Confused about the jQuery $.each function - javascript

Let's say I have
$.each(data,function(i,item){
...
});
I get that $.each is going to iterate over the object (or array) data but I am confused about the function. Why is "i" incrementing by 1 ("i"++) over the loop and what defines "item" to be data[i]? Is this just a built in function mechanic applied to every item in the object or array?
Thanks

jQuery's .each() function calls your callback function with element's index as first parameter and element's value as second parameter.
You can find relevant documentation here:
http://devdocs.io/jquery/jquery.each

Here is a "hypothetical implementation" that shows how this can be achieved:
var myEachFunction = function (array, callback) {
var i, len;
for (i = 0, len = array.length; i < len; ++i) {
callback(i, array[i]);
}
};
// Usage: myEachFunction([5, 6, 7], function (i, item) {
// doSomething();
// });
In this implementation, I am calling the provided callback function with the loop index and the item value, in that order.
jQuery's implementation is similar, but much more sophisticated. Besides things like error/argument checking, it also supports iterating over objects, not just arrays. The jQuery documentation provides more information on what arguments are passed in what order.

It's exactly a built in jquery function, for each item (looped with a for it applies the function that you provided, passing to the function index and element[index]). Also it's smarter than that it detects if the first argument in $.each is a json or array - for array - the index is passed for json the key is passed along with the values).
A similar implementation would look like this:
function each(x, fn) {
if(x.constructor == Array) {
for(var i = 0; i < x.length; i++) {
fn(i, x[i]);
}
} else if (x.constructor == Object) {
for(var key in x) {
fn(key, x[key]);
}
} else {
throw Exception('Non array or object passed');
}
}
each([1,2,3], function(ind, el) {console.log(ind, el)});
each({x:1, y:2}, function (key, el) { console.log(key, el) });

Related

Why object.values(arguments) instead of directly slicing “arr”?

This is the question Prompt:
You will be provided with an initial array (the first argument in the destroyer function), followed by one or more arguments. Remove all elements from the initial array that are of the same value as these arguments.
This is the model solution:
function destroyer(arr) {
let valsToRemove = Object.values(arguments).slice(1);
for (let i = 0; i < arr.length; i++) {
for (let j = 0; j < valsToRemove.length; j++) {
if (arr[i] === valsToRemove[j]) {
delete arr[i];
}
}
}
return arr.filter(item => item !== null);
}
My question is: why must we assign to “valToRemove” “Object.values(arguments).slice(1)” and not “arr.slice(1)”
Look at the definition again:
an initial array (the first argument in the destroyer function), followed by one or more arguments
So arr is "an initial array (the first argument in the destroyer function)"
Object.values(arguments).slice(1); is "followed by one or more arguments"
If you sliced arr then you might as well just say:
function destroyer(arr) {
return arr[0];
}
… which is very different.
That said, the modern approach to this would be to use rest parameter syntax:
function destroyer(arr, ...valsToRemove) {

Is an array.forEach with a splice the best way to remove an entry from an array of unique Ids?

I have an array of objects. Each object has a unique userTestrId. Here is the code that I am using when I want to delete one of the objects. Is this the most efficient way I can perform the delete? What I am concerned with is once a row has been deleted the code will still go all the way through the array even though there is no chance of another entry:
var id = 99;
self.tests.forEach(function (elem, index) {
if (elem['userTestId'] === id)
self.tests.splice(index, 1);
});
}
var id = 99;
self.tests.some(function (elem, index) {
if (elem['userTestId'] === id)
self.tests.splice(index, 1);
return true;
});
return false;
}
Could utilise Array.some? Stops looping once you return TRUE from a callback.
This is an alternative to #benhowdle89's answer.
Use Array.prototype.every
The .every method is used to iterate over an array and check whether each and every element passes a test or not. If the callback returns false for any single element, the loop breaks.
Take the following example:
var odds = [3, 5, 7, 9, 11, 12, 17, 19];
//an array with all odd numbers except one
var checkEven = function (n, i, arr) {
console.log ("Checking number ", n);
if (n%2===0) {
arr.splice(i, 1);
return false;
}
return true;
}
console.log(odds.every(checkEven), odds);
If you run the above and look at the console, the loop executed till number 12 only, where it spliced, and stopped.
You can employ similar logic in your code very easily :)
var id = 99;
self.tests.some(function (elem, index) {
if (elem['userTestId'] === id)
self.tests.splice(index, 1);
return true;
});
return false;
}
Polyfill :
some was added to the ECMA-262 standard in the 5th edition; as such it may not be present in all implementations of the standard. You can work around this by inserting the following code at the beginning of your scripts, allowing use of some in implementations which do not natively support it.
// Production steps of ECMA-262, Edition 5, 15.4.4.17
// Reference: http://es5.github.io/#x15.4.4.17
if (!Array.prototype.some) {
Array.prototype.some = function(fun /*, thisArg*/) {
'use strict';
if (this == null) {
throw new TypeError('Array.prototype.some called on null or undefined');
}
if (typeof fun !== 'function') {
throw new TypeError();
}
var t = Object(this);
var len = t.length >>> 0;
var thisArg = arguments.length >= 2 ? arguments[1] : void 0;
for (var i = 0; i < len; i++) {
if (i in t && fun.call(thisArg, t[i], i, t)) {
return true;
}
}
return false;
};
}
see in detail
While your concern is technically correct, it's unlikely to be an actual problem(Javascript is fast, this is a microoptimization).
What you should do is focus on using the appropriate interface, so your code could be easy to read and understand. .forEach() does not tell you what you want to do, unless you really do want to do something with each element of the array.
Lodash has the .remove() function, which removes all elements matching a predicate. Unfortunately, I couldn't find the exact specific function you wanted in JS's standard library or in lodash, so you would have to write your own wrapper:
var id = 99
removeFirst(tests, function (elem) { return elem.userTestId === id })
function removeFirst(array, callback) {
var index = array.findIndex(callback)
array.splice(index, 1)
}
Having noted that, you should avoid using an array at all - splicing is way more expensive than looping the whole array to begin with! Instead, since you have a unique identifier, you could use a map:
var map = {}
tests.forEach(function mapper(elem) {
map[elem.userTestId] = elem
})
Now, your removal function is simply delete map[id].

Javascript: Determine if all of the elements in the array are keys in the object

I am trying to figure out if all of the elements in an array are keys in the object.
var obj = { name: 'Computer', cost: '$1,000' };
var myArray = [ 'name', 'cost', 'bio' ]; //another example would be var myArray = [];
for(var x = 0; x < myArray.length; x++){
if (myArray[x] in obj)
{
return true;
}
}
How can I check if all of the elements in an array are keys in the object?
Do it the other way around. If you find someone in the array who is NOT in the object then you return false. If you reach the end of the loop then you return true because all the keys were in the object.
Depending on what you want, this might do the trick:
function hasKeys(obj, keys) {
for (var i=0; i != keys.length; ++i) {
if (!(keys[i] in obj))
return false;
}
return true;
};
One subtlety you need to ask yourself: do you want to know if the object has the keys directly (i.e. not somewhere in its prototype stack?) If so, then replace keys[i] in obj with obj.hasOwnProperty(keys[i])
function hasKeys(obj, keys) {
return keys.every(Object.prototype.hasOwnProperty.bind(obj));
}
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every states, "The every method executes the provided callback function once for each element present in the array until it finds one where callback returns a falsy value (a value that becomes false when converted to a Boolean). If such an element is found, the every method immediately returns false. Otherwise, if callback returned a true value for all elements, every will return true. callback is invoked only for indexes of the array which have assigned values; it is not invoked for indexes which have been deleted or which have never been assigned values" (emphasis mine).
Array.some() makes for a clean solution.
// object in question
var obj = { ... };
// keys that need to be present in the object
var keys = [ ... ];
// iterate through the whitelist until we find a key that doesn't exist in the object. If all exist, that means Array.some() is false.
var valid = !keys.some(function(key) {
return !obj.hasOwnProperty(key);
});
An alternative solution would be using a similar concept, but with Array.every(). It is to note that this will generally be slower because it always has to touch every element in the whitelist.
// iterate through the whitelist, making sure the object has each key.
var valid = keys.every(obj.hasOwnProperty);
This problem can be expressed in terms of set inclusion: does the set of property keys completely include the array of required keys? So we can write it as
includes(Object.keys(obj), arr)
So now we just need to write includes.
function includes(arr1, arr2) {
return arr2.every(function(key) {
return contains(arr1, key);
}
}
For contains, we could use Underscore's _.contains, or just write it ourselves:
function contains(arr, val) {
return arr.indexOf(val) !== -1;
}
If we are interested in conciseness at the possible expense of readability, we could shorten our definition of includes to use Function#bind instead of the anonymous function:
function includes(arr1, arr2) {
return arr2.every(contains.bind(0, arr1));
}
Now we have functions we can use for other things, instead of mixing up the two different aspects of the problem--the keys of an object, and set inclusion. If we really want to write an all-in-one function, it becomes the somewhat more readable:
function hasMany(obj, arr) {
return arr.every(_.contains.bind(0, Object.keys(obj));
}
If we want more readability, like we were writing a novel:
function object_has_required_keys(object, required_keys) {
var object_keys = Object.keys(object);
function key_is_present(key) {
return object_keys.indexOf(key) !== -1;
}
return required_keys.every(key_is_present);
}
Underscore's _.intersection
If we're lazy (or smart), we could use Underscore's _.intersection to implement includes:
function includes(arr1, arr2) {
return _.intersection(arr1, arr2).length === arr2.length;
}
The idea is to take the intersection, and if the first array includes the second entirely, then the intersection will contain all the elements of the second array, which we can check by comparing their lengths.
Using ES6 sets
Thinking ahead to ES6, we could implement include using its sets, which ought to be faster:
function includes(arr1, arr2) {
var set = new Set(arr1);
return arr2.every(Set.prototype.has.bind(set));
}

Given an array and predicate, find the first matching element

Is there an existing function that finds the first array element that matches some general predicate?
$.fn.findFirstMatching = function(predicate) {
var result;
$.each(this, function(index, value) {
if (predicate(index, value)) {
result = {index: index, value: value};
}
});
if (result) {
return result;
}
};
As of ES2015, you can use Array.prototype.find
An example of using it looks like this:
// outputs the first odd number
console.log([2,4,10,5,7,20].find(x => x%2))
Another solution would be:
$.grep(yourArray, function (value, index) { return value == 42 } )[0]
Note that the order of the arguments should be value, index
Docs for jQuery.grep.
Of course, using _underscore is much more elegant and efficient (as $.grep applies the predicate on the all items of the array, it doesn't stop after the first match), but anyway :)
If you use underscore.js, then you could use find method. It works even with jQuery objects storing collection of elements without problems.
_.find(array, function(value,index) { /* predicate */ });
But besides this additional (but small) library you need to write it by yourself.
Custom implementation could be actually quite short and still readable:
function findFirst(array, predicate) {
for (var i = 0; i < array.length; i++) if (predicate(array[i])) return array[i];
}
This returns first item matching predicate (or undefined) and then stops iteration - this could be handy for huge arrays or if predicate function is complex.
Use inArray method of jquery
You can easily find out the index of your searched element.

Three map implementations in javascript. Which one is better?

I wrote a simple map implementation for some task. Then, out of curiosity, I wrote two more. I like map1 but the code is kinda hard to read. If somebody is interested, I'd appreciate a simple code review.
Which one is better? Do you know some other way to implement this in javascript?
var map = function(arr, func) {
var newarr = [];
for (var i = 0; i < arr.length; i++) {
newarr[i] = func(arr[i]);
}
return newarr;
};
var map1 = function(arr, func) {
if (arr.length === 0) return [];
return [func(arr[0])].concat(funcmap(arr.slice(1), func));
};
var map2 = function(arr, func) {
var iter = function(result, i) {
if (i === arr.length) return result;
result.push(func(arr[i]));
return iter(result, i+1);
};
return iter([], 0);
};
Thanks!
EDIT
I am thinking about such function in general.
For example, right now I am going to use it to iterate like this:
map(['class1', 'class2', 'class3'], function(cls) {
el.removeClass(cls);
});
or
ids = map(elements, extract_id);
/* elements is a collection of html elements,
extract_id is a func that extracts id from innerHTML */
What about the map implementation used natively on Firefox and SpiderMonkey, I think it's very straight forward:
if (!Array.prototype.map) {
Array.prototype.map = function(fun /*, thisp*/) {
var len = this.length >>> 0; // make sure length is a positive number
if (typeof fun != "function") // make sure the first argument is a function
throw new TypeError();
var res = new Array(len); // initialize the resulting array
var thisp = arguments[1]; // an optional 'context' argument
for (var i = 0; i < len; i++) {
if (i in this)
res[i] = fun.call(thisp, this[i], i, this); // fill the resulting array
}
return res;
};
}
If you don't want to extend the Array.prototype, declare it as a normal function expression.
As a reference, map is implemented as following in jQuery
map: function( elems, callback ) {
var ret = [];
// Go through the array, translating each of the items to their
// new value (or values).
for ( var i = 0, length = elems.length; i < length; i++ ) {
var value = callback( elems[ i ], i );
if ( value != null )
ret[ ret.length ] = value;
}
return ret.concat.apply( [], ret );
}
which seems most similar to your first implementation. I'd say the first one is preferred as it is the simplest to read and understand. But if performance is your concern, profile them.
I think that depends on what you want map to do when func might change the array. I would tend to err on the side of simplicity and sample length once.
You can always specify the output size as in
var map = function(arr, func) {
var n = arr.length & 0x7fffffff; // Make sure n is a non-neg integer
var newarr = new Array(n); // Preallocate array size
var USELESS = {};
for (var i = 0; i < n; ++i) {
newarr[i] = func.call(USELESS, arr[i]);
}
return newarr;
};
I used the func.call() form instead of just func(...) instead since I dislike calling user supplied code without specifying what 'this' is, but YMMV.
This first one is most appropriate. Recursing one level for every array item may make sense in a functional language, but in a procedural language without tail-call optimisation it's insane.
However, there is already a map function on Array: it is defined by ECMA-262 Fifth Edition and, as a built-in function, is going to be the optimal choice. Use that:
alert([1,2,3].map(function(n) { return n+3; })); // 4,5,6
The only problem is that Fifth Edition isn't supported by all current browsers: in particular, the Array extensions are not present in IE. But you can fix that with a little remedial work on the Array prototype:
if (!Array.prototype.map) {
Array.prototype.map= function(fn, that) {
var result= new Array(this.length);
for (var i= 0; i<this.length; i++)
if (i in this)
result[i]= fn.call(that, this[i], i, this);
return result;
};
}
This version, as per the ECMA standard, allows an optional object to be passed in to bind to this in the function call, and skips over any missing values (it's legal in JavaScript to have a list of length 3 where there is no second item).
There's something wrong in second method. 'funcmap' shouldn't be changed to 'map1'?
If so - this method loses, as concat() method is expensive - creates new array from given ones, so has to allocate extra memory and execute in O(array1.length + array2.length).
I like your first implementation best - it's definitely easiest to understand and seems quick in execution to me. No extra declaration (like in third way), extra function calls - just one for loop and array.length assignments.
I'd say the first one wins on simplicity (and immediate understandability); performance will be highly dependent on what the engine at hand optimizes, so you'd have to profile in the engines you want to support.

Categories

Resources