class Racecar extends Car {}
const myCar = new Racecar();
console.log(myCar.constructor); // [Function: Racecar]
That said, I'm not a big fan of either constructor functions or ES6 classes, and I generally have little use for the .constructor property. Why? Because factory functions are far more flexible, far more powerful, and they don't have the pitfalls related to constructor functions and class inheritance. See "Factory Functions vs Constructor Functions vs Classes".
Let say, Dog is a Mammal.
function Mammal() {
this.milk = true;
};
function Dog() {
this.bark = true;
}
Dog.prototype = new Mammal;
So prototype of Dog points to an object of Mammal. This Mammal object has a reference to its constructor so when Dog is new, JavaScript see that Dog prototype is a Mammal so Mammal's constructor is called to produce a valid Mammal object (another one) then make it a Dog object using Dog constructor.
From this, the constructor of Dog.prototype is a Mammal (a Mammal Object that has extra fields and functions added) BUT constructor of Dog is Dog. The inheritance exist because the an instance of Dog has a Mammal as a prototype; hence, Dog is a Mammal. When a method is called and JS cannot find it from Dog.prototype, JS look in Mammal.prototype (which is an Object that has extra fields and functions added).
Hope this helps.
Don't worry about the constructor property - it is irrelevant.
Skip those sentences and you might follow it better.
If you are still unsure of your understanding, google for __proto__ - the internal prototype reference on JS objects. It is even exposed to scripts on Firefox and Safari.
A good reference is https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/The_Employee_Example/Object_Properties/Inheriting_Properties
If you have an object obj, it's prototype is obj.prototype and constructor property referring to obj's constructor is obj.prototype.constructor.
For the object obj.prototype the situation is the same. Let's say proto = obj.prototype, then the reference to the constructor of proto would be found at proto.prototype.constructor.
This is the same as obj.prototype.prototype.constructor, so there is no conflict with obj.prototype.constructor.

javascript inheritance

I know there is a lot of similar questions are tons of great answers to this. I tried to look at the classical inheritance methods, or those closure methods etc. Somehow I consider they are more or less "hack" methods to me, as it doesn't really what the javascript is designed to do. (Welcome anybody correct me if I am wrong).
OK, as long as it works, I satisfy with the classical inheritance pattern like:
PARENTClass = function (basevar) { do something here; };
PARENTClass.prototype = { a: b, c: d}; // prototype is auto gen
// Inheritance goes here
CHILDClass = function (childvar) { do something; };
CHILDClass.prototype = new PARENTClass(*1); // Actual inheritance to the prototype statement
// Instance
CHILDInstance = new CHILDClass(whatever);
Above is somehow, to my understanding the inheritance of JS. But one scenario I have no idea how to implement, is that what if I want to do some initializing DURING object creation (ie, within constructor), and the new object can be used right away.... My illustration on problem might not be too clear, so let me use the following C# Psuedo to explain what I want to do:
class PARENT {
public PARENT (basevar) { ... }
}
class CHILD : PARENT {
public CHILD (basevar) : PARENT (basevar) // constructor of child, and call parent constructor during construct.
{ ... }
}
For some reason (like init. UI elements), putting them in constructor seems the best way to do. Anyone have idea on how can I do it.
PS: in the *1, I have no idea what I should put there.
PS2: The above situation I DID found the jquery.inherit library can do, I just wonder if not using library can achieve it.
PS3: Or my understanding is wrong. Since javascript is not intended to mimick OOP (that's why i call it hack), what is the "CORRECT" logic to implement this.
It is not a hack as such; JavaScript is a prototyped language, as defined by Wikipedia as where:
..classes are not present, and behavior reuse (known as inheritance in class-based languages) is performed via a process of cloning existing objects that serve as prototypes.
As it says, classes are not used in JavaScript; each object that you create is descended from the JavaScript Object; all objects in JavaScript have the prototype object, and all instances of objects you create 'inherit' methods and properties from their object's prototype object. Take a look at the MDC prototype object reference for more information.
As of this, when you call the line:
CHILDClass.prototype = new PARENTClass();
This allows the CHILDClass object to add methods and properties to its prototype object from the PARENTClass object, which creates an effect similar to the idea of inheritance present in class-based languages. Since the prototype object affects every instance created of that object, this allows the parent object's methods and properties to be present in every instance of your child object.
If you want to call your parent class's constructor in your child class's constructor, you use the JavaScript call function; this allows you to call the parent class's constructor in the context of the child class's constructor, therefore setting the newly prototyped properties in your child class to what they are set as in the parent class.
You also do not need to put anything where you have specified the *1, since that line is merely used to add the methods and properties to the child class's prototype object; however, bear in mind that it calls the parent class's constructor, so if there are any arguments that are fundamental in the operation of the parent class constructor, you should check that these are present so as to avoid JavaScript errors.
You can manually invoke the parent constructor in the subclass constructor like this:
CHILDClass = function (basevar) {
PARENTClass.call(this, basevar);
// do something;
};
The trick here is using the call method, which allows you to invoke a method in the context of a different object. See the documentation of call for more details.
JavaScript has no built-in support for inheritance hierarchies as type extension is supposed to be done via aggregation, ie adding desired functionality directly to the object itself or its prototype if the property is to be shared between instances.
Nevertheless, JS is powerful enough to make implementing other forms of object construction possible, including classical inheritance.
Given a clone function - which is enough to add 'true' prototypical inheritance, and not JavaScript's bastardization thereof - your exampe can be implemented like this:
function ParentClass(baseVar) {
// do stuff
}
// don't overwrite the prototype object if you want to keep `constructor`
// see http://joost.zeekat.nl/constructors-considered-mildly-confusing.html
ParentClass.prototype.a = 'b';
ParentClass.prototype.c = 'd';
function ChildClass(childVar) {
// call the super constructor
ParentClass.call(this, childVar);
}
// don't inherit from a ParentClass instance, but the actual prototype
ChildClass.prototype = clone(ParentClass.prototype);
ChildClass.prototype.e = 'f';
It's also possible to add some syntactic sugar for class-based inheritance - my own implementation can be found here.
The example from above would then read
var ParentClass = Class.extend({
constructor: function(baseVar) {
// do stuff
},
a: 'b',
c: 'd'
});
var ChildClass = ParentClass.extend({
e: 'f'
});
I've got a lightweight javascript OOP wrapper that provides 'Class-like' inheritance where you can override base methods or call base constructors or members.
You define your classes like this:
//Define the 'Cat' class
function Cat(catType, firstName, lastName)
{
//Call the 'Animal' constructor.
Cat.$baseNew.call(this, firstName, lastName);
this.catType = catType;
}
//Extend Animal, and Register the 'Cat' type.
Cat.extend(Animal, { type: 'Cat' }, {
hello: function(text)
{
return "meaoow: " + text;
},
getFullName: function()
{
//Call the base 'Animal' getFullName method.
return this.catType + ": " + Cat.$base.getFullName.call(this);
}
})
//It has a built-in type system that lets you do stuff like:
var cat = new Cat("ginger", "kitty", "kat");
Cat.getType() // "Cat"
cat.getBaseTypesAndSelf() // ["Cat","Animal","Class"]
cat.getType() // "Cat"
cat.isTypeOf(Animal.getType()) // "True"
var dynamicCat = Class.createNew("Cat", ["tab","fat","cat"])
dynamicCat.getBaseTypesAndSelf() // ["Cat","Animal","Class"]
dynamicCat.getFullName() // tab: fat cat
source code available at: Class.js
I also have more details in my blog post about OOP in javascript
Just thought I'd mention some of the issues with the classical pattern you're going for:
Reference vars on the super class(es) will be available as essentially statics on ALL instances. For example, if you have var arr = [1,2,3] in the super, and do instance_1.arr.push(4) instance_2.arr.push(5) ALL of these instances will "see" the changes.
So you solve 1. with Ayman's solution which Zakas calls "Constructor Stealing", but now you call the constructor twice: once for your prototype and once for the constructor stealing. Solution - for your prototype use a helper like inheritPrototype (I showed the whole implementation of this in this post: inheritPrototype method FWIW, this essentially came from a combination of page 181 of Zakas's book and some Crockford study.
No privacy (but then again, you'd need to use something like the Durable Object pattern to get this and that may not be what you want)
Object definition is left "dangling": Solution - put an if statement checking for any of your prototype's functions and then define the prototype with a prototype literal.
I have running examples of all of this on github!!!
It's been just as much of a challenge for me to truly grok both: Zakas and Crockford books on object creation and inheritance. I also needed to try some different JavaScript TDD frameworks. So I decided to create an essay on both TDD Frameworks and JavaScript Object Creation & Inheritance. It has running code and jspec tests! Here's the link:*
My GitHub Open Source Essay/Book

Categories

Resources