Advantages of static function collections - javascript

I am sure this has been asked before, but not able to find it ... so I'll give it a try.
Wen coding projects that consist of multiple domains I usually divide them into two groups.
If it should be only one instance – ever – I use static objects. Utilities also quickly land here.
Else use prototype.
As an example I have a project where there a cache is maintained. As there should only be one cache it is typically written as:
var cache = {
head : null,
tail : null,
clear : function () {
cache.head = null;
cache.tail = null;
...
},
add : function () { ... },
remove : function () { ... },
...
};
Or something like:
var cache = {};
cache.push = function (d) {
...
};
cache.flush = function (d) {
...
};
Other objects are meant to be duplicated, or might one day be, and are coded as:
function Foo() {
...
}
Foo.prototype.bar = function () {
...
};
Now; my question is if there are any particular disadvantages with this practice. In particular the way of producing static objects. Or, put the other way around; any particular advantages. Most things I find discuss the advantages of prototype when duplicating objects. Use of prototype instead of thisin constructor etc. Few address the particulars of static objects. Perhaps because it is straight forward?
Another example of static practice is e.g. glMatrix, for example with vec2.

Related

Convert Calls to undefined function in javascript [duplicate]

In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.

Javascript - Handle function calls dynamically [duplicate]

In Ruby I think you can call a method that hasn't been defined and yet capture the name of the method called and do processing of this method at runtime.
Can Javascript do the same kind of thing ?
method_missing does not fit well with JavaScript for the same reason it does not exist in Python: in both languages, methods are just attributes that happen to be functions; and objects often have public attributes that are not callable. Contrast with Ruby, where the public interface of an object is 100% methods.
What is needed in JavaScript is a hook to catch access to missing attributes, whether they are methods or not. Python has it: see the __getattr__ special method.
The __noSuchMethod__ proposal by Mozilla introduced yet another inconsistency in a language riddled with them.
The way forward for JavaScript is the Proxy mechanism (also in ECMAscript Harmony), which is closer to the Python protocol for customizing attribute access than to Ruby's method_missing.
The ruby feature that you are explaining is called "method_missing" http://rubylearning.com/satishtalim/ruby_method_missing.htm.
It's a brand new feature that is present only in some browsers like Firefox (in the spider monkey Javascript engine). In SpiderMonkey it's called "__noSuchMethod__" https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/NoSuchMethod
Please read this article from Yehuda Katz http://yehudakatz.com/2008/08/18/method_missing-in-javascript/ for more details about the upcoming implementation.
Not at the moment, no. There is a proposal for ECMAScript Harmony, called proxies, which implements a similar (actually, much more powerful) feature, but ECMAScript Harmony isn't out yet and probably won't be for a couple of years.
You can use the Proxy class.
var myObj = {
someAttr: 'foo'
};
var p = new Proxy(myObj, {
get: function (target, methodOrAttributeName) {
// target is the first argument passed into new Proxy, aka. target is myObj
// First give the target a chance to handle it
if (Object.keys(target).indexOf(methodOrAttributeName) !== -1) {
return target[methodOrAttributeName];
}
// If the target did not have the method/attribute return whatever we want
// Explicitly handle certain cases
if (methodOrAttributeName === 'specialPants') {
return 'trousers';
}
// return our generic method_missing function
return function () {
// Use the special "arguments" object to access a variable number arguments
return 'For show, myObj.someAttr="' + target.someAttr + '" and "'
+ methodOrAttributeName + '" called with: ['
+ Array.prototype.slice.call(arguments).join(',') + ']';
}
}
});
console.log(p.specialPants);
// outputs: trousers
console.log(p.unknownMethod('hi', 'bye', 'ok'));
// outputs:
// For show, myObj.someAttr="foo" and "unknownMethod" called with: [hi,bye,ok]
About
You would use p in place of myObj.
You should be careful with get because it intercepts all attribute requests of p. So, p.specialPants() would result in an error because specialPants returns a string and not a function.
What's really going on with unknownMethod is equivalent to the following:
var unk = p.unkownMethod;
unk('hi', 'bye', 'ok');
This works because functions are objects in javascript.
Bonus
If you know the number of arguments you expect, you can declare them as normal in the returned function.
eg:
...
get: function (target, name) {
return function(expectedArg1, expectedArg2) {
...
I've created a library for javascript that let you use method_missing in javascript: https://github.com/ramadis/unmiss
It uses ES6 Proxies to work. Here is an example using ES6 Class inheritance. However you can also use decorators to achieve the same results.
import { MethodMissingClass } from 'unmiss'
class Example extends MethodMissingClass {
methodMissing(name, ...args) {
console.log(`Method ${name} was called with arguments: ${args.join(' ')}`);
}
}
const instance = new Example;
instance.what('is', 'this');
> Method what was called with arguments: is this
No, there is no metaprogramming capability in javascript directly analogous to ruby's method_missing hook. The interpreter simply raises an Error which the calling code can catch but cannot be detected by the object being accessed. There are some answers here about defining functions at run time, but that's not the same thing. You can do lots of metaprogramming, changing specific instances of objects, defining functions, doing functional things like memoizing and decorators. But there's no dynamic metaprogramming of missing functions as there is in ruby or python.
I came to this question because I was looking for a way to fall through to another object if the method wasn't present on the first object. It's not quite as flexible as what your asking - for instance if a method is missing from both then it will fail.
I was thinking of doing this for a little library I've got that helps configure extjs objects in a way that also makes them more testable. I had seperate calls to actually get hold of the objects for interaction and thought this might be a nice way of sticking those calls together by effectively returning an augmented type
I can think of two ways of doing this:
Prototypes
You can do this using prototypes - as stuff falls through to the prototype if it isn't on the actual object. It seems like this wouldn't work if the set of functions you want drop through to use the this keyword - obviously your object wont know or care about stuff that the other one knows about.
If its all your own code and you aren't using this and constructors ... which is a good idea for lots of reasons then you can do it like this:
var makeHorse = function () {
var neigh = "neigh";
return {
doTheNoise: function () {
return neigh + " is all im saying"
},
setNeigh: function (newNoise) {
neigh = newNoise;
}
}
};
var createSomething = function (fallThrough) {
var constructor = function () {};
constructor.prototype = fallThrough;
var instance = new constructor();
instance.someMethod = function () {
console.log("aaaaa");
};
instance.callTheOther = function () {
var theNoise = instance.doTheNoise();
console.log(theNoise);
};
return instance;
};
var firstHorse = makeHorse();
var secondHorse = makeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
This doesn't work for my use case as the extjs guys have not only mistakenly used 'this' they've also built a whole crazy classical inheritance type system on the principal of using prototypes and 'this'.
This is actually the first time I've used prototypes/constructors and I was slightly baffled that you can't just set the prototype - you also have to use a constructor. There is a magic field in objects (at least in firefox) call __proto which is basically the real prototype. it seems the actual prototype field is only used at construction time... how confusing!
Copying methods
This method is probably more expensive but seems more elegant to me and will also work on code that is using this (eg so you can use it to wrap library objects). It will also work on stuff written using the functional/closure style aswell - I've just illustrated it with this/constructors to show it works with stuff like that.
Here's the mods:
//this is now a constructor
var MakeHorse = function () {
this.neigh = "neigh";
};
MakeHorse.prototype.doTheNoise = function () {
return this.neigh + " is all im saying"
};
MakeHorse.prototype.setNeigh = function (newNoise) {
this.neigh = newNoise;
};
var createSomething = function (fallThrough) {
var instance = {
someMethod : function () {
console.log("aaaaa");
},
callTheOther : function () {
//note this has had to change to directly call the fallThrough object
var theNoise = fallThrough.doTheNoise();
console.log(theNoise);
}
};
//copy stuff over but not if it already exists
for (var propertyName in fallThrough)
if (!instance.hasOwnProperty(propertyName))
instance[propertyName] = fallThrough[propertyName];
return instance;
};
var firstHorse = new MakeHorse();
var secondHorse = new MakeHorse();
secondHorse.setNeigh("mooo");
var firstWrapper = createSomething(firstHorse);
var secondWrapper = createSomething(secondHorse);
var nothingWrapper = createSomething();
firstWrapper.someMethod();
firstWrapper.callTheOther();
console.log(firstWrapper.doTheNoise());
secondWrapper.someMethod();
secondWrapper.callTheOther();
console.log(secondWrapper.doTheNoise());
nothingWrapper.someMethod();
//this call fails as we dont have this method on the fall through object (which is undefined)
console.log(nothingWrapper.doTheNoise());
I was actually anticipating having to use bind in there somewhere but it appears not to be necessary.
Not to my knowledge, but you can simulate it by initializing the function to null at first and then replacing the implementation later.
var foo = null;
var bar = function() { alert(foo()); } // Appear to use foo before definition
// ...
foo = function() { return "ABC"; } /* Define the function */
bar(); /* Alert box pops up with "ABC" */
This trick is similar to a C# trick for implementing recursive lambdas, as described here.
The only downside is that if you do use foo before it's defined, you'll get an error for trying to call null as though it were a function, rather than a more descriptive error message. But you would expect to get some error message for using a function before it's defined.

Simple way to access current object

I'm trying to find a simple way to refer to the current instance of an object from the object methods itself (similar to this keyword in any decent language).
I've tried many variations of "storing a pointer for itself" (like window.window.window do), but always something go wrong. For example:
function ClassA() {
var mySelf = this;
this.myMethod = function() {
console.log(mySelf); //Once you extend this class, mySelf will not be available
}
}
function ClassB() {
this.mySelf = this; //Ok, now you can extend this and mySelf will be there
this.myMethod = function() {
console.log(mySelf);//"mySelf is not defined" because it's a property now
console.log(this.mySelf);//Value of 'this' and 'self' will vary
console.log(RandomContainer.ClassBInstance.mySelf);//I can't use a defined path
}
}
Since everything about OOP in JavaScript is hackish, I have to ask...
Is there any magic to refer to the current object that a method is being called from?
EDIT
A lot of possible solutions in the comments, thanks guys!
But I still need to improve my question. So I'll add some piece of code with my failed attempts, and then try out the proposed solutions...
function BaseController()
{
var myPriv = 42;
return {
getAnswer: function() {
return myPriv;
}
};
}
function SomeController()
{
return {
showAnswer: function()
{
var answer;
answer = myPriv; //I need some way to access this
answer = getAnswer(); //Also a way to refer to my own methods
//(I don't even find a way to call 'showAnswer' from this context)
console.log('The answer is ' + answer);
}
};
}
//That's how I was extending my classes so far...
var someControllerInstance = jQuery.extend(
new BaseController(),
new SomeController()
);
someControllerInstance.getAnswer(); //Works!
someControllerInstance.showAnswer(); //Reference errors...
take time to learn the idiosyncrasies of js, be warned though, it's like marmite.
If you'll allow me to be blunt for a moment, you are approaching JavaScript with the wrong frame of mind. It is not designed for classical inheritance, nor for protected properties or methods, and there is no benefit in bending it that way. To be honest I find towering stacks of inheritance a pain to read and navigate, unless you have a singing-all-dancing IDE that may take a week to load. The closer to flat and open you can achieve — whilst still keeping things flexible — the better you are at coding, and the more other coders that may take over your work will thank you. (obviously that is opinion)
For more information on prototype inheritance read the following informative post:
http://davidwalsh.name/javascript-objects-deconstruction
Below is an example of prototype inheritance, it should be noted that Object.create and isPrototypeOf are relatively new and do not exist for older JavaScript interpreters. Approximate polyfills can be used in most cases however.
Put simply JavaScript becomes much more powerful when you think in terms of objects borrowing methods from wherever they may be found, and not instances rigidly inheriting from slightly less specific instances; or worse, constructors that keep rebuilding the same functions again and again.
The following is just an example, and across my 16 years of coding ECMAScript I have barely ever needed anything that approaches classical inheritance, nor have I needed objects that heavily inherit on the prototype chain either. More often than not my js is basically just a number of newly created objects, properly name-spaced, that borrow methods from fixed pools of functions; any type detections are duck-typed, and I'm careful to keep everything as local as possible.
Anyway, here's something I don't often use:
var Make = function(construct){
return Object.create(construct);
};
var Extend = function(proto, props){
var instance = Object.create(proto);
for ( var i in props ) { instance[i] = props[i]; }
instance.super = proto; // this should never be needed really
return instance;
};
var Animal = {
keepBreathing: function(){
console.log('animal', this);
}
};
var Monkey = Extend(Animal, {
climbTree: function(){
console.log('monkey', this);
console.log('monkey', this.super);
}
});
var KeyserSoze = Make(Monkey);
KeyserSoze.keepBreathing(); /// animal, instance of KeyserSoze
KeyserSoze.climbTree(); /// monkey, instance of KeyserSoze
console.log('an instance of monkey', KeyserSoze);
console.log('has animal as proto', Animal.isPrototypeOf(KeyserSoze)); // true
console.log('has monkey as proto', Monkey.isPrototypeOf(KeyserSoze)); // true
Whilst the above does follow a kind of classical layout i.e. Monkey inherits methods from Animal, you could approach things in a different way. The following is more open to dynamic changes, in the fact you could switch out the behaviours object for another interface entirely. Again, this is just an illustration that you don't have to construct things in a fixed way.
Something I'm more likely to use:
var AnimalBehaviours = {
keepBreathing: function(){
(this.breathCount === undefined) && (this.breathCount = 0);
this.breathCount++;
}
};
var ApeLikeDescendant = (function( behaviours ){
return {
create: function( config ){
return Object.create(this).prep(config);
},
prep: function( config ){
/// do your instance specific set up here
return this;
},
climbTree: function(){
console.log('ape-like', this);
},
keepBreathing: function(){
return behaviours.keepBreathing.apply(this, arguments);
},
switchBehaviours: function(newBehaviours){
behaviours = newBehaviours;
}
};
})(AnimalBehaviours);
var DouglasAdams = ApeLikeDescendant.create({});
You could adapt the above to behave more in a manner similar to mixins i.e. you'd take the behaviours, step through them and merge them to the ApeLike object... it's really quite open to whatever your goal is.
Something that I use regularly:
var ElementEdgeCases = {
makeWorkOnNetscape47: function(){
this.target; /// Intentionally left almost blank.
}
};
var ElementFinagler = (function(){
var finagle = {
target: null,
prep: function( element ){
this.target = element;
return this;
},
addClass: function(){
var c = this.target.getAttribute('className'); /// and so on ...
return this;
},
elaborate: function( mixin ){
for ( var i in mixin ) {
if ( mixin.hasOwnProperty(i) ) {
this[i] = mixin[i];
}
}
return this;
}
};
return function( element ){
return Object.create(finagle).prep(element);
};
})();
var elm = document.getElementsByTagName('body')[0];
ElementFinagler(elm)
.elaborate(ElementEdgeCases) // extend the object if we need
.addClass('hello world')
;
The main thing to keep in mind with JavaScript is that no function is owned by anything, not really. Every time you execute a function, the function's context is implied by the way you call that function — the context is computed at call time. This allows a great deal of flexibility, and whilst you mention that calling function.apply(context, args) or function.call(context, arg, arg, ...) every time is cumbersome; it is very easy to codify your own system for hiding that repetition away.
Oh, and before I forget, one other thing to take away from the code above is that there is no duplication of function creation. Every instance shares the same functions in memory. This is an important thing to bear in mind if you are planning to create large scale applications, as you can quickly eat up memory with multiple instances of functions.
So just to recap:
Forget inheritance, it's rarely required for many js projects.
Create flexible objects that can be extended when required.
Borrow methods when you need them from other objects, using apply or call to change context.
Keep your code open, there is no need for private; open is more extensible.
Private no, but having properties not enumerable is a different story, see defineProperty.
Make sure you do not duplicate functions — unless you have to — instead create them once and reference.
this referrers to the dom node that an event originated from, or the javascript object it is a child of. In that order.
this.parentNode referrers the dom node's parent (Not sure if it works in object context).
When I write javascript I'll usually try to leverage the html's dom itself, nesting things mindful of how the JS needs to reference them.

Object Literal or Modular Javascript Design Pattern

This may have already been asked lots of times, and I've searched around SO but so far all the answers I read aren't exactly what I'm looking for.
I'm working on a website with moderate DOM elements showing/hiding, some AJAX calls, and probably something else. So I'll be having two main script files (HTML5 Boilerplate standard)
plugins.js // third party plugins here
site.js // all my site specific code here
Previously I'm using object literal design pattern, so my site.js is something like this:
var site = {
version: '0.1',
init: function() {
site.registerEvents();
},
registerEvents: function() {
$('.back-to-top').on('click', site.scrollToTop);
},
scrollToTop: function() {
$('body').animate({scrollTop: 0}, 400);
}
};
$(function() {
site.init();
});
So far so good, it's nicely readable, all methods are public (I kinda like this, as I can test them via Chrome Dev Tools directly if necessary). However, I intend to decouple some of the site's functionality into more modular style, so I want to have something like this below the code above (or in separate files):
site.auth = {
init: function() {
site.auth.doms.loginButton.on('click', site.auth.events.onLoginButtonClicked);
},
doms: {
loginButton: $('.login'),
registerButton: $('.register')
},
events: {
onLoginButtonClicked: function() {
}
},
fbLogin: function() {
}
};
site.dashboard = {
};
site.quiz = {
};
// more modules
As you can see, it is very readable. However there is one obvious downside, which is I have to write code like site.auth.doms.loginButton and site.auth.events.onLoginButtonClicked. Suddenly it becomes hard to read, and it will only grow longer the more complex the functionality gets. Then I tried the modular pattern:
var site = (function() {
function init() {
$('.back-to-top').on('click', scrollToTop);
site.auth.init();
}
function scrollToTop() {
$('body').animate({scrollTop: 0}, 400);
}
return {
init: init
}
})();
site.auth = (function() {
var doms = {
loginButton: $('.login'),
registerButton: $('.register')
};
function init() {
doms.loginButton.on('click', onLoginButtonClicked);
}
function onLoginButtonClicked() {
}
return {
init: init
}
})();
// more modules
As you can see, those long names are gone, but then I guess I have to init all other modules in the site.init() function to construct them all? Then I have to remember to return the functions that need to be accessible by other modules. Both of them are okay I guess albeit a bit of a hassle, but overall, am I onto a better workflow working with modular pattern?
The correct answer, here, of course, is: "it depends".
If you're totally okay with all data and all methods, for every section of your site being 100% public, then just using a single literal (or multiple literals), with nested objects if desired, is totally fine, assuming that you can keep it from turning into one gigantic ball of code.
If you want any kind of private state, which has any kind of persistence (ie: doesn't reset every time you run a function), then the revealing-module is great.
That said:
It's not a requirement of the revealing-module for you to have an .init method, at all.
If your module can be self-contained, then just focus on exporting what you WOULD like to make public.
To this end, when I'm writing code which a team might look at, later, I'm finding myself creating a public_interface object and returning it (the named version of the anonymous object you return).
The benefit of this is minimal, except to add the understanding that anything which needs to be made public needs to be appended to the interface.
The way you're currently using it:
var module = (function () { /* ... */ return {}; }());
module.submodule = (function () { /*...*/ return {}; }());
Is no better or worse than literals, because you can just as easily do this:
var module = {
a : "",
method : function () {},
meta : { }
};
module.submodule = {
a : "",
method : function () {},
meta : { }
};
Until you hit something which doesn't work for you, work with what fills your needs.
Personally, I'll typically build any data-only objects as literals: config-objects, objects which come in from other connections, etc...
Any dirt-simple object which requires maybe one or two methods, and can be built by nesting only one or two levels deep, I might build literally, as well (as long as it doesn't require initialization).
// ex:
var rectangle = {
width : 12,
height : 24,
area : 0,
perimeter : 0,
init_area : function () { this.area = this.width * this.height; return this; }, // buh...
init_perimeter : function () { this.perimeter = (this.width * 2) + (this.height * 2); return this; } // double-buh...
}.init_area().init_perimeter();
If I needed several of these, perhaps I'd make a constructor.
But if I only ever needed one of something unique like this, wouldn't it save me some headaches to just do something like this:
var rectangle = (function (width, height) {
var public_interface = {
width : width,
height : height,
area : width * height,
perimeter : (2 * width) + (2 * height)
};
return public_interface;
}(12, 24));
If there were more-advanced calculations required, I could keep any extra vars private, and work on them from the inside.
If I needed to have sensitive data inside of an object, and functions to work on that data, then I could have public-functions which call those private functions, and return results, rather than providing access.
Also, if I refactor my code, and decide to rename rectangle at some point, then any functions nested 3 or more deep, which are referring to rectangle will have to be modified, as well.
Again, if you're structuring your methods so that they don't need to directly ask for any object which is further up than this, then you won't have this problem...
...but if you have an interface that looks like:
MyApp.myServices.webService.send();
and it's expecting to find:
MyApp.appData.user.tokens.latest; // where personally, I might leave tokens in a closure
If you change the structure of your appData module, you're going to have all kinds of errors in your webService module, until you find every reference to the old format, and rename them all.

Ok, we can have private identifiers in javascript, but what about protected ones?

Simple as that, can we emulate the "protected" visibility in Javascript somehow?
Do this:
/* Note: Do not break/touch this object */
...code...
Or a bit of google found this on the first page:
http://blog.blanquera.com/2009/03/javascript-protected-methods-and.html
Sure you can. Here's another example.
What could that possibly mean? You don't have classes.
I suppose you could analyze caller to determine whether it meets some set of criteria for being permitted to call a method. This will be hideously inefficient and your criteria will always be spoofable.
There's an interesting pattern worth mentioning here: a JavaScript contructor function may return any object (not necesserily this). One could create a constructor function, that returns a proxy object, that contains proxy methods to the "real" methods of the "real" instance object. This may sound complicated, but it is not; here is a code snippet:
var MyClass = function() {
var instanceObj = this;
var proxyObj = {
myPublicMethod: function() {
return instanceObj.myPublicMethod.apply(instanceObj, arguments);
}
}
return proxyObj;
};
MyClass.prototype = {
_myPrivateMethod: function() {
...
},
myPublicMethod: function() {
...
}
};
The nice thing is that the proxy creation can be automated, if we define a convention for naming the protected methods. I created a little library that does exactly this: http://idya.github.com/oolib/

Categories

Resources