Any obvious pitfalls in this Student's t-distribution CDF computation? - javascript

I have been looking for an efficient function that computes the CDF (cumulative distribution function) for the Student's t-distribution.
Here's what I have settled with after looking at another stackoverflow question, JStat library, the_subtprob function on Line 317 here.
Looking at the notes in the last reference led me to an out of print book, which does not help
If you are interested in more precise algorithms you
could look at: StatLib: http://lib.stat.cmu.edu/apstat/ ;
Applied Statistics Algorithms by Griffiths, P. and Hill, I.D.
Ellis Horwood: Chichester (1985)
The cmu site had a FORTRAN function that I translated as I show below.
Looking at the other sources, I find higher order functions like the incomplete beta, log gamma, and the implementation seems more complex, and in one case iterative.
I'm wondering if there are any known pitfalls of this implementation. It appears to produce the same results as the others. Any thoughts on how one would go about evaluating this would be helpful as well.
function tcdf (t, v) {
//
// ALGORITHM AS 3 APPL. STATIST. (1968) VOL.17, P.189
// STUDENT T PROBABILITY (LOWER TAIL)
//
var b = v / (v + t * t),
c = 1,
s = 1,
ioe = v % 2,
k = 2 + ioe;
if (v < 1) {
return 0;
}
if (v >= 4) {
while (k <= v - 2) {
c *= b - b / k;
s += c;
k += 2;
}
}
c = t / Math.sqrt(v);
if (1 !== ioe) {
return 0.5 + 0.5 * Math.sqrt(b) * c * s;
}
return 0.5 + ((1 === v ? 0 : b * c * s) + Math.atan(c)) / Math.PI;
}

Two possible issue with this algorithm.
Handling large values of v. When v becomes large, we should recover the standard normal distribution. However, you have a while loop over v. So v=1000000 say, becomes slow
Tail accuracy. How does the algorithm cope in the extreme tails? typically, we need to work with log to avoid rounding errors.

Related

What's the JS equivalent of Pythons Tensorflow tf.random.set_seed(123)? [duplicate]

Is it possible to seed the random number generator (Math.random) in JavaScript?
No, it is not possible to seed Math.random(). The ECMAScript specification is intentionally vague on the subject, providing no means for seeding nor require that browsers even use the same algorithm. So such a function must be externally provided, which thankfully isn't too difficult.
I've implemented a number of good, short and fast Pseudorandom number generator (PRNG) functions in plain JavaScript. All of them can be seeded and provide high quality numbers. These are not intended for security purposes--if you need a seedable CSPRNG, look into ISAAC.
First of all, take care to initialize your PRNGs properly. To keep things simple, the generators below have no built-in seed generating procedure, but accept one or more 32-bit numbers as the initial seed state of the PRNG. Similar or sparse seeds (e.g. a simple seed of 1 and 2) have low entropy, and can cause correlations or other randomness quality issues, sometimes resulting in the output having similar properties (such as randomly generated levels being similar). To avoid this, it is best practice to initialize PRNGs with a well-distributed, high entropy seed and/or advancing past the first 15 or so numbers.
There are many ways to do this, but here are two methods. Firstly, hash functions are very good at generating seeds from short strings. A good hash function will generate very different results even when two strings are similar, so you don't have to put much thought into the string. Here's an example hash function:
function cyrb128(str) {
let h1 = 1779033703, h2 = 3144134277,
h3 = 1013904242, h4 = 2773480762;
for (let i = 0, k; i < str.length; i++) {
k = str.charCodeAt(i);
h1 = h2 ^ Math.imul(h1 ^ k, 597399067);
h2 = h3 ^ Math.imul(h2 ^ k, 2869860233);
h3 = h4 ^ Math.imul(h3 ^ k, 951274213);
h4 = h1 ^ Math.imul(h4 ^ k, 2716044179);
}
h1 = Math.imul(h3 ^ (h1 >>> 18), 597399067);
h2 = Math.imul(h4 ^ (h2 >>> 22), 2869860233);
h3 = Math.imul(h1 ^ (h3 >>> 17), 951274213);
h4 = Math.imul(h2 ^ (h4 >>> 19), 2716044179);
return [(h1^h2^h3^h4)>>>0, (h2^h1)>>>0, (h3^h1)>>>0, (h4^h1)>>>0];
}
Calling cyrb128 will produce a 128-bit hash value from a string which can be used to seed a PRNG. Here's how you might use it:
// Create cyrb128 state:
var seed = cyrb128("apples");
// Four 32-bit component hashes provide the seed for sfc32.
var rand = sfc32(seed[0], seed[1], seed[2], seed[3]);
// Only one 32-bit component hash is needed for mulberry32.
var rand = mulberry32(seed[0]);
// Obtain sequential random numbers like so:
rand();
rand();
Note: If you want a slightly more robust 128-bit hash, consider MurmurHash3_x86_128, it's more thorough, but intended for use with large arrays.
Alternatively, simply choose some dummy data to pad the seed with, and advance the generator beforehand a few times (12-20 iterations) to mix the initial state thoroughly. This has the benefit of being simpler, and is often used in reference implementations of PRNGs, but it does limit the number of initial states:
var seed = 1337 ^ 0xDEADBEEF; // 32-bit seed with optional XOR value
// Pad seed with Phi, Pi and E.
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
var rand = sfc32(0x9E3779B9, 0x243F6A88, 0xB7E15162, seed);
for (var i = 0; i < 15; i++) rand();
Note: the output of these PRNG functions produce a positive 32-bit number (0 to 232-1) which is then converted to a floating-point number between 0-1 (0 inclusive, 1 exclusive) equivalent to Math.random(), if you want random numbers of a specific range, read this article on MDN. If you only want the raw bits, simply remove the final division operation.
JavaScript numbers can only represent whole integers up to 53-bit resolution. And when using bitwise operations, this is reduced to 32. Modern PRNGs in other languages often use 64-bit operations, which require shims when porting to JS that can drastically reduce performance. The algorithms here only use 32-bit operations, as it is directly compatible with JS.
Now, onward to the the generators. (I maintain the full list with references and license info here)
sfc32 (Simple Fast Counter)
sfc32 is part of the PractRand random number testing suite (which it passes of course). sfc32 has a 128-bit state and is very fast in JS.
function sfc32(a, b, c, d) {
return function() {
a >>>= 0; b >>>= 0; c >>>= 0; d >>>= 0;
var t = (a + b) | 0;
a = b ^ b >>> 9;
b = c + (c << 3) | 0;
c = (c << 21 | c >>> 11);
d = d + 1 | 0;
t = t + d | 0;
c = c + t | 0;
return (t >>> 0) / 4294967296;
}
}
You may wonder what the | 0 and >>>= 0 are for. These are essentially 32-bit integer casts, used for performance optimizations. Number in JS are basically floats, but during bitwise operations, they switch into a 32-bit integer mode. This mode is processed faster by JS interpreters, but any multiplication or addition will cause it to switch back to a float, resulting in a performance hit.
Mulberry32
Mulberry32 is a simple generator with a 32-bit state, but is extremely fast and has good quality randomness (author states it passes all tests of gjrand testing suite and has a full 232 period, but I haven't verified).
function mulberry32(a) {
return function() {
var t = a += 0x6D2B79F5;
t = Math.imul(t ^ t >>> 15, t | 1);
t ^= t + Math.imul(t ^ t >>> 7, t | 61);
return ((t ^ t >>> 14) >>> 0) / 4294967296;
}
}
I would recommend this if you just need a simple but decent PRNG and don't need billions of random numbers (see Birthday problem).
xoshiro128**
As of May 2018, xoshiro128** is the new member of the Xorshift family, by Vigna & Blackman (professor Vigna was also responsible for the Xorshift128+ algorithm powering most Math.random implementations under the hood). It is the fastest generator that offers a 128-bit state.
function xoshiro128ss(a, b, c, d) {
return function() {
var t = b << 9, r = a * 5; r = (r << 7 | r >>> 25) * 9;
c ^= a; d ^= b;
b ^= c; a ^= d; c ^= t;
d = d << 11 | d >>> 21;
return (r >>> 0) / 4294967296;
}
}
The authors claim it passes randomness tests well (albeit with caveats). Other researchers have pointed out that it fails some tests in TestU01 (particularly LinearComp and BinaryRank). In practice, it should not cause issues when floats are used (such as in these implementations), but may cause issues if relying on the raw lowest order bit.
JSF (Jenkins' Small Fast)
This is JSF or 'smallprng' by Bob Jenkins (2007), who also made ISAAC and SpookyHash. It passes PractRand tests and should be quite fast, although not as fast as sfc32.
function jsf32(a, b, c, d) {
return function() {
a |= 0; b |= 0; c |= 0; d |= 0;
var t = a - (b << 27 | b >>> 5) | 0;
a = b ^ (c << 17 | c >>> 15);
b = c + d | 0;
c = d + t | 0;
d = a + t | 0;
return (d >>> 0) / 4294967296;
}
}
No, it is not possible to seed Math.random(), but it's fairly easy to write your own generator, or better yet, use an existing one.
Check out: this related question.
Also, see David Bau's blog for more information on seeding.
NOTE: Despite (or rather, because of) succinctness and apparent elegance, this algorithm is by no means a high-quality one in terms of randomness. Look for e.g. those listed in this answer for better results.
(Originally adapted from a clever idea presented in a comment to another answer.)
var seed = 1;
function random() {
var x = Math.sin(seed++) * 10000;
return x - Math.floor(x);
}
You can set seed to be any number, just avoid zero (or any multiple of Math.PI).
The elegance of this solution, in my opinion, comes from the lack of any "magic" numbers (besides 10000, which represents about the minimum amount of digits you must throw away to avoid odd patterns - see results with values 10, 100, 1000). Brevity is also nice.
It's a bit slower than Math.random() (by a factor of 2 or 3), but I believe it's about as fast as any other solution written in JavaScript.
No, but here's a simple pseudorandom generator, an implementation of Multiply-with-carry I adapted from Wikipedia (has been removed since):
var m_w = 123456789;
var m_z = 987654321;
var mask = 0xffffffff;
// Takes any integer
function seed(i) {
m_w = (123456789 + i) & mask;
m_z = (987654321 - i) & mask;
}
// Returns number between 0 (inclusive) and 1.0 (exclusive),
// just like Math.random().
function random()
{
m_z = (36969 * (m_z & 65535) + (m_z >> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
Antti Sykäri's algorithm is nice and short. I initially made a variation that replaced JavaScript's Math.random when you call Math.seed(s), but then Jason commented that returning the function would be better:
Math.seed = function(s) {
return function() {
s = Math.sin(s) * 10000; return s - Math.floor(s);
};
};
// usage:
var random1 = Math.seed(42);
var random2 = Math.seed(random1());
Math.random = Math.seed(random2());
This gives you another functionality that JavaScript doesn't have: multiple independent random generators. That is especially important if you want to have multiple repeatable simulations running at the same time.
Please see Pierre L'Ecuyer's work going back to the late 1980s and early 1990s. There are others as well. Creating a (pseudo) random number generator on your own, if you are not an expert, is pretty dangerous, because there is a high likelihood of either the results not being statistically random or in having a small period. Pierre (and others) have put together some good (pseudo) random number generators that are easy to implement. I use one of his LFSR generators.
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/handstat.pdf
Combining some of the previous answers, this is the seedable random function you are looking for:
Math.seed = function(s) {
var mask = 0xffffffff;
var m_w = (123456789 + s) & mask;
var m_z = (987654321 - s) & mask;
return function() {
m_z = (36969 * (m_z & 65535) + (m_z >>> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >>> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
}
var myRandomFunction = Math.seed(1234);
var randomNumber = myRandomFunction();
It's not possible to seed the builtin Math.random function, but it is possible to implement a high quality RNG in Javascript with very little code.
Javascript numbers are 64-bit floating point precision, which can represent all positive integers less than 2^53. This puts a hard limit to our arithmetic, but within these limits you can still pick parameters for a high quality Lehmer / LCG random number generator.
function RNG(seed) {
var m = 2**35 - 31
var a = 185852
var s = seed % m
return function () {
return (s = s * a % m) / m
}
}
Math.random = RNG(Date.now())
If you want even higher quality random numbers, at the cost of being ~10 times slower, you can use BigInt for the arithmetic and pick parameters where m is just able to fit in a double.
function RNG(seed) {
var m_as_number = 2**53 - 111
var m = 2n**53n - 111n
var a = 5667072534355537n
var s = BigInt(seed) % m
return function () {
return Number(s = s * a % m) / m_as_number
}
}
See this paper by Pierre l'Ecuyer for the parameters used in the above implementations:
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
And whatever you do, avoid all the other answers here that use Math.sin!
To write your own pseudo random generator is quite simple.
The suggestion of Dave Scotese is useful but, as pointed out by others, it is not quite uniformly distributed.
However, it is not because of the integer arguments of sin. It's simply because of the range of sin, which happens to be a one dimensional projection of a circle. If you would take the angle of the circle instead it would be uniform.
So instead of sin(x) use arg(exp(i * x)) / (2 * PI).
If you don't like the linear order, mix it a bit up with xor. The actual factor doesn't matter that much either.
To generate n pseudo random numbers one could use the code:
function psora(k, n) {
var r = Math.PI * (k ^ n)
return r - Math.floor(r)
}
n = 42; for(k = 0; k < n; k++) console.log(psora(k, n))
Please also note that you cannot use pseudo random sequences when real entropy is needed.
Many people who need a seedable random-number generator in Javascript these days are using David Bau's seedrandom module.
Math.random no, but the ran library solves this. It has almost all distributions you can imagine and supports seeded random number generation. Example:
ran.core.seed(0)
myDist = new ran.Dist.Uniform(0, 1)
samples = myDist.sample(1000)
Here's the adopted version of Jenkins hash, borrowed from here
export function createDeterministicRandom(): () => number {
let seed = 0x2F6E2B1;
return function() {
// Robert Jenkins’ 32 bit integer hash function
seed = ((seed + 0x7ED55D16) + (seed << 12)) & 0xFFFFFFFF;
seed = ((seed ^ 0xC761C23C) ^ (seed >>> 19)) & 0xFFFFFFFF;
seed = ((seed + 0x165667B1) + (seed << 5)) & 0xFFFFFFFF;
seed = ((seed + 0xD3A2646C) ^ (seed << 9)) & 0xFFFFFFFF;
seed = ((seed + 0xFD7046C5) + (seed << 3)) & 0xFFFFFFFF;
seed = ((seed ^ 0xB55A4F09) ^ (seed >>> 16)) & 0xFFFFFFFF;
return (seed & 0xFFFFFFF) / 0x10000000;
};
}
You can use it like this:
const deterministicRandom = createDeterministicRandom()
deterministicRandom()
// => 0.9872818551957607
deterministicRandom()
// => 0.34880331158638
No, like they said it is not possible to seed Math.random()
but you can install external package which make provision for that. i used these package which can be install using these command
npm i random-seed
the example is gotten from the package documentation.
var seed = 'Hello World',
rand1 = require('random-seed').create(seed),
rand2 = require('random-seed').create(seed);
console.log(rand1(100), rand2(100));
follow the link for documentation https://www.npmjs.com/package/random-seed
SIN(id + seed) is a very interesting replacement for RANDOM functions that cannot be seeded like SQLite:
https://stackoverflow.com/a/75089040/7776828
Most of the answers here produce biased results. So here's a tested function based on seedrandom library from github:
!function(f,a,c){var s,l=256,p="random",d=c.pow(l,6),g=c.pow(2,52),y=2*g,h=l-1;function n(n,t,r){function e(){for(var n=u.g(6),t=d,r=0;n<g;)n=(n+r)*l,t*=l,r=u.g(1);for(;y<=n;)n/=2,t/=2,r>>>=1;return(n+r)/t}var o=[],i=j(function n(t,r){var e,o=[],i=typeof t;if(r&&"object"==i)for(e in t)try{o.push(n(t[e],r-1))}catch(n){}return o.length?o:"string"==i?t:t+"\0"}((t=1==t?{entropy:!0}:t||{}).entropy?[n,S(a)]:null==n?function(){try{var n;return s&&(n=s.randomBytes)?n=n(l):(n=new Uint8Array(l),(f.crypto||f.msCrypto).getRandomValues(n)),S(n)}catch(n){var t=f.navigator,r=t&&t.plugins;return[+new Date,f,r,f.screen,S(a)]}}():n,3),o),u=new m(o);return e.int32=function(){return 0|u.g(4)},e.quick=function(){return u.g(4)/4294967296},e.double=e,j(S(u.S),a),(t.pass||r||function(n,t,r,e){return e&&(e.S&&v(e,u),n.state=function(){return v(u,{})}),r?(c[p]=n,t):n})(e,i,"global"in t?t.global:this==c,t.state)}function m(n){var t,r=n.length,u=this,e=0,o=u.i=u.j=0,i=u.S=[];for(r||(n=[r++]);e<l;)i[e]=e++;for(e=0;e<l;e++)i[e]=i[o=h&o+n[e%r]+(t=i[e])],i[o]=t;(u.g=function(n){for(var t,r=0,e=u.i,o=u.j,i=u.S;n--;)t=i[e=h&e+1],r=r*l+i[h&(i[e]=i[o=h&o+t])+(i[o]=t)];return u.i=e,u.j=o,r})(l)}function v(n,t){return t.i=n.i,t.j=n.j,t.S=n.S.slice(),t}function j(n,t){for(var r,e=n+"",o=0;o<e.length;)t[h&o]=h&(r^=19*t[h&o])+e.charCodeAt(o++);return S(t)}function S(n){return String.fromCharCode.apply(0,n)}if(j(c.random(),a),"object"==typeof module&&module.exports){module.exports=n;try{s=require("crypto")}catch(n){}}else"function"==typeof define&&define.amd?define(function(){return n}):c["seed"+p]=n}("undefined"!=typeof self?self:this,[],Math);
function randIntWithSeed(seed, max=1) {
/* returns a random number between [0,max] including zero and max
seed can be either string or integer */
return Math.round(new Math.seedrandom('seed' + seed)()) * max
}
test for true randomness of this code: https://es6console.com/kkjkgur2/
There are plenty of good answers here but I had a similar issue with the additional requirement that I would like portability between Java's random number generator and whatever I ended up using in JavaScript.
I found the java-random package
These two pieces of code had identical output assuming the seed is the same:
Java:
Random randomGenerator = new Random(seed);
int randomInt;
for (int i=0; i<10; i++) {
randomInt = randomGenerator.nextInt(50);
System.out.println(randomInt);
}
JavaScript:
let Random = require('java-random');
let rng = new Random(seed);
for (let i=0; i<10; i++) {
let val = rng.nextInt(50);
console.log(val);
}
Do what bryc suggests ... but before you use his cyrb128 hash function to initialise, note that the return statement throws away 32 bits of entropy. Exclusive-or the four values together = 0. You should probably make the first element (h2^h3^h4) >>> 0.
I have written a function that returns a seeded random number, it uses Math.sin to have a long random number and uses the seed to pick numbers from that.
Use :
seedRandom("k9]:2#", 15)
it will return your seeded number
the first parameter is any string value ; your seed.
the second parameter is how many digits will return.
function seedRandom(inputSeed, lengthOfNumber){
var output = "";
var seed = inputSeed.toString();
var newSeed = 0;
var characterArray = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','y','x','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','U','R','S','T','U','V','W','X','Y','Z','!','#','#','$','%','^','&','*','(',')',' ','[','{',']','}','|',';',':',"'",',','<','.','>','/','?','`','~','-','_','=','+'];
var longNum = "";
var counter = 0;
var accumulator = 0;
for(var i = 0; i < seed.length; i++){
var a = seed.length - (i+1);
for(var x = 0; x < characterArray.length; x++){
var tempX = x.toString();
var lastDigit = tempX.charAt(tempX.length-1);
var xOutput = parseInt(lastDigit);
addToSeed(characterArray[x], xOutput, a, i);
}
}
function addToSeed(character, value, a, i){
if(seed.charAt(i) === character){newSeed = newSeed + value * Math.pow(10, a)}
}
newSeed = newSeed.toString();
var copy = newSeed;
for(var i=0; i<lengthOfNumber*9; i++){
newSeed = newSeed + copy;
var x = Math.sin(20982+(i)) * 10000;
var y = Math.floor((x - Math.floor(x))*10);
longNum = longNum + y.toString()
}
for(var i=0; i<lengthOfNumber; i++){
output = output + longNum.charAt(accumulator);
counter++;
accumulator = accumulator + parseInt(newSeed.charAt(counter));
}
return(output)
}
A simple approach for a fixed seed:
function fixedrandom(p){
const seed = 43758.5453123;
return (Math.abs(Math.sin(p)) * seed)%1;
}
In PHP, there is function srand(seed) which generate fixed random value for particular seed.
But, in JS, there is no such inbuilt function.
However, we can write simple and short function.
Step 1: Choose some Seed (Fix Number).
var seed = 100;
Number should be Positive Integer and greater than 1, further explanation in Step 2.
Step 2: Perform Math.sin() function on Seed, it will give sin value of that number. Store this value in variable x.
var x;
x = Math.sin(seed); // Will Return Fractional Value between -1 & 1 (ex. 0.4059..)
sin() method returns a Fractional value between -1 and 1.And we don't need Negative value, therefore, in first step choose number greater than 1.
Step 3: Returned Value is a Fractional value between -1 and 1. So mulitply this value with 10 for making it more than 1.
x = x * 10; // 10 for Single Digit Number
Step 4: Multiply the value with 10 for additional digits
x = x * 10; // Will Give value between 10 and 99 OR
x = x * 100; // Will Give value between 100 and 999
Multiply as per requirement of digits.
The result will be in decimal.
Step 5: Remove value after Decimal Point by Math's Round (Math.round()) Method.
x = Math.round(x); // This will give Integer Value.
Step 6: Turn Negative Values into Positive (if any) by Math.abs method
x = Math.abs(x); // Convert Negative Values into Positive(if any)
Explanation End.Final Code
var seed = 111; // Any Number greater than 1
var digit = 10 // 1 => single digit, 10 => 2 Digits, 100 => 3 Digits and so. (Multiple of 10)
var x; // Initialize the Value to store the result
x = Math.sin(seed); // Perform Mathematical Sin Method on Seed.
x = x * 10; // Convert that number into integer
x = x * digit; // Number of Digits to be included
x = Math.round(x); // Remove Decimals
x = Math.abs(x); // Convert Negative Number into Positive
Clean and Optimized Functional Code
function random_seed(seed, digit = 1) {
var x = Math.abs(Math.round(Math.sin(seed++) * 10 * digit));
return x;
}
Then Call this function using
random_seed(any_number, number_of_digits)any_number is must and should be greater than 1.number_of_digits is optional parameter and if nothing passed, 1 Digit will return.
random_seed(555); // 1 Digit
random_seed(234, 1); // 1 Digit
random_seed(7895656, 1000); // 4 Digit
For a number between 0 and 100.
Number.parseInt(Math.floor(Math.random() * 100))

A DFT analysis in a low speed data sampling

I have some sample data of vibrations analysis from sensors installed on electrical motors. The sampling is made once or, at most, 3 times per day. The values can be expressed in g, gE or mm/s.
I’m developing a personal algorithm in JavaScript to process some samples and perform a DFT. It’s a simple code that uses brute force to process my results. I compared the results (real and imaginary parts) from JavaScript and from MATLAB results and they matched perfectly.
However, my sampling rate is very slow. Because of this, I have a lot of questions which I couldn’t find the answers on my searches:
Is it possible to apply a DFT analysis on a slow sampling data as this?
How can I determine the correct frequency scale for the X axis? It’s complicated for me because I don’t have an explicit Fs (sampling rate) value.
In my case, would it be interesting to apply some window function like Hanning Window (suitable for vibrations analyses)?
JavaScriptCode:
//Signal is a pure one-dimensional of real data (vibration values)
const fft = (signal) => {
const pi2 = 6.2832 //pi const
let inputLength = signal.length;
let Xre = new Array(inputLength); //DFT real part
let Xim = new Array(inputLength); //DFT imaginary part
let P = new Array(inputLength); //Power of spectrum
let M = new Array(inputLength); //Magnitude of spectrum
let angle = 2 * Math.PI / inputLength;
//Hann Window
signal = signal.map((x, index) => {
return x * 0.5 * (1 - Math.cos((2 * Math.PI * index) / (inputLength - 1)));
});
for (let k = 0; k < inputLength; ++k) { // For each output element
Xre[k] = 0; Xim[k] = 0;
for (let n = 0; n < inputLength; ++n) { // For each input element
Xre[k] += signal[n] * Math.cos(angle * k * n);
Xim[k] -= signal[n] * Math.sin(angle * k * n);
}
P[k] = Math.pow(Xre[k], 2) + Math.pow(Xim[k], 2);
M[k] = Math.sqrt(Math.pow(Xre[k], 2) + Math.pow(Xim[k], 2));
}
return { Xre: Xre, Xim: Xim, P: P, M: M.slice(0, Math.round((inputLength / 2) + 1)) };
}
The first figure shows the charts results (time domain on the left side and frequency domain on the right side).
The second figure shows a little bit of my data samples:
Obs.: I'm sorry for the writing. I'm still a beginner English student.
The frequency doesn't matter. A frequency as low as 1/day is just as fine as any other frequency. But consider the Nyquist-Shannon theorem.
This is problematic. You need a fix sampling frequency for a DFT. You could do interpolation as preprocessing. But better would be to do the sampling at fix times.

algorithm to determine if a number is made of sum of multiply of two other number

let say it's given 2k+2+3p=n as the test, how to find out the test is true for a number is valid for a number when k>=0, p>=0, n>=0:
example1 : n=24 should result true since k=5 & p=4 => 2(5)+2+3(4)=24
example2 : n=11 should result true since k=0 & p=3 => 2(0)+2+3(3)=11
example3 : n=15 should result true since k=5 & p=1 => 2(5)+2+3(1)=15
i wonder if there is a mathematic solution to this. i solved it like bellow:
//let say 2k+2+3p=n
var accepted = false;
var betterNumber= n-2;
//assume p=0
var kReminder= (betterNumber)%2==0;
//assume k=0
var pReminder= (betterNumber)%3==0;
if (kReminder || pReminder){
accepted=true;
}else{
var biggerChunk= Math.Max(2,3); //max of 2k or 3p, here i try to find the bigger chunk of the
var smallerChunk= Math.Min(2,3);
if ((betterNumber%bigger)%smallerChunk==0){
accepted=true;
}else
{
accepted=false;
}
}
still there are edge cases that i didn't see. so i wonder if it has a better solution or not.
Update
the test above is just an example. the solution should be efficient enough for big numbers or any combination of number like 1000000k+37383993+37326328393p=747437446239902
By inspection, 2 is the smallest valid even number and 5 is the smallest valid odd number:
2 is valid (k=0, p=0)
5 is valid (k=0, p=1)
All even numbers >= 2 and all odd numbers >= 5 are valid.
Even numbers: k=n/2-1, p=0
odd numbers: k=(n-3)/2-1, p=1
What we're doing here is incrementing k to add 2s to the smallest valid even and odd numbers to get all larger even and odd numbers.
All values of n >= 2 are valid except for 3.
Dave already gave a constructive and efficient answer but I'd like to share some math behind it.
For some time I'll ignore the + 2 part as it is of less significance and concentrate on a generic form of this question: given two positive integers a and b check whether number X can be represented as k*a + m*b where k and m are non-negative integers. The Extended Euclidean algorithm essentially guarantees that:
If number X is not divisible by GCD(a,b), it can't be represented as k*a + m*b with integer k and m
If number X is divisible by GCD(a,b) and is greater or equal than a*b, it can be represented as k*a + m*b with non-negative integer k and m. This follows from the fact that d = GCD(a,b) can be represented in such a form (let's call it d = k0*a + m0*b). If X = Y*d then X = (Y*k0)*a + (Y*m0)*b. If one of those two coefficients is negative you can trade one for the other adding and subtracting a*b as many times as required as in X = (Y*k0 + b)*a + (Y*m0 - a)*b. And since X >= a*b you can always get both coefficients to be non-negative in such a way. (Note: this is obviously not the most efficient way to find a suitable pair of those coefficients but since you only ask for whether such coefficients exist it should be sufficient.)
So the only gray area is numbers X divisible by GCD(a,b) that lie between in the (0, a*b) range. I'm not aware of any general rule about this area but you can check it explicitly.
So you can just do pre-calculations described in #3 and then you can answer this question pretty much immediately with simple comparison + possibly checking against pre-calculated array of booleans for the (0, a*b) range.
If you actual question is about k*a + m*b + c form where a, b and c are fixed, it is easily converted to the k*a + m*b question by just subtracting c from X.
Update (Big values of a and b)
If your a and b are big so you can't cache the (0, a*b) range beforehand, the only idea I have is to do the check for values in that range on demand by a reasonably efficient algorithm. The code goes like this:
function egcd(a0, b0) {
let a = a0;
let b = b0;
let ca = [1, 0];
let cb = [0, 1];
while ((a !== b) && (b !== 0)) {
let r = a % b;
let q = (a - r) / b;
let cr = [ca[0] - q * cb[0], ca[1] - q * cb[1]];
a = b;
ca = cb;
b = r;
cb = cr;
}
return {
gcd: a,
coef: ca
};
}
function check(a, b, x) {
let eg = egcd(a, b);
let gcd = eg.gcd;
let c0 = eg.coef;
if (x % gcd !== 0)
return false;
if (x >= a * b)
return true;
let c1a = c0[0] * x / gcd;
let c1b = c0[1] * x / gcd;
if (c1a < 0) {
let fixMul = -Math.floor(c1a / (b / gcd));
let c1bFixed = c1b - fixMul * (a / gcd);
return c1bFixed >= 0;
}
else { //c1b < 0
let fixMul = -Math.floor(c1b / (a / gcd));
let c1aFixed = c1a - fixMul * (b / gcd);
return c1aFixed >= 0;
}
}
The idea behind this code is based on the logic described in the step #2 above:
Calculate GCD and Bézout coefficients using the Extended Euclidean algorithm (if a and b are fixed, this can be cached, but even if not this is fairly fast anyway).
Check for conditions #1 (definitely no) and #2 (definitely yes) from the above
For value in the (0, a*b) range fix some coefficients by just multiplying Bézout coefficients by X/gcd. F
Find which of the two is negative and find the minimum multiplier to fix it by trading one coefficient for another.
Apply this multiplier to the other (initially positive) coefficient and check if it remains positive.
This algorithm works because all the possible solutions for X = k*a + m*b can be obtained from some base solution (k0, m0) using as (k0 + n*b/gcd, m0 + n*a/gcd) for some integer n. So to find out if there is a solution with both k >= 0 and m >= 0, all you need is to find the solution with minimum positive k and check m for it.
Complexity of this algorithm is dominated by the Extended Euclidean algorithm which is logarithmic. If it can be cached, everything else is just constant time.
Theorem: it is possible to represent number 2 and any number >= 4 using this formula.
Answer: the easiest test is to check if the number equals 2 or is greater or equals 4.
Proof: n=2k+2+3p where k>=0, p>=0, n>=0 is the same as n=2m+3p where m>0, p>=0 and m=k+1. Using p=0 one can represent any even number, e.g. with m=10 one can represent n=20. The odd number to the left of this even number can be represented using m'=m-2, p=1, e.g. 19=2*8+3. The odd number to the right can be represented with m'=m-1, p=1, e.g. 21=2*9+3. This rule holds for m greater or equal 3, that is starting from n=5. It is easy to see that for p=0 two additional values are also possible, n=2, n=4.

Calculating cubic root for negative number

So, to be short,
3√(-8) = (-8)1/3
console.log(Math.pow(-8,1/3));
//Should be -2
But when I test it out, it outputs
NaN
Why? Is it a bug or it is expected to be like this in the first place? I am using JavaScript to draw graphs, but this messes up the graph.
You can use this snippet to calculate it. It also works for other powers, e.g. 1/4, 1/5, etc.
function nthroot(x, n) {
try {
var negate = n % 2 == 1 && x < 0;
if(negate)
x = -x;
var possible = Math.pow(x, 1 / n);
n = Math.pow(possible, n);
if(Math.abs(x - n) < 1 && (x > 0 == n > 0))
return negate ? -possible : possible;
} catch(e){}
}
nthroot(-8, 3);
Source: http://gotochriswest.com/blog/2011/05/06/cube-root-an-beyond/
A faster approach for just calculating the cubic root:
Math.cbrt = function(x) {
var sign = x === 0 ? 0 : x > 0 ? 1 : -1;
return sign * Math.pow(Math.abs(x), 1 / 3);
}
Math.cbrt(-8);
Update
To find an integer based cubic root, you can use the following function, inspired by this answer:
// positive-only cubic root approximation
function cbrt(n)
{
var a = n; // note: this is a non optimized assumption
while (a * a * a > n) {
a = Math.floor((2 * a + (n / (a * a))) / 3);
}
return a;
}
It starts with an assumption that converges to the closest integer a for which a^3 <= n. This function can be adjusted in the same way to support a negative base.
There's no bug; you are raising a negative number to a fractional power; hence, the NaN.
The top hit on google for this is from Dr Math the explanation is pretty good. It says for for real numbers (not complex numbers anyway), a negative number raised to a fractional power may not be a real number. The simplest example is probably
-4 ^ (1/2)
which is essentially computing the square root of -4. Even though the cubic root of -8 does have real solutions, I think that most software libraries find it more efficient not to do all the complex arithmetic and return NaN only when the imaginary part is nonzero and give you the nice real answer otherwise.
EDIT
Just to make absolutely clear that NaN is the intended result, see the official ECMAScript 5.1 Specification, Section 15.8.2.13. It says:
If x<0 and x is finite and y is finite and y is not an integer, the result is NaN.
Again, even though SOME instances of raising negative numbers to fractional powers have exactly one real root, many languages just do the NaN thing for all cases of negative numbers to fractional roots.
Please do not think JavaScript is the only such language. C++ does the same thing:
If x is finite negative and y is finite but not an integer value, it causes a domain error.
Two key problems:
Mathematically, there are multiple cubic roots of a negative number: -2, but also 2 complex roots (see cube roots of unity).
Javascript's Math object (and most other standard math libraries) will not do fractional powers of negative numbers. It converts the fractional power to a float before the function receives it, so you are asking the function to compute a floating point power of a negative number, which may or may not have a real solution. So it does the pragmatic thing and refuses to attempt to calculate such a value.
If you want to get the correct answer, you'll need to decide how mathematically correct you want to be, and write those rules into a non-standard implementation of pow.
All library functions are limited to avoid excessive calculation times and unnecessary complexity.
I like the other answers, but how about overriding Math.pow so it would be able to work with all nth roots of negative numbers:
//keep the original method for proxying
Math.pow_ = Math.pow;
//redefine the method
Math.pow = function(_base, _exponent) {
if (_base < 0) {
if (Math.abs(_exponent) < 1) {
//we're calculating nth root of _base, where n === 1/_exponent
if (1 / _exponent % 2 === 0) {
//nth root of a negative number is imaginary when n is even, we could return
//a string like "123i" but this would completely mess up further computation
return NaN;
}/*else if (1 / _exponent % 2 !== 0)*/
//nth root of a negative number when n is odd
return -Math.pow_(Math.abs(_base), _exponent);
}
}/*else if (_base >=0)*/
//run the original method, nothing will go wrong
return Math.pow_(_base, _exponent);
};
Fiddled with some test cases, give me a shout if you spot a bug!
So I see a bunch of methods that revolve around Math.pow(...) which is cool, but based on the wording of the bounty I'm proposing a slightly different approach.
There are several computational approximations for solving roots, some taking quicker steps than others. Ultimately the stopping point comes down to the degree of precision desired(it's really up to you/the problem being solved).
I'm not going to explain the math in fine detail, but the following are implementations of cubed root approximations that passed the target test(bounty test - also added negative range, because of the question title). Each iteration in the loop (see the while(Math.abs(xi-xi0)>precision) loops in each method) gets a step closer to the desired precision. Once precision is achieved a format is applied to the number so it's as precise as the calculation derived from the iteration.
var precision = 0.0000000000001;
function test_cuberoot_fn(fn) {
var tested = 0,
failed = 0;
for (var i = -100; i < 100; i++) {
var root = fn(i*i*i);
if (i !== root) {
console.log(i, root);
failed++;
}
tested++;
}
if (failed) {
console.log("failed %d / %d", failed, tested);
}else{
console.log("Passed test");
}
}
test_cuberoot_fn(newtonMethod);
test_cuberoot_fn(halleysMethod);
Newton's approximation Implementation
function newtonMethod(cube){
if(cube == 0){//only John Skeet and Chuck Norris
return 0; //can divide by zero, we'll have
} //to settle for check and return
var xi = 1;
var xi0 = -1;
while(Math.abs(xi-xi0)>precision){//precision = 0.0000000000001
xi0=xi;
xi = (1/3)*((cube/(xi*xi))+2*xi);
}
return Number(xi.toPrecision(12));
}
Halley's approximation Implementation
note Halley's approximation takes quicker steps to solving the cube, so it's computationally faster than newton's approximation.
function halleysMethod(cube){
if(cube == 0){//only John Skeet and Chuck Norris
return 0; //can divide by zero, we'll have
} //to settle for check and return
var xi = 1;
var xi0 = -1;
while(Math.abs(xi-xi0)>precision){//precision = 0.0000000000001
xi0=xi;
xi = xi*((xi*xi*xi + 2*cube)/(2*xi*xi*xi+cube));
}
return Number(xi.toPrecision(12));
}
It's Working in Chrome Console
function cubeRoot(number) {
var num = number;
var temp = 1;
var inverse = 1 / 3;
if (num < 0) {
num = -num;
temp = -1;
}
var res = Math.pow(num, inverse);
var acc = res - Math.floor(res);
if (acc <= 0.00001)
res = Math.floor(res);
else if (acc >= 0.99999)
res = Math.ceil(res);
return (temp * res);
}
cubeRoot(-64) // -4
cubeRoot(64) // 4
As a heads up, in ES6 there is now a Math.cbrt function.
In my testing in Google chrome it appears to work almost twice as fast as Math.pow. Interestingly I had to add up the results otherwise chrome did a better job of optimizing away the pow function.
//do a performance test on the cube root function from es6
var start=0, end=0, k=0;
start = performance.now();
k=0;
for (var i=0.0; i<10000000.0; i+=1.0)
{
var j = Math.cbrt(i);
//k+=j;
}
end = performance.now();
console.log("cbrt took:" + (end-start),k);
k=0;
start = performance.now();
for (var i=0.0; i<10000000.0; i+=1.0)
{
var j = Math.pow(i,0.33333333);
//k+=j;
}
end = performance.now();
console.log("pow took:" + (end-start),k);
k=0;
start = performance.now();
for (var i=0.0; i<10000000.0; i+=1.0)
{
var j = Math.cbrt(i);
k+=j;
}
end = performance.now();
console.log("cbrt took:" + (end-start),k);
k=0;
start = performance.now();
for (var i=0.0; i<10000000.0; i+=1.0)
{
var j = Math.pow(i,0.33333333);
k+=j;
}
end = performance.now();
console.log("pow took:" + (end-start),k);
Result:
cbrt took:468.28200000163633 0
pow took:77.21999999921536 0
cbrt took:546.8039999977918 1615825909.5248165
pow took:869.1149999940535 1615825826.7510242
//aren't cube roots of negative numbers the same as positive, except for the sign?
Math.cubeRoot= function(n, r){
var sign= (n<0)? -1: 1;
return sign*Math.pow(Math.abs(n), 1/3);
}
Math.cubeRoot(-8)
/* returned value: (Number)
-2
*/
Just want to highlight that in ES6 there is a native cubic root function. So you can just do this (check the support here)
Math.cbrt(-8) will return you -2
this works with negative number and negative exponent:
function nthRoot(x = 0, r = 1) {
if (x < 0) {
if (r % 2 === 1) return -nthRoot(-x, r)
if (r % 2 === -1) return -1 / nthRoot(-x, -r)
}
return x ** (1 / r)
}
examples:
nthRoot( 16, 2) 4
nthRoot( 16, -2) 0.25
nthRoot(-16, 2) NaN
nthRoot(-16, -2) NaN
nthRoot( 27, 3) 3
nthRoot( 27, -3) 0.3333333333333333
nthRoot(-27, 3) -3
nthRoot(-27, -3) -0.3333333333333333

Seeding the random number generator in Javascript

Is it possible to seed the random number generator (Math.random) in JavaScript?
No, it is not possible to seed Math.random(). The ECMAScript specification is intentionally vague on the subject, providing no means for seeding nor require that browsers even use the same algorithm. So such a function must be externally provided, which thankfully isn't too difficult.
I've implemented a number of good, short and fast Pseudorandom number generator (PRNG) functions in plain JavaScript. All of them can be seeded and provide high quality numbers. These are not intended for security purposes--if you need a seedable CSPRNG, look into ISAAC.
First of all, take care to initialize your PRNGs properly. To keep things simple, the generators below have no built-in seed generating procedure, but accept one or more 32-bit numbers as the initial seed state of the PRNG. Similar or sparse seeds (e.g. a simple seed of 1 and 2) have low entropy, and can cause correlations or other randomness quality issues, sometimes resulting in the output having similar properties (such as randomly generated levels being similar). To avoid this, it is best practice to initialize PRNGs with a well-distributed, high entropy seed and/or advancing past the first 15 or so numbers.
There are many ways to do this, but here are two methods. Firstly, hash functions are very good at generating seeds from short strings. A good hash function will generate very different results even when two strings are similar, so you don't have to put much thought into the string. Here's an example hash function:
function cyrb128(str) {
let h1 = 1779033703, h2 = 3144134277,
h3 = 1013904242, h4 = 2773480762;
for (let i = 0, k; i < str.length; i++) {
k = str.charCodeAt(i);
h1 = h2 ^ Math.imul(h1 ^ k, 597399067);
h2 = h3 ^ Math.imul(h2 ^ k, 2869860233);
h3 = h4 ^ Math.imul(h3 ^ k, 951274213);
h4 = h1 ^ Math.imul(h4 ^ k, 2716044179);
}
h1 = Math.imul(h3 ^ (h1 >>> 18), 597399067);
h2 = Math.imul(h4 ^ (h2 >>> 22), 2869860233);
h3 = Math.imul(h1 ^ (h3 >>> 17), 951274213);
h4 = Math.imul(h2 ^ (h4 >>> 19), 2716044179);
return [(h1^h2^h3^h4)>>>0, (h2^h1)>>>0, (h3^h1)>>>0, (h4^h1)>>>0];
}
Calling cyrb128 will produce a 128-bit hash value from a string which can be used to seed a PRNG. Here's how you might use it:
// Create cyrb128 state:
var seed = cyrb128("apples");
// Four 32-bit component hashes provide the seed for sfc32.
var rand = sfc32(seed[0], seed[1], seed[2], seed[3]);
// Only one 32-bit component hash is needed for mulberry32.
var rand = mulberry32(seed[0]);
// Obtain sequential random numbers like so:
rand();
rand();
Note: If you want a slightly more robust 128-bit hash, consider MurmurHash3_x86_128, it's more thorough, but intended for use with large arrays.
Alternatively, simply choose some dummy data to pad the seed with, and advance the generator beforehand a few times (12-20 iterations) to mix the initial state thoroughly. This has the benefit of being simpler, and is often used in reference implementations of PRNGs, but it does limit the number of initial states:
var seed = 1337 ^ 0xDEADBEEF; // 32-bit seed with optional XOR value
// Pad seed with Phi, Pi and E.
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
var rand = sfc32(0x9E3779B9, 0x243F6A88, 0xB7E15162, seed);
for (var i = 0; i < 15; i++) rand();
Note: the output of these PRNG functions produce a positive 32-bit number (0 to 232-1) which is then converted to a floating-point number between 0-1 (0 inclusive, 1 exclusive) equivalent to Math.random(), if you want random numbers of a specific range, read this article on MDN. If you only want the raw bits, simply remove the final division operation.
JavaScript numbers can only represent whole integers up to 53-bit resolution. And when using bitwise operations, this is reduced to 32. Modern PRNGs in other languages often use 64-bit operations, which require shims when porting to JS that can drastically reduce performance. The algorithms here only use 32-bit operations, as it is directly compatible with JS.
Now, onward to the the generators. (I maintain the full list with references and license info here)
sfc32 (Simple Fast Counter)
sfc32 is part of the PractRand random number testing suite (which it passes of course). sfc32 has a 128-bit state and is very fast in JS.
function sfc32(a, b, c, d) {
return function() {
a >>>= 0; b >>>= 0; c >>>= 0; d >>>= 0;
var t = (a + b) | 0;
a = b ^ b >>> 9;
b = c + (c << 3) | 0;
c = (c << 21 | c >>> 11);
d = d + 1 | 0;
t = t + d | 0;
c = c + t | 0;
return (t >>> 0) / 4294967296;
}
}
You may wonder what the | 0 and >>>= 0 are for. These are essentially 32-bit integer casts, used for performance optimizations. Number in JS are basically floats, but during bitwise operations, they switch into a 32-bit integer mode. This mode is processed faster by JS interpreters, but any multiplication or addition will cause it to switch back to a float, resulting in a performance hit.
Mulberry32
Mulberry32 is a simple generator with a 32-bit state, but is extremely fast and has good quality randomness (author states it passes all tests of gjrand testing suite and has a full 232 period, but I haven't verified).
function mulberry32(a) {
return function() {
var t = a += 0x6D2B79F5;
t = Math.imul(t ^ t >>> 15, t | 1);
t ^= t + Math.imul(t ^ t >>> 7, t | 61);
return ((t ^ t >>> 14) >>> 0) / 4294967296;
}
}
I would recommend this if you just need a simple but decent PRNG and don't need billions of random numbers (see Birthday problem).
xoshiro128**
As of May 2018, xoshiro128** is the new member of the Xorshift family, by Vigna & Blackman (professor Vigna was also responsible for the Xorshift128+ algorithm powering most Math.random implementations under the hood). It is the fastest generator that offers a 128-bit state.
function xoshiro128ss(a, b, c, d) {
return function() {
var t = b << 9, r = a * 5; r = (r << 7 | r >>> 25) * 9;
c ^= a; d ^= b;
b ^= c; a ^= d; c ^= t;
d = d << 11 | d >>> 21;
return (r >>> 0) / 4294967296;
}
}
The authors claim it passes randomness tests well (albeit with caveats). Other researchers have pointed out that it fails some tests in TestU01 (particularly LinearComp and BinaryRank). In practice, it should not cause issues when floats are used (such as in these implementations), but may cause issues if relying on the raw lowest order bit.
JSF (Jenkins' Small Fast)
This is JSF or 'smallprng' by Bob Jenkins (2007), who also made ISAAC and SpookyHash. It passes PractRand tests and should be quite fast, although not as fast as sfc32.
function jsf32(a, b, c, d) {
return function() {
a |= 0; b |= 0; c |= 0; d |= 0;
var t = a - (b << 27 | b >>> 5) | 0;
a = b ^ (c << 17 | c >>> 15);
b = c + d | 0;
c = d + t | 0;
d = a + t | 0;
return (d >>> 0) / 4294967296;
}
}
No, it is not possible to seed Math.random(), but it's fairly easy to write your own generator, or better yet, use an existing one.
Check out: this related question.
Also, see David Bau's blog for more information on seeding.
NOTE: Despite (or rather, because of) succinctness and apparent elegance, this algorithm is by no means a high-quality one in terms of randomness. Look for e.g. those listed in this answer for better results.
(Originally adapted from a clever idea presented in a comment to another answer.)
var seed = 1;
function random() {
var x = Math.sin(seed++) * 10000;
return x - Math.floor(x);
}
You can set seed to be any number, just avoid zero (or any multiple of Math.PI).
The elegance of this solution, in my opinion, comes from the lack of any "magic" numbers (besides 10000, which represents about the minimum amount of digits you must throw away to avoid odd patterns - see results with values 10, 100, 1000). Brevity is also nice.
It's a bit slower than Math.random() (by a factor of 2 or 3), but I believe it's about as fast as any other solution written in JavaScript.
No, but here's a simple pseudorandom generator, an implementation of Multiply-with-carry I adapted from Wikipedia (has been removed since):
var m_w = 123456789;
var m_z = 987654321;
var mask = 0xffffffff;
// Takes any integer
function seed(i) {
m_w = (123456789 + i) & mask;
m_z = (987654321 - i) & mask;
}
// Returns number between 0 (inclusive) and 1.0 (exclusive),
// just like Math.random().
function random()
{
m_z = (36969 * (m_z & 65535) + (m_z >> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
Antti Sykäri's algorithm is nice and short. I initially made a variation that replaced JavaScript's Math.random when you call Math.seed(s), but then Jason commented that returning the function would be better:
Math.seed = function(s) {
return function() {
s = Math.sin(s) * 10000; return s - Math.floor(s);
};
};
// usage:
var random1 = Math.seed(42);
var random2 = Math.seed(random1());
Math.random = Math.seed(random2());
This gives you another functionality that JavaScript doesn't have: multiple independent random generators. That is especially important if you want to have multiple repeatable simulations running at the same time.
Please see Pierre L'Ecuyer's work going back to the late 1980s and early 1990s. There are others as well. Creating a (pseudo) random number generator on your own, if you are not an expert, is pretty dangerous, because there is a high likelihood of either the results not being statistically random or in having a small period. Pierre (and others) have put together some good (pseudo) random number generators that are easy to implement. I use one of his LFSR generators.
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/handstat.pdf
Combining some of the previous answers, this is the seedable random function you are looking for:
Math.seed = function(s) {
var mask = 0xffffffff;
var m_w = (123456789 + s) & mask;
var m_z = (987654321 - s) & mask;
return function() {
m_z = (36969 * (m_z & 65535) + (m_z >>> 16)) & mask;
m_w = (18000 * (m_w & 65535) + (m_w >>> 16)) & mask;
var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
result /= 4294967296;
return result;
}
}
var myRandomFunction = Math.seed(1234);
var randomNumber = myRandomFunction();
It's not possible to seed the builtin Math.random function, but it is possible to implement a high quality RNG in Javascript with very little code.
Javascript numbers are 64-bit floating point precision, which can represent all positive integers less than 2^53. This puts a hard limit to our arithmetic, but within these limits you can still pick parameters for a high quality Lehmer / LCG random number generator.
function RNG(seed) {
var m = 2**35 - 31
var a = 185852
var s = seed % m
return function () {
return (s = s * a % m) / m
}
}
Math.random = RNG(Date.now())
If you want even higher quality random numbers, at the cost of being ~10 times slower, you can use BigInt for the arithmetic and pick parameters where m is just able to fit in a double.
function RNG(seed) {
var m_as_number = 2**53 - 111
var m = 2n**53n - 111n
var a = 5667072534355537n
var s = BigInt(seed) % m
return function () {
return Number(s = s * a % m) / m_as_number
}
}
See this paper by Pierre l'Ecuyer for the parameters used in the above implementations:
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
And whatever you do, avoid all the other answers here that use Math.sin!
To write your own pseudo random generator is quite simple.
The suggestion of Dave Scotese is useful but, as pointed out by others, it is not quite uniformly distributed.
However, it is not because of the integer arguments of sin. It's simply because of the range of sin, which happens to be a one dimensional projection of a circle. If you would take the angle of the circle instead it would be uniform.
So instead of sin(x) use arg(exp(i * x)) / (2 * PI).
If you don't like the linear order, mix it a bit up with xor. The actual factor doesn't matter that much either.
To generate n pseudo random numbers one could use the code:
function psora(k, n) {
var r = Math.PI * (k ^ n)
return r - Math.floor(r)
}
n = 42; for(k = 0; k < n; k++) console.log(psora(k, n))
Please also note that you cannot use pseudo random sequences when real entropy is needed.
Many people who need a seedable random-number generator in Javascript these days are using David Bau's seedrandom module.
Math.random no, but the ran library solves this. It has almost all distributions you can imagine and supports seeded random number generation. Example:
ran.core.seed(0)
myDist = new ran.Dist.Uniform(0, 1)
samples = myDist.sample(1000)
Here's the adopted version of Jenkins hash, borrowed from here
export function createDeterministicRandom(): () => number {
let seed = 0x2F6E2B1;
return function() {
// Robert Jenkins’ 32 bit integer hash function
seed = ((seed + 0x7ED55D16) + (seed << 12)) & 0xFFFFFFFF;
seed = ((seed ^ 0xC761C23C) ^ (seed >>> 19)) & 0xFFFFFFFF;
seed = ((seed + 0x165667B1) + (seed << 5)) & 0xFFFFFFFF;
seed = ((seed + 0xD3A2646C) ^ (seed << 9)) & 0xFFFFFFFF;
seed = ((seed + 0xFD7046C5) + (seed << 3)) & 0xFFFFFFFF;
seed = ((seed ^ 0xB55A4F09) ^ (seed >>> 16)) & 0xFFFFFFFF;
return (seed & 0xFFFFFFF) / 0x10000000;
};
}
You can use it like this:
const deterministicRandom = createDeterministicRandom()
deterministicRandom()
// => 0.9872818551957607
deterministicRandom()
// => 0.34880331158638
No, like they said it is not possible to seed Math.random()
but you can install external package which make provision for that. i used these package which can be install using these command
npm i random-seed
the example is gotten from the package documentation.
var seed = 'Hello World',
rand1 = require('random-seed').create(seed),
rand2 = require('random-seed').create(seed);
console.log(rand1(100), rand2(100));
follow the link for documentation https://www.npmjs.com/package/random-seed
SIN(id + seed) is a very interesting replacement for RANDOM functions that cannot be seeded like SQLite:
https://stackoverflow.com/a/75089040/7776828
Most of the answers here produce biased results. So here's a tested function based on seedrandom library from github:
!function(f,a,c){var s,l=256,p="random",d=c.pow(l,6),g=c.pow(2,52),y=2*g,h=l-1;function n(n,t,r){function e(){for(var n=u.g(6),t=d,r=0;n<g;)n=(n+r)*l,t*=l,r=u.g(1);for(;y<=n;)n/=2,t/=2,r>>>=1;return(n+r)/t}var o=[],i=j(function n(t,r){var e,o=[],i=typeof t;if(r&&"object"==i)for(e in t)try{o.push(n(t[e],r-1))}catch(n){}return o.length?o:"string"==i?t:t+"\0"}((t=1==t?{entropy:!0}:t||{}).entropy?[n,S(a)]:null==n?function(){try{var n;return s&&(n=s.randomBytes)?n=n(l):(n=new Uint8Array(l),(f.crypto||f.msCrypto).getRandomValues(n)),S(n)}catch(n){var t=f.navigator,r=t&&t.plugins;return[+new Date,f,r,f.screen,S(a)]}}():n,3),o),u=new m(o);return e.int32=function(){return 0|u.g(4)},e.quick=function(){return u.g(4)/4294967296},e.double=e,j(S(u.S),a),(t.pass||r||function(n,t,r,e){return e&&(e.S&&v(e,u),n.state=function(){return v(u,{})}),r?(c[p]=n,t):n})(e,i,"global"in t?t.global:this==c,t.state)}function m(n){var t,r=n.length,u=this,e=0,o=u.i=u.j=0,i=u.S=[];for(r||(n=[r++]);e<l;)i[e]=e++;for(e=0;e<l;e++)i[e]=i[o=h&o+n[e%r]+(t=i[e])],i[o]=t;(u.g=function(n){for(var t,r=0,e=u.i,o=u.j,i=u.S;n--;)t=i[e=h&e+1],r=r*l+i[h&(i[e]=i[o=h&o+t])+(i[o]=t)];return u.i=e,u.j=o,r})(l)}function v(n,t){return t.i=n.i,t.j=n.j,t.S=n.S.slice(),t}function j(n,t){for(var r,e=n+"",o=0;o<e.length;)t[h&o]=h&(r^=19*t[h&o])+e.charCodeAt(o++);return S(t)}function S(n){return String.fromCharCode.apply(0,n)}if(j(c.random(),a),"object"==typeof module&&module.exports){module.exports=n;try{s=require("crypto")}catch(n){}}else"function"==typeof define&&define.amd?define(function(){return n}):c["seed"+p]=n}("undefined"!=typeof self?self:this,[],Math);
function randIntWithSeed(seed, max=1) {
/* returns a random number between [0,max] including zero and max
seed can be either string or integer */
return Math.round(new Math.seedrandom('seed' + seed)()) * max
}
test for true randomness of this code: https://es6console.com/kkjkgur2/
There are plenty of good answers here but I had a similar issue with the additional requirement that I would like portability between Java's random number generator and whatever I ended up using in JavaScript.
I found the java-random package
These two pieces of code had identical output assuming the seed is the same:
Java:
Random randomGenerator = new Random(seed);
int randomInt;
for (int i=0; i<10; i++) {
randomInt = randomGenerator.nextInt(50);
System.out.println(randomInt);
}
JavaScript:
let Random = require('java-random');
let rng = new Random(seed);
for (let i=0; i<10; i++) {
let val = rng.nextInt(50);
console.log(val);
}
Do what bryc suggests ... but before you use his cyrb128 hash function to initialise, note that the return statement throws away 32 bits of entropy. Exclusive-or the four values together = 0. You should probably make the first element (h2^h3^h4) >>> 0.
I have written a function that returns a seeded random number, it uses Math.sin to have a long random number and uses the seed to pick numbers from that.
Use :
seedRandom("k9]:2#", 15)
it will return your seeded number
the first parameter is any string value ; your seed.
the second parameter is how many digits will return.
function seedRandom(inputSeed, lengthOfNumber){
var output = "";
var seed = inputSeed.toString();
var newSeed = 0;
var characterArray = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','y','x','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','U','R','S','T','U','V','W','X','Y','Z','!','#','#','$','%','^','&','*','(',')',' ','[','{',']','}','|',';',':',"'",',','<','.','>','/','?','`','~','-','_','=','+'];
var longNum = "";
var counter = 0;
var accumulator = 0;
for(var i = 0; i < seed.length; i++){
var a = seed.length - (i+1);
for(var x = 0; x < characterArray.length; x++){
var tempX = x.toString();
var lastDigit = tempX.charAt(tempX.length-1);
var xOutput = parseInt(lastDigit);
addToSeed(characterArray[x], xOutput, a, i);
}
}
function addToSeed(character, value, a, i){
if(seed.charAt(i) === character){newSeed = newSeed + value * Math.pow(10, a)}
}
newSeed = newSeed.toString();
var copy = newSeed;
for(var i=0; i<lengthOfNumber*9; i++){
newSeed = newSeed + copy;
var x = Math.sin(20982+(i)) * 10000;
var y = Math.floor((x - Math.floor(x))*10);
longNum = longNum + y.toString()
}
for(var i=0; i<lengthOfNumber; i++){
output = output + longNum.charAt(accumulator);
counter++;
accumulator = accumulator + parseInt(newSeed.charAt(counter));
}
return(output)
}
A simple approach for a fixed seed:
function fixedrandom(p){
const seed = 43758.5453123;
return (Math.abs(Math.sin(p)) * seed)%1;
}
In PHP, there is function srand(seed) which generate fixed random value for particular seed.
But, in JS, there is no such inbuilt function.
However, we can write simple and short function.
Step 1: Choose some Seed (Fix Number).
var seed = 100;
Number should be Positive Integer and greater than 1, further explanation in Step 2.
Step 2: Perform Math.sin() function on Seed, it will give sin value of that number. Store this value in variable x.
var x;
x = Math.sin(seed); // Will Return Fractional Value between -1 & 1 (ex. 0.4059..)
sin() method returns a Fractional value between -1 and 1.And we don't need Negative value, therefore, in first step choose number greater than 1.
Step 3: Returned Value is a Fractional value between -1 and 1. So mulitply this value with 10 for making it more than 1.
x = x * 10; // 10 for Single Digit Number
Step 4: Multiply the value with 10 for additional digits
x = x * 10; // Will Give value between 10 and 99 OR
x = x * 100; // Will Give value between 100 and 999
Multiply as per requirement of digits.
The result will be in decimal.
Step 5: Remove value after Decimal Point by Math's Round (Math.round()) Method.
x = Math.round(x); // This will give Integer Value.
Step 6: Turn Negative Values into Positive (if any) by Math.abs method
x = Math.abs(x); // Convert Negative Values into Positive(if any)
Explanation End.Final Code
var seed = 111; // Any Number greater than 1
var digit = 10 // 1 => single digit, 10 => 2 Digits, 100 => 3 Digits and so. (Multiple of 10)
var x; // Initialize the Value to store the result
x = Math.sin(seed); // Perform Mathematical Sin Method on Seed.
x = x * 10; // Convert that number into integer
x = x * digit; // Number of Digits to be included
x = Math.round(x); // Remove Decimals
x = Math.abs(x); // Convert Negative Number into Positive
Clean and Optimized Functional Code
function random_seed(seed, digit = 1) {
var x = Math.abs(Math.round(Math.sin(seed++) * 10 * digit));
return x;
}
Then Call this function using
random_seed(any_number, number_of_digits)any_number is must and should be greater than 1.number_of_digits is optional parameter and if nothing passed, 1 Digit will return.
random_seed(555); // 1 Digit
random_seed(234, 1); // 1 Digit
random_seed(7895656, 1000); // 4 Digit
For a number between 0 and 100.
Number.parseInt(Math.floor(Math.random() * 100))

Categories

Resources