I have the following code:
var marketReturns = [1];
var marketReturnsVol = [1];
var marketVolatility = [1];
var yearlyReturns = [];
var yearlyReturns2 = [];
for (y = 0; y < 50000; y++) {
for (x = 1; x <= 251; x++) {
do {
var rand1 = Math.random();
var rand2 = Math.random();
var x1 = 2.0 * rand1 - 1.0;
var x2 = 2.0 * rand2 - 1.0;
var w = Math.pow(x1, 2) + Math.pow(x2, 2);
} while (w === 0 || w > 1);
multiplier = Math.sqrt((-2 * Math.log(w)) / w);
var volVol = 1 + (((x2 * multiplier) / 100) * 5.98); // real ^VIX is 5.98.
marketVolatility[x] = volVol * marketVolatility[x - 1];
var y1 = 1 + (((x1 * multiplier) / 100) * 1.07); // 1.07 is the daily vol of ^GSPC
var y12 = 1 + (((x1 * multiplier) / 100) * 1.07 * marketVolatility[x]) + 0.00038; // 1.07 is the daily vol of ^GSPC
marketReturns[x] = y1 * marketReturns[x - 1];
marketReturnsVol[x] = y12 * marketReturnsVol[x - 1];
}
yearlyReturns[y] = marketReturns[251];
yearlyReturns2[y] = marketReturnsVol[251];
}
yearlyReturns.sort(function (a, b) {
return (a - b);
})
yearlyReturns2.sort(function (a, b) {
return (a - b);
})
for (x = 0; x < yearlyReturns.length; x++) {
document.write(yearlyReturns2[x] + ", ");
}
So essentially I am calculating marketReturns, which is marketReturns[x-1] * daily change. I want however to make this into subarrays where I can preserve all the individual marketReturns for each iteration of y instead of just preserving the last day like I am in yearlyReturns[y].
I thought I could do it as such:
marketReturns[y][x] = y1 * marketReturns[y][x - 1];
marketReturnsVol[y][x] = y12 * marketReturnsVol[y][x - 1];
But this doesn't work. Is there any way for me to start writing the marketReturns figures into subarrays? Thanks.
You can mimic the multidimensional array using nested array/nested object in javascript:
e.g.
var arr = [];
//Initialize a 10x10 "multidimensional" array
for(var i = 0; i < 10; i++) {
arr[i] = [];
for(var j = 0; j < 10; j++) {
arr[i][j] = 0;
}
}
//Store
arr[5][5] = 10;
Related
what is required is a brute force algorithm, and not some other!
I'm trying to implement the brute force method for a polynomial in javascript, but an error occurs, the answer is different from the other method above (horner method) - this method is checked and it gives the correct answer
but here is the second brut force- method that gives an excellent result, which is not correct.
What is the error in my code?
input :
_x = 6 _n = 5 polyEval = [2,3,5,-6,2]
output Horner method:
3386 // good. correct answer
output Bruforce method:
1496 // bad. incorrect answer
class Programm {
constructor(x:number, n:number) {
this._x = 4;
this._n = 5;
this.polyEval = [2,3,5,-6,2] //this.RandomArray(this._n);
}
private _x:number;
private _n:number;
private polyEval:number[] = [];
//working method
private Horner(poly:number[], n:number, x:number){
let time = performance.now();
let result = poly[0];
for (let i = 1; i < n; i++){
result = result * x + poly[i];
}
time = performance.now() - time;
console.log("Method: Horner |" ,`Result: ${result}, array: ${this.polyEval} |` ,`time: ${time.toFixed(5)}`);
}
// method with an error that I can't find
private BruteForce(poly:number[], n:number, x:number){
let time = performance.now();
let p: number = 0;
for(let i = n - 1; i >= 0; i--){
let coefficient = 1;
for(let j = 1; j <= i; j++){
coefficient = coefficient * x;
}
p = p + poly[i] * coefficient;
}
time = performance.now() - time;
console.log("Method: Brute Force |" ,`Result: ${p}, array: ${this.polyEval} |` ,`time: ${time.toFixed(5)}`);
}
// generate random array
private RandomArray(n: number):number[]{
let result:number[] = new Array(n);
for (let i = 0; i < n; i++){
if(Math.round(Math.random() * 1) > 0){
result[i] = Math.floor(Math.random() * (10 - 1)) + 1;
}else{
result[i] = Math.floor(((Math.random() * (10 - 1)) + 1) * -1);
}
}
return result;
}
public Main() {
console.log(`n - array length: ${this._n} | x - coefficient: ${this._x}`);
this.Horner(this.polyEval, this._n, this._x);
this.BruteForce(this.polyEval, this._n, this._x);
}
}
const random_N:number = Math.floor(Math.random() * (5 - 1)) + 3;
const random_X:number = Math.floor(Math.random() * (5 - 1)) + 2;
const poly = new Programm(random_N, random_X);
poly.Main();
The Horner's scheme works like this:
// initially
result = poly[0] == p_0;
// iteration 1
result = result * x + poly[1] == p_0 * x + p_1
// iteration 2
result = result * x + poly[2] == (p_0 * x + p_1) * x + p_2
== p_0 * x^2 + p_1 * x + p_2
Thus, the polynomial coefficients in the array poly are in order of highest to lowest. Then to replicate that in the brute force solution, one needs to apply the formula as
result = sum(poly[i] * pow(x, n-1-i)) ==
result = sum(poly[n-1-i] * pow(x, i))
My function ''see'' some var that are declared before and some of them not, so I need declare them again inside every function((len and per)), why? And how to make them available for all functions?
Orb = (function() {
var progress = document.querySelector('.progress'),
textarea = document.querySelector('textarea'),
counter = document.querySelector('.counter');
var tweetLength = 40,
warningZone = Math.floor(tweetLength * (1 / 2)),
dangerZone = Math.floor(tweetLength * (3 / 4));
var pathLength = Math.PI * (progress.getAttribute('r') * 2);
progress.style.strokeDashoffset = pathLength + 'px';
progress.style.strokeDasharray = pathLength + 'px';
var len = textarea.value.length,
per = textarea.value.length / tweetLength;
My first function(len, per):
function handleProgress() {
var len = textarea.value.length,
per = textarea.value.length / tweetLength;
if (len <= tweetLength) {
var newOffset = pathLength - (pathLength * per) + 'px';
progress.style.strokeDashoffset = newOffset;
console.log(newOffset);
}
}
My second function(len):
function handleColors() {
var len = textarea.value.length;
progress.classList.toggle('warn', len > warningZone && len < dangerZone);
progress.classList.toggle('danger', len >= dangerZone);
progress.classList.toggle('tragedy', len == tweetLength);
}
And the third(len):
function handleCounter() {
var len = textarea.value.length;
counter.textContent = tweetLength - len;
counter.classList.toggle('danger', len >= tweetLength);
}
//handleCounter();
return {
updateProgress: handleProgress,
updateColors: handleColors,
updateCounter: handleCounter
};
}());
I am looking for a way to generate the same sequence of pseudo random integer numbers from both python and javascript.
When I seed in python like this I get the below results:
random.seed(3909461935)
random.randint(0, 2147483647) = 162048056
random.randint(0, 2147483647) = 489743869
random.randint(0, 2147483647) = 1561110296
I need the same sequence in javascript.
Note: I used 2147483647 as the range in the randint method because I am assuming javascript can only handle 32 bit INTs.
Are there any libraries on both sides I can use to generate the same set of pseudo random numbers given the same seed?
I have found two implementations of Mersenne Twister that generate the same 32 bit integer values given the same seed.
This way you can generate a server side sequence in Python, and have the browser independently generate the same sequence in javascript.
Python:
from mt_random import *
r = mersenne_rng(seed = 12345)
r.get_random_number() # Prints 3992670690
r.get_random_number() # Prints 3823185381
r.get_random_number() # Prints 1358822685
Javascript:
r = new MersenneTwister();
r.init_genrand(12345);
r = mersenne_rng(seed = 12345)
r.genrand_int32(); # Prints 3992670690
r.genrand_int32(); # Prints 3823185381
r.genrand_int32(); # Prints 1358822685
The JS is here:
/*
* 疑似乱数生成機 移植
*
* Mersenne Twister with improved initialization (2002)
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/mt.html
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/mt19937ar.html
*/
// = 移植元ラインセンス =======================================================
// ======================================================================
/*
A C-program for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
This is a faster version by taking Shawn Cokus's optimization,
Matthe Bellew's simplification, Isaku Wada's real version.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or another materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat # math.sci.hiroshima-u.ac.jp (remove space)
*/
// ======================================================================
function MersenneTwister() {
// 整数を扱うクラス
function Int32(value) {
var bits = new Array(0, 0, 0, 0);
var i;
var v = value;
if (v != 0) {
for (i = 0; i < 4; ++i) {
bits[i] = v & 0xff;
v = v >> 8;
}
}
this.getValue = function () {
return (bits[0] | (bits[1] << 8) | (bits[2] << 16)) + ((bits[3] << 16) * 0x100);
};
this.getBits = function (i) { return bits[i & 3]; };
this.setBits = function (i, val) { return (bits[i & 3] = val & 0xff); };
this.add = function (another) {
var tmp = new Int32(0);
var i, fl = 0, b;
for (i = 0; i < 4; ++i) {
b = bits[i] + another.getBits(i) + fl;
tmp.setBits(i, b);
fl = b >> 8;
}
return tmp;
};
this.sub = function (another) {
var tmp = new Int32(0);
var bb = new Array(0, 0, 0, 0);
var i;
for (i = 0; i < 4; ++i) {
bb[i] = bits[i] - another.getBits(i);
if ((i > 0) && (bb[i - 1] < 0)) {
--bb[i];
}
}
for (i = 0; i < 4; ++i) {
tmp.setBits(i, bb[i]);
}
return tmp;
};
this.mul = function (another) {
var tmp = new Int32(0);
var bb = new Array(0, 0, 0, 0, 0);
var i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; i + j < 4; ++j) {
bb[i + j] += bits[i] * another.getBits(j);
}
tmp.setBits(i, bb[i]);
bb[i + 1] += bb[i] >> 8;
}
return tmp;
};
this.and = function (another) {
var tmp = new Int32(0);
var i;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, bits[i] & another.getBits(i));
}
return tmp;
};
this.or = function (another) {
var tmp = new Int32(0);
var i;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, bits[i] | another.getBits(i));
}
return tmp;
};
this.xor = function (another) {
var tmp = new Int32(0);
var i;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, bits[i] ^ another.getBits(i));
}
return tmp;
};
this.rshifta = function (s) {
var tmp = new Int32(0);
var bb = new Array(0, 0, 0, 0, 0);
var p = s >> 3;
var i, sg = 0;
if ((bits[3] & 0x80) > 0) {
bb[4] = sg = 0xff;
}
for (i = 0; i + p < 4; ++i) {
bb[i] = bits[i + p];
}
for (; i < 4; ++i) {
bb[i] = sg;
}
p = s & 0x7;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, ((bb[i] | (bb[i + 1] << 8)) >> p) & 0xff);
}
return tmp;
};
this.rshiftl = function (s) {
var tmp = new Int32(0);
var bb = new Array(0, 0, 0, 0, 0);
var p = s >> 3;
var i;
for (i = 0; i + p < 4; ++i) {
bb[i] = bits[i + p];
}
p = s & 0x7;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, ((bb[i] | (bb[i + 1] << 8)) >> p) & 0xff);
}
return tmp;
};
this.lshift = function (s) {
var tmp = new Int32(0);
var bb = new Array(0, 0, 0, 0, 0);
var p = s >> 3;
var i;
for (i = 0; i + p < 4; ++i) {
bb[i + p + 1] = bits[i];
}
p = s & 0x7;
for (i = 0; i < 4; ++i) {
tmp.setBits(i, (((bb[i] | (bb[i + 1] << 8)) << p) >> 8) & 0xff);
}
return tmp;
};
this.equals = function (another) {
var i;
for (i = 0; i < 4; ++i) {
if (bits[i] != another.getBits(i)) {
return false;
}
}
return true;
};
this.compare = function (another) {
var i;
for (i = 3; i >= 0; --i) {
if (bits[i] > another.getBits(i)) {
return 1;
} else if (bits[i] < another.getBits(i)) {
return -1;
}
}
return 0;
};
}
// End of Int32
/* Period parameters */
var N = 624;
var M = 397;
var MATRIX_A = new Int32(0x9908b0df); /* constant vector a */
var UMASK = new Int32(0x80000000); /* most significant w-r bits */
var LMASK = new Int32(0x7fffffff); /* least significant r bits */
var INT32_ZERO = new Int32(0);
var INT32_ONE = new Int32(1);
var MIXBITS = function (u, v) {
return (u.and(UMASK)).or(v.and(LMASK));
};
var TWIST = function (u, v) {
return ((MIXBITS(u, v).rshiftl(1)).xor((v.and(INT32_ONE)).equals(INT32_ZERO) ? INT32_ZERO : MATRIX_A));
};
var state = new Array(); /* the array for the state vector */
var left = 1;
var initf = 0;
var next = 0;
var i;
for (i = 0; i < N; ++i) {
state[i] = INT32_ZERO;
}
/* initializes state[N] with a seed */
var _init_genrand = function (s) {
var lt1812433253 = new Int32(1812433253);
var j;
state[0]= new Int32(s);
for (j = 1; j < N; ++j) {
state[j] = ((lt1812433253.mul(state[j - 1].xor(state[j - 1].rshiftl(30)))).add(new Int32(j)));
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array state[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
//state[j] &= 0xffffffff; /* for >32 bit machines */
}
left = 1; initf = 1;
};
this.init_genrand = _init_genrand;
/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
this.init_by_array = function (init_key, key_length) {
var lt1664525 = new Int32(1664525);
var lt1566083941 = new Int32(1566083941);
var i, j, k;
_init_genrand(19650218);
i = 1; j = 0;
k = (N > key_length ? N : key_length);
for (; k; --k) {
state[i] = ((state[i].xor((state[i - 1].xor(state[i - 1].rshiftl(30))).mul(lt1664525))).add(
new Int32(init_key[j]))).add(new Int32(j)); /* non linear */
//state[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++; j++;
if (i >= N) {
state[0] = state[N - 1];
i = 1;
}
if (j >= key_length) {
j = 0;
}
}
for (k = N - 1; k; --k) {
state[i] = (state[i].xor((state[i-1].xor(state[i - 1].rshiftl(30))).mul(lt1566083941))).sub(
new Int32(i)); /* non linear */
//state[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++;
if (i >= N) {
state[0] = state[N - 1];
i = 1;
}
}
state[0] = new Int32(0x80000000); /* MSB is 1; assuring non-zero initial array */
left = 1; initf = 1;
};
var next_state = function () {
var p = 0;
var j;
/* if init_genrand() has not been called, */
/* a default initial seed is used */
if (initf == 0) {
_init_genrand(5489);
}
left = N;
next = 0;
for (j = N - M + 1; --j; ++p) {
state[p] = state[p + M].xor(TWIST(state[p], state[p + 1]));
}
for (j = M; --j; ++p) {
state[p] = state[p + M - N].xor(TWIST(state[p], state[p + 1]));
}
state[p] = state[p + M - N].xor(TWIST(state[p], state[0]));
};
var lt0x9d2c5680 = new Int32(0x9d2c5680);
var lt0xefc60000 = new Int32(0xefc60000);
/* generates a random number on [0,0xffffffff]-interval */
var _genrand_int32 = function () {
var y;
if (--left == 0) {
next_state();
}
y = state[next];
++next;
/* Tempering */
y = y.xor(y.rshiftl(11));
y = y.xor((y.lshift(7)).and(lt0x9d2c5680));
y = y.xor((y.lshift(15)).and(lt0xefc60000));
y = y.xor(y.rshiftl(18));
return y.getValue();
};
this.genrand_int32 = _genrand_int32;
/* generates a random number on [0,0x7fffffff]-interval */
this.genrand_int31 = function () {
var y;
if (--left == 0) {
next_state();
}
y = state[next];
++next;
/* Tempering */
y = y.xor(y.rshiftl(11));
y = y.xor((y.lshift(7)).and(lt0x9d2c5680));
y = y.xor((y.lshift(15)).and(lt0xefc60000));
y = y.xor(y.rshiftl(18));
return (y.rshiftl(1)).getValue();
};
/* generates a random number on [0,1]-real-interval */
this.genrand_real1 = function () {
var y;
if (--left == 0) {
next_state();
}
y = state[next];
++next;
/* Tempering */
y = y.xor(y.rshiftl(11));
y = y.xor((y.lshift(7)).and(lt0x9d2c5680));
y = y.xor((y.lshift(15)).and(lt0xefc60000));
y = y.xor(y.rshiftl(18));
return y.getValue() * (1.0/4294967295.0);
/* divided by 2^32-1 */
};
/* generates a random number on [0,1)-real-interval */
this.genrand_real2 = function () {
var y;
if (--left == 0) {
next_state();
}
y = state[next];
++next;
/* Tempering */
y = y.xor(y.rshiftl(11));
y = y.xor((y.lshift(7)).and(lt0x9d2c5680));
y = y.xor((y.lshift(15)).and(lt0xefc60000));
y = y.xor(y.rshiftl(18));
return y.getValue() * (1.0 / 4294967296.0);
/* divided by 2^32 */
};
/* generates a random number on (0,1)-real-interval */
this.genrand_real3 = function () {
var y;
if (--left == 0) {
next_state();
}
y = state[next];
++next;
/* Tempering */
y = y.xor(y.rshiftl(11));
y = y.xor((y.lshift(7)).and(lt0x9d2c5680));
y = y.xor((y.lshift(15)).and(lt0xefc60000));
y = y.xor(y.rshiftl(18));
return (y.getValue() + 0.5) * (1.0 / 4294967296.0);
/* divided by 2^32 */
};
/* generates a random number on [0,1) with 53-bit resolution*/
this.genrand_res53 = function () {
var a = ((new Int32(_genrand_int32())).rshiftl(5)).getValue();
var b = ((new Int32(_genrand_int32())).rshiftl(6)).getValue();
return (a * 67108864.0 + b) * (1.0 / 9007199254740992.0);
};
/* These real versions are due to Isaku Wada, 2002/01/09 added */
}
The corresponding Python implementation is here:
class mersenne_rng(object):
def __init__(self, seed = 5489):
self.state = [0]*624
self.f = 1812433253
self.m = 397
self.u = 11
self.s = 7
self.b = 0x9D2C5680
self.t = 15
self.c = 0xEFC60000
self.l = 18
self.index = 624
self.lower_mask = (1<<31)-1
self.upper_mask = 1<<31
# update state
self.state[0] = seed
for i in range(1,624):
self.state[i] = self.int_32(self.f*(self.state[i-1]^(self.state[i-1]>>30)) + i)
def twist(self):
for i in range(624):
temp = self.int_32((self.state[i]&self.upper_mask)+(self.state[(i+1)%624]&self.lower_mask))
temp_shift = temp>>1
if temp%2 != 0:
temp_shift = temp_shift^0x9908b0df
self.state[i] = self.state[(i+self.m)%624]^temp_shift
self.index = 0
def get_random_number(self):
if self.index >= 624:
self.twist()
y = self.state[self.index]
y = y^(y>>self.u)
y = y^((y<<self.s)&self.b)
y = y^((y<<self.t)&self.c)
y = y^(y>>self.l)
self.index+=1
return self.int_32(y)
def int_32(self, number):
return int(0xFFFFFFFF & number)
if __name__ == "__main__":
rng = mersenne_rng(1131464071)
for i in range(10):
print rng.get_random_number()
So I have this class which is used for shape morphing:
class ShapeOverlays {
constructor(elm) {
this.elm = elm;
this.path = elm.querySelectorAll('path');
this.numPoints = 18;
this.duration = 600;
this.delayPointsArray = [];
this.delayPointsMax = 300;
this.delayPerPath = 100;
this.timeStart = Date.now();
this.isOpened = false;
this.isAnimating = false;
}
toggle() {
this.isAnimating = true;
const range = 4 * Math.random() + 6;
for (var i = 0; i < this.numPoints; i++) {
const radian = i / (this.numPoints - 1) * Math.PI;
this.delayPointsArray[i] = (Math.sin(-radian) + Math.sin(-radian * range) + 2) / 4 * this.delayPointsMax;
}
if (this.isOpened === false) {
this.open();
} else {
this.close();
}
}
open() {
this.isOpened = true;
this.elm.classList.add('is-opened');
this.timeStart = Date.now();
this.renderLoop();
}
close() {
this.isOpened = false;
this.elm.classList.remove('is-opened');
this.timeStart = Date.now();
this.renderLoop();
}
updatePath(time) {
const points = [];
for (var i = 0; i < this.numPoints + 1; i++) {
points[i] = ease.cubicInOut(Math.min(Math.max(time - this.delayPointsArray[i], 0) / this.duration, 1)) * 100
}
let str = '';
str += (this.isOpened) ? `M 0 0 V ${points[0]} ` : `M 0 ${points[0]} `;
for (var i = 0; i < this.numPoints - 1; i++) {
const p = (i + 1) / (this.numPoints - 1) * 100;
const cp = p - (1 / (this.numPoints - 1) * 100) / 2;
str += `C ${cp} ${points[i]} ${cp} ${points[i + 1]} ${p} ${points[i + 1]} `;
}
str += (this.isOpened) ? `V 0 H 0` : `V 100 H 0`;
return str;
}
render() {
if (this.isOpened) {
for (var i = 0; i < this.path.length; i++) {
this.path[i].setAttribute('d', this.updatePath(Date.now() - (this.timeStart + this.delayPerPath * i)));
}
} else {
for (var i = 0; i < this.path.length; i++) {
this.path[i].setAttribute('d', this.updatePath(Date.now() - (this.timeStart + this.delayPerPath * (this.path.length - i - 1))));
}
}
}
renderLoop() {
this.render();
if (Date.now() - this.timeStart < this.duration + this.delayPerPath * (this.path.length - 1) + this.delayPointsMax) {
requestAnimationFrame(() => {
this.renderLoop();
});
}
else {
this.isAnimating = false;
}
}
}
(function() {
const elmHamburger = document.querySelector('.hamburger');
const gNavItems = document.querySelectorAll('.global-menu__item');
const elmOverlay = document.querySelector('.shape-overlays');
const overlay = new ShapeOverlays(elmOverlay);
elmHamburger.addEventListener('click', () => {
if (overlay.isAnimating) {
return false;
}
overlay.toggle();
if (overlay.isOpened === true) {
elmHamburger.classList.add('is-opened-navi');
for (var i = 0; i < gNavItems.length; i++) {
gNavItems[i].classList.add('is-opened');
}
} else {
elmHamburger.classList.remove('is-opened-navi');
for (var i = 0; i < gNavItems.length; i++) {
gNavItems[i].classList.remove('is-opened');
}
}
});
}());
Can some one please explain this code? I don't really get how the paths are created using time,how the points are placed and how could I modify it.What is range used for? Why are trigonometral functions used for the delayPointsArray?
Basically it's this part that I don't get:
updatePath(time) {
const points = [];
for (var i = 0; i < this.numPoints + 1; i++) {
points[i] = ease.cubicInOut(Math.min(Math.max(time - this.delayPointsArray[i], 0) / this.duration, 1)) * 100
}
let str = '';
str += (this.isOpened) ? `M 0 0 V ${points[0]} ` : `M 0 ${points[0]} `;
for (var i = 0; i < this.numPoints - 1; i++) {
const p = (i + 1) / (this.numPoints - 1) * 100;
const cp = p - (1 / (this.numPoints - 1) * 100) / 2;
str += `C ${cp} ${points[i]} ${cp} ${points[i + 1]} ${p} ${points[i + 1]} `;
}
str += (this.isOpened) ? `V 0 H 0` : `V 100 H 0`;
return str;
}
render() {
if (this.isOpened) {
for (var i = 0; i < this.path.length; i++) {
this.path[i].setAttribute('d', this.updatePath(Date.now() - (this.timeStart + this.delayPerPath * i)));
}
} else {
for (var i = 0; i < this.path.length; i++) {
this.path[i].setAttribute('d', this.updatePath(Date.now() - (this.timeStart + this.delayPerPath * (this.path.length - i - 1))));
}
}
}
Why is time being used? What is the purpose of this:
points[i] = ease.cubicInOut(Math.min(Math.max(time - this.delayPointsArray[i], 0) / this.duration, 1)) * 100
If you look at how updatePath() is being called, it's like this:
this.updatePath(Date.now() - (this.timeStart + this.delayPerPath * i))
So the time value passed in is the difference between the current time, and the start time of the path we are working with.
So what then is the line of code you are interested in, doing?
points[i] = ease.cubicInOut(Math.min(Math.max(time - this.delayPointsArray[i], 0) / this.duration, 1)) * 100
I'm going to ignore delayPointsArray. It is modifying the start time slightly based on angle. Without seeing the full demo, I'm not sure of the reason for that.
The purpose of this line of code is to calculate how far through the current path's animation we are. The result is in the form of a coordinate value from 0 to 100.
It's doing a lot in that one line of code. So let's break down the individual steps.
Firstly, we are clamping the elapsed time to minimum of 0.
Math.max(time, 0)
In other words, anything before the animation start time becomes zero.
Then we divide by the animation's duration.
Math.max(time, 0) / duration
This will result in a value from 0, representing the start of the animation, to 1, representing the end of the animation. However, the value might also be greater than 1 if the elapsed time is after the end of the animation. Hence the next step.
Now clamp this value to a maximum of 1.
Math.min( Math.max(time, 0) / duration, 1)
We now have a value >= 0 and <= 1 whichdescribes where in the course of the animation, the path is supposed to be. 0 if we should be at the animations start position. 1 if we should be at the animations end position. And somewhere in between if the animation is in progress.
However this value is strictly linear, corresponding with the progression of time. And usually linear movement is not what you want. It is unnatural. Objects accelarate when the start moving and decelerate when the come to a stop. That will be what the easeInOut() function will be doing. If you are not familiar with easing curves, take a look at the diagram below.
Source: Google: The Basics of Easing
So we pass in a linear time value from 0..1 (horizontal axis). It will return a modified value that takes into account acceleration and deceleration.
The final step is to multiply by 100, to convert to a final coordinate value (0..100).
Hope this helps.
I'm experimenting with canvas and I'm trying to modify this piece of code, but unfortunately I don't understand some parts of it.
My question is - how to customize the above code to be defined for example by
f(z) = c^e(-z)
(the formula is taken from a book with fractal examples)?
I know that I need to change this part of code:
function computeRow(task) {
var iter = 0;
var c_i = task.i;
var max_iter = task.max_iter;
var escape = task.escape * task.escape;
task.values = [];
for (var i = 0; i < task.width; i++) {
var c_r = task.r_min + (task.r_max - task.r_min) * i / task.width;
var z_r = 0, z_i = 0;
for (iter = 0; z_r*z_r + z_i*z_i < escape && iter < max_iter; iter++) {
// z -> z^2 + c
var tmp = z_r*z_r - z_i*z_i + c_r;
z_i = 2 * z_r * z_i + c_i;
z_r = tmp;
}
if (iter == max_iter) {
iter = -1;
}
task.values.push(iter);
}
return task;
}
But can't what z_i, z_r, c_i, c_r really means and how I could bind them to the above formula.
Any help would be greatly appreciated.
Complex number have a two part: real, imaginary.
So z = a + b*i, where a is real part, and b*i is imaginary.
In provided sample for z=z^2+c, where z=z_r+z_i*i
NOTE: i*i = -1
So z^2 = (z_r+z_i*i)*(z_r+z_i*i) = z_r*z_r+2*z_r*z_i*i + z_i*i*z_i*i = z_r*z_r+2*z_r*z_i*i - z_i*z_i
now add c: z_r*z_r+2*z_r*z_i*i - z_i*z_i + c_r + c_i*i group it
z_r*z_r+2*z_r*z_i*i - z_i*z_i + c_r + c_i*i = (z_r*z_r - z_i*z_i + c_r) + (2*z_r*z_i + c_i)*i
So we get tmp var from code - is real part of new z
tmp = z_r*z_r - z_i*z_i + c_r
and imaginary part
2*z_r*z_i + c_i
Since z = z_r + z_i * i, we need assign
z_r = z_r*z_r - z_i*z_i + c_r
z_i = 2*z_r*z_i + c_i
UPDATE: for f(z) = e^z - c
first, few complex form: x = a+b*i = |x|(cos(p)+i*sin(p)) = |x|*e^(i*p)
where |x| = sqrt(a*a + b*b) and p = b/a
in our case: p=z_i/z_r, |z| = sqrt(z_r*z_r+z_i*z_i)
e^z = e^(z_r+z_i*i) = e^z_r * (e^z_i*i) = e^z_r * (cos(p)+i*sin(p)) = (e^z_r * cos(p)) + i * (e^z_r * sin(p))
subtract c:
(e^z_r * cos(p)) + i * (e^z_r * sin(p)) - c_r - c_i*i = (e^z_r * cos(p) - c_r) + i * (e^z_r * sin(p) - c_i)
so new z
z_r = (e^z_r * cos(p) - c_r) = (e^z_r * cos(z_i/z_r) - c_r)
z_i = (e^z_r * sin(p) - c_i) = (e^z_r * sin(z_i/z_r) - c_i)