HTML 5 fortune wheel (lunchwheel) - javascript

I have been working on a simple fortune wheel implementation form here, using HTML 5 , but I'm having some issue in finding the winner segment , here is the code in JSFiddle :
http://jsfiddle.net/bramp/94jP6/
Important functions in JSFiddle :
// Called when segments have changed
update: function() {
// Ensure we start mid way on a item
//var r = Math.floor(Math.random() * wheel.segments.length);
var r = 0;
wheel.angleCurrent = ((r + 0.5) / wheel.segments.length) * Math.PI * 2;
var segments = wheel.segments;
var len = segments.length;
var colors = wheel.colors;
var colorLen = colors.length;
// Generate a color cache (so we have consistant coloring)
var seg_color = new Array();
for (var i = 0; i < len; i++)
seg_color.push(colors[segments[i].hashCode().mod(colorLen)]);
wheel.seg_color = seg_color;
wheel.draw();
}
and
drawNeedle: function() {
var ctx = wheel.canvasContext;
var centerX = wheel.centerX;
var centerY = wheel.centerY;
var size = wheel.size;
ctx.lineWidth = 1;
ctx.strokeStyle = '#000000';
ctx.fileStyle = '#ffffff';
ctx.beginPath();
ctx.moveTo(centerX + size - 40, centerY);
ctx.lineTo(centerX + size + 20, centerY - 10);
ctx.lineTo(centerX + size + 20, centerY + 10);
ctx.closePath();
ctx.stroke();
ctx.fill();
// Which segment is being pointed to?
var i = wheel.segments.length - Math.floor((wheel.angleCurrent / (Math.PI * 2)) * wheel.segments.length) - 1;
// Now draw the winning name
ctx.textAlign = "left";
ctx.textBaseline = "middle";
ctx.fillStyle = '#000000';
ctx.font = "2em Arial";
ctx.fillText(wheel.segments[i], centerX + size + 25, centerY);
},
in line 256 is where the current code is getting the winner :
var i = wheel.segments.length - Math.floor((wheel.angleCurrent / (Math.PI * 2)) * wheel.segments.length) - 1;
but thats on the right side of the wheel , Im trying to make it get the segment on top as the winner point . I have been struggling with it for a long time and i appreciate your help or guidance. Thanks

Here is a working solution Fiddle . And the explanation is below:
First we need to draw the pointer to the correct position, on top of the wheel:
drawNeedle: function() {
...
ctx.beginPath();
ctx.moveTo(centerX + 20, centerY - size - 20);
ctx.lineTo(centerX - 20, centerY - size - 20);
ctx.lineTo(centerX , centerY - size + 20);
ctx.closePath();
...
}
In the code segment here that you have given:
var i = wheel.segments.length - Math.floor((wheel.angleCurrent / (Math.PI * 2)) * wheel.segments.length) - 1;
The wheel.angleCurrent / (Math.PI * 2) part means that it is on the right side. Note that in JavaScript that is where we start for a "unit circle". To fix this we just need to off-set the angle by 90 degrees (or in our case add Math.PI/2 in radians):
var change = wheel.angleCurrent + (Math.PI/2);
var i = wheel.segments.length - Math.floor((change / ( Math.PI * 2)) * wheel.segments.length) - 1;
if(i < 0) i = i + 17; // 17 = wheel.segments.length
The way i is calculated is depended on that we start on the right. It offsets by a few items when we change it going from -5 to 12 other than 0 to 16. To fix that on negative items (our offset items) we just need to add them be our 13 to 16. In other-words add 17 (which is the same as wheel.segments.length).

Related

How to get an angle by using tangent in javascript?

The red circle is at a known angle of 130°, then I want to draw the navy line from the center to 130° using x and y of the red circle but it looks like I missed the calculation.
Currently, the angle of the Navy line is a reflection to the angle of the red line and if I add minus sign ➖ to *diffX * at line13, it'll work as expected but Why do I need to do that by myself, why can't the Calculations at line 10 and 13 figured out if x should be minus ➖ or plus.
I couldn't figure out where I was wrong..any help/suggestions are appreciated!
let ctx, W = innerWidth,
H = innerHeight;
// params for the red circle
let hypothenus = 100;
let knownAngle = (-130 * Math.PI) / 180;
let x = (W / 2) + Math.cos(knownAngle) * hypothenus;
let y = (H / 2) + Math.sin(knownAngle) * hypothenus;
// params for navy line
let diffX = x - (W / 2);
let diffY = (H / 2) - y;
let dist = Math.hypot(diffX, diffY); // pythagoras
let unknownAngle = -Math.atan2(diffY, diffX);
let newX = (W / 2) + Math.cos(unknownAngle) * dist;
let newY = (H / 2) + Math.sin(unknownAngle) * dist;
let angInDegree1 = ~~Math.abs(knownAngle * 180 / Math.PI);
let angInDegree2 = ~~Math.abs(unknownAngle * 180 / Math.PI) | 0;
const msg = document.getElementById("msg")
msg.innerHTML = `Hypothenus1: ${hypothenus}, angle: ${angInDegree1}<br>`;
msg.innerHTML +=`Hypothenus2: ${dist}, angle: ${angInDegree2}`;
// everything to be rendered to the screen
const update = () => {
if (ctx == null) return;
// drawing the red line
draw.line([W / 2, 0], [W / 2, H], 6, "red");
draw.line([0, H / 2], [W, H / 2], 6, "red");
// the red circle
draw.circle([x, y], 10, "red");
// draw line
draw.line([W / 2, H / 2], [newX, newY], 4, "navy");
}
// utility object for drawing
const draw = {
line(from, to, width, color) {
with(ctx) {
beginPath();
lineWidth = width;
strokeStyle = color;
moveTo(...from);
lineTo(...to);
stroke();
closePath();
}
},
circle(pos, radius, color) {
ctx.beginPath();
ctx.fillStyle = color;
ctx.arc(...pos, radius, 0, 2 * Math.PI);
ctx.fill();
ctx.closePath();
}
}
// init function
const init = () => {
ctx = document.querySelector("#cvs").getContext("2d");
W = ctx.canvas.width = innerWidth;
H = ctx.canvas.height = innerHeight;
update();
}
window.addEventListener("load", init);
<div id="msg"></div>
<canvas id="cvs"></canvas>
Seems you are using too much minuses.
At first, you define angle -130 degrees, close to -3Pi/4. Cosine and sine values for this angle are about -0.7, using hypothenus = 100, we get x =W/2-70, y = H/2-70
diffX = x - W/2 = -70
diffY = y - H/2 = -70
atan2(-70, -70) gives -2.3561 radians = -3/4*Pi = -135 degrees
When you change sign of diffY (note - diffY formula is wrong, not difX one!), you make reflection against OX axis, and change angle sign - that is why another minus before Math.atan2 is required
Corrected code:
let diffX = x - (W / 2);
let diffY = y - (H / 2);
let dist = Math.hypot(diffX, diffY); // pythagoras
let unknownAngle = Math.atan2(diffY, diffX);

How to draw herringbone pattern on html canvas

I Have to draw Herringbone pattern on canvas and fill with image
some one please help me I am new to canvas 2d drawing.
I need to draw mixed tiles with cross pattern (Herringbone)
var canvas = this.__canvas = new fabric.Canvas('canvas');
var canvas_objects = canvas._objects;
// create a rectangle with a fill and a different color stroke
var left = 150;
var top = 150;
var x=20;
var y=40;
var rect = new fabric.Rect({
left: left,
top: top,
width: x,
height: y,
angle:45,
fill: 'rgba(255,127,39,1)',
stroke: 'rgba(34,177,76,1)',
strokeWidth:0,
originX:'right',
originY:'top',
centeredRotation: false
});
canvas.add(rect);
for(var i=0;i<15;i++){
var rectangle = fabric.util.object.clone(getLastobject());
if(i%2==0){
rectangle.left = rectangle.oCoords.tr.x;
rectangle.top = rectangle.oCoords.tr.y;
rectangle.originX='right';
rectangle.originY='top';
rectangle.angle =-45;
}else{
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.left = rectangle.oCoords.tl.x;
rectangle.top = rectangle.oCoords.tl.y;
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.originX='left';
rectangle.originY='top';
rectangle.angle =45;
}
//rectangle.angle -90;
canvas.add(rectangle);
}
fabric.log('rectangle: ', canvas.toJSON());
canvas.renderAll();
function getLastobject(){
var last = null;
if(canvas_objects.length !== 0){
last = canvas_objects[canvas_objects.length -1]; //Get last object
}
return last;
}
How to draw this pattern in canvas using svg or 2d,3d method. If any third party library that also Ok for me.
I don't know where to start and how to draw this complex pattern.
some one please help me to draw this pattern with rectangle fill with dynamic color on canvas.
Here is a sample of the output I need: (herringbone pattern)
I tried something similar using fabric.js library here is my JSFiddle
Trippy disco flooring
To get the pattern you need to draw rectangles one horizontal tiled one space left or right for each row down and the same for the vertical rectangle.
The rectangle has an aspect of width 2 time height.
Drawing the pattern is simple.
Rotating is easy as well the harder part is finding where to draw the tiles for the rotation.
To do that I create a inverse matrix of the rotation (it reverses a rotation). I then apply that rotation to the 4 corners of the canvas 0,0, width,0 width,height and 0,height this gives me 4 points in the rotated space that are at the edges of the canvas.
As I draw the tiles from left to right top to bottom I find the min corners for the top left, and the max corners for the bottom right, expand it out a little so I dont miss any pixels and draw the tiles with a transformation set the the rotation.
As I could not workout what angle you wanted it at the function will draw it at any angle. On is animated, the other is at 60deg clockwise.
Warning demo contains flashing content.
Update The flashing was way to out there, so have made a few changes, now colours are a more pleasing blend and have fixed absolute positions, and have tied the tile origin to the mouse position, clicking the mouse button will cycle through some sizes as well.
const ctx = canvas.getContext("2d");
const colours = []
for(let i = 0; i < 1; i += 1/80){
colours.push(`hsl(${Math.floor(i * 360)},${Math.floor((Math.sin(i * Math.PI *4)+1) * 50)}%,${Math.floor(Math.sin(i * Math.PI *8)* 25 + 50)}%)`)
}
const sizes = [0.04,0.08,0.1,0.2];
var currentSize = 0;
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 2;
endX = Math.floor(endX / size) + 2;
startY = Math.floor(startY / size) - 2;
endY = Math.floor(endY / size) + 2;
// draw the pattern
ctx.lineWidth = size * 0.1;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
var colourIndex = 0;
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
if((x + y) % 4 === 0){
colourIndex = Math.floor(Math.abs(Math.sin(x)*size + Math.sin(y) * 20));
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
// Animate it all
var update = true; // flag to indecate something needs updating
function mainLoop(time){
// if window size has changed update canvas to new size
if(canvas.width !== innerWidth || canvas.height !== innerHeight || update){
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width, canvas.height) * sizes[currentSize % sizes.length];
update = false;
}
if(mouse.buttonRaw !== 0){
mouse.buttonRaw = 0;
currentSize += 1;
update = true;
}
// draw the patter
drawPattern(size,mouse,time/2000);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
mouse = (function () {
function preventDefault(e) { e.preventDefault() }
var m; // alias for mouse
var mouse = {
x : 0, y : 0, // mouse position
buttonRaw : 0,
over : false, // true if mouse over the element
buttonOnMasks : [0b1, 0b10, 0b100], // mouse button on masks
buttonOffMasks : [0b110, 0b101, 0b011], // mouse button off masks
bounds : null,
eventNames : "mousemove,mousedown,mouseup,mouseout,mouseover".split(","),
event(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left - scrollX;
m.y = e.pageY - m.bounds.top - scrollY;
if (t === "mousedown") { m.buttonRaw |= m.buttonOnMasks[e.which - 1] }
else if (t === "mouseup") { m.buttonRaw &= m.buttonOffMasks[e.which - 1] }
else if (t === "mouseout") { m.over = false }
else if (t === "mouseover") { m.over = true }
e.preventDefault();
},
start(element) {
if (m.element !== undefined) { m.remove() }
m.element = element === undefined ? document : element;
m.eventNames.forEach(name => document.addEventListener(name, mouse.event) );
document.addEventListener("contextmenu", preventDefault, false);
},
}
m = mouse;
return mouse;
})();
mouse.start(canvas);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
Un-animated version at 60Deg
const ctx = canvas.getContext("2d");
const colours = ["red","green","yellow","orange","blue","cyan","magenta"]
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 4;
endX = Math.floor(endX / size) + 4;
startY = Math.floor(startY / size) - 4;
endY = Math.floor(endY / size) + 4;
// draw the pattern
ctx.lineWidth = 5;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
if((x + y) % 4 === 0){
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
drawPattern(size,origin,Math.PI / 3);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
The best way to approach this is to examine the pattern and analyse its symmetry and how it repeats.
You can look at this several ways. For example, you could rotate the patter 45 degrees so that the tiles are plain orthogonal rectangles. But let's just look at it how it is. I am going to assume you are happy with it with 45deg tiles.
Like the tiles themselves, it turns out the pattern has a 2:1 ratio. If we repeat this pattern horizontally and vertically, we can fill the canvas with the completed pattern.
We can see there are five tiles that overlap with our pattern block. However we don't need to draw them all when we draw each pattern block. We can take advantage of the fact that blocks are repeated, and we can leave the drawing of some tiles to later rows and columns.
Let's assume we are drawing the pattern blocks from left to right and top to bottom. Which tiles do we need to draw, at a minimum, to ensure this pattern block gets completely drawn (taking into account adjacent pattern blocks)?
Since we will be starting at the top left (and moving right and downwards), we'll need to draw tile 2. That's because that tile won't get drawn by either the block below us, or the block to the right of us. The same applies to tile 3.
It turns out those two are all we'll need to draw for each pattern block. Tile 1 and 4 will be drawn when the pattern block below us draws their tile 2 and 3 respectively. Tile 5 will be drawn when the pattern block to the south-east of us draws their tile 1.
We just need to remember that we may need to draw an extra column on the right-hand side, and at the bottom, to ensure those end-of-row and end-of-column pattern blocks get completely drawn.
The last thing to work out is how big our pattern blocks are.
Let's call the short side of the tile a and the long side b. We know that b = 2 * a. And we can work out, using Pythagoras Theorem, that the height of the pattern block will be:
h = sqrt(a^2 + a^2)
= sqrt(2 * a^2)
= sqrt(2) * a
The width of the pattern block we can see will be w = 2 * h.
Now that we've worked out how to draw the pattern, let's implement our algorithm.
const a = 60;
const b = 120;
const h = 50 * Math.sqrt(2);
const w = h * 2;
const h2 = h / 2; // How far tile 1 sticks out to the left of the pattern block
// Set of colours for the tiles
const colours = ["red","cornsilk","black","limegreen","deepskyblue",
"mediumorchid", "lightgrey", "grey"]
const canvas = document.getElementById("herringbone");
const ctx = canvas.getContext("2d");
// Set a universal stroke colour and width
ctx.strokeStyle = "black";
ctx.lineWidth = 4;
// Loop through the pattern block rows
for (var y=0; y < (canvas.height + h); y+=h)
{
// Loop through the pattern block columns
for (var x=0; x < (canvas.width + w); x+=w)
{
// Draw tile "2"
// I'm just going to draw a path for simplicity, rather than
// worrying about drawing a rectangle with rotation and translates
ctx.beginPath();
ctx.moveTo(x - h2, y - h2);
ctx.lineTo(x, y - h);
ctx.lineTo(x + h, y);
ctx.lineTo(x + h2, y + h2);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
// Draw tile "3"
ctx.beginPath();
ctx.moveTo(x + h2, y + h2);
ctx.lineTo(x + w - h2, y - h2);
ctx.lineTo(x + w, y);
ctx.lineTo(x + h, y + h);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
}
}
<canvas id="herringbone" width="500" height="400"></canvas>

Calculating particle size and distance between them in Javascript

I'm trying to display an image with particles. It works, but the amount of particles is dependant on a variable (numberOfParticles) that can range between 0 and 3000. On any value, the image should be rendered in the best way possible with the given amount of particles. There is a nested for loop that goes through the image data (height and width) and creates particles like this.
for (var y = 0; y < data.height; y+=averageDistance) {
for (var x = 0; x < data.width; x+=averageDistance) {
if (particles.length < numberOfParticles){
var particle = {
x0: x,
y0: y,
color: "rgb("+data.data[(y * 4 * data.width)+ (x * 4)]+","+data.data[(y * 4 * data.width)+ (x * 4) +1]+","+data.data[(y * 4 * data.width)+ (x * 4) +2]+")"
};
particles.push(particle);
}
}
}
Later in the code, the particles get rendered with a given size.
My question is, how do I calculate the size the particles should have and the distance that should be between them?
I've tried calculating the 'average distance', counting the amount of pixels that are not covered by particles and dividing that through the amount of particles, but I can't get it to work correctly. There's always leftover space (so the bottom part doesn't get filled) or leftover particles (so there are only 40 particles shown, instead of 50) on some value of the variable numberOfParticles.
A solution to the mathematical part can be found in this answer.
To find number of points for x (nx) we can use that formula:
Then number of points for y (ny):
ny = n / nx
In JavaScript code:
nx = Math.sqrt((w / h) * n + Math.pow(w - h, 2) / (4 * Math.pow(h, 2))) - (w - h) / (2 * h);
ny = n / nx;
Using the numbers nx and ny we can then calculate the deltas for x and y:
dx = w / nx;
dy = h / ny;
Example
var ctx = c.getContext("2d"), n, w, h, nx, ny, dx, dy, x, y;
// define values
n = 1600;
w = c.width - 1; // make inclusive
h = c.height - 1;
// plug values into formula
nx = Math.sqrt((w / h) * n + Math.pow(w - h, 2) / (4 * Math.pow(h, 2))) - (w - h) / (2 * h);
ny = n / nx;
// calculate deltas
dx = w / nx;
dy = h / ny;
// render proof-of-concept
for(y = 0; y < h; y += dy) {
for(x = 0; x < w; x += dx) {
ctx.fillStyle = "hsl(" + (360*Math.random()) + ",50%,50%";
ctx.fillRect(x, y, dx-1, dy-1);
}
}
o.innerHTML = "Points to place: " + n + "<br>" +
"<strong>n<sub>x</sub></strong>: " + nx.toFixed(2) + "<br>" +
"<strong>n<sub>y</sub></strong>: " + ny.toFixed(2) + "<br>" +
"ΔX: " + dy.toFixed(2) + "<br>" +
"ΔY: " + dy.toFixed(2) + "<br>" +
"Total (nx × ny): " + (nx * ny).toFixed(0);
<canvas id=c width=600 height=400></canvas>
<br><output id=o></output>
Best fit maintaining aspect.
These types of packing problems come up a lot in CG.
To fill a square box with smaller square boxes you just need to find the square root of the count you want.
var c = 100; // number of boxes
var w = 10; // box width
var h = 10; // box height
var sW = 1000; // screen width
var sH = 1000; // screen height
The fit is sqrt(c) = sqrt(100) = 10. That's 10 across, divide the screen width by the count sW/10 = 100 to get the width of the box so that 100 will fit the screen.
This works for counts that are squares of integers, if no square root we can factorise to find a better solution. But even then there is not always a solution that fits.
Prime numbers will never fit
Any count that is a prime number will not have a solution, it is impossible to fit a prime number into x rows of y columns. This is because the resulting count is x * y and that means its not a prime.
Compromise
In the end you will need to compromise. Either you control the count to only allow counts with a solution (not a prime) or you accept that there will be some error and allow the solution to go outside the bounds.
This solution will fit but will allow the count to change and the area outside the screen to be at a minimum while still maintaining the box aspect ratio.
The width count is the sqrt((c / sA) * bA) where sA is the screen aspect and bA is the box aspect.
var c = 100; // number of boxes
var w = 10; // box width
var h = 10; // box height
var sW = 1000; // screen width
var sH = 1000; // screen height
var sA = sH / sW; // screen aspect
var bA = h / w; // box aspect
var wCount = Math.sqrt((c / sA) * bA); // get nearest fit for width
wCount = Math.round(wCount); // round to an integers. This forces the width to fit
Now you have the wCount it is just a matter of dividing the screen width by that value to get the box render width and multiply the box render width by the box aspect to get the box render height.
var rW = w / wCount; // the size of the box to render
var rH = rW * bA; // the height is the width time aspect
Sometimes you will get a perfect solution but most times you will not. The actual count will be above of below the requested count due to the rounding. But the fit will be the best for both the required box and screen aspects.
Demo
Updates every 3 seconds with a random box size, random screen size (overlaid with green box to show top and bottom excess) Text shows the column and row counts, the requested count and the actual count.
var canvas,ctx;
function createCanvas(){
canvas = document.createElement("canvas");
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
canvas.style.zIndex = 1000;
document.body.appendChild(canvas);
}
function resize(){
if(canvas === undefined){
createCanvas();
}
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
}
window.addEventListener("resize",resize);
resize();
var w = 10;
var h = 20;
var c = 100;
var sW = canvas.width*0.7;
var sH = canvas.height*0.5;
var sA = sH /sW;
var bA = h / w;
function getParticleWidth(particleImageX,particleImageY,w,h,particleCount){
var a = particleImageY / particleImageX; // get particle aspect
var c = particleCount; // same with this
var b = h/w
return Math.sqrt((c/b)*a)
}
function drawTheParticles(){
var x,y;
pCount = Math.round(Math.sqrt((c/sA)*bA));
var pWidth = sW / pCount;
var pHeight = pWidth * bA;
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.fillStyle = "white";
ctx.clearRect(0,0,canvas.width,canvas.height); // clear last result
var cc = 0;
var sx = (canvas.width-sW)/2;
var sy = (canvas.height-sH)/2;
var hc = ((Math.ceil(sH / pHeight)*pHeight)-sH)/2;
var wc =0;
for(y = 0; y < sH; y += pHeight){
for(x = 0; x < sW-(pWidth/2); x += pWidth){
ctx.fillRect(x + 1+sx-wc, y + 1+sy-hc, pWidth - 2, pHeight - 2);
ctx.strokeRect(x + 1+sx-wc, y + 1+sy-hc, pWidth - 2, pHeight - 2);
cc ++;
}
}
ctx.strokeStyle = "black";
ctx.fillStyle = "rgba(50,200,70,0.25)";
ctx.fillRect(sx, sy, sW, sH);
ctx.strokeRect(sx, sy, sW, sH);
// show the details
ctx.font = "20px arial";
ctx.textAlign = "center";
ctx.textBaseline = "middle";
var str = ""+pCount+" by "+Math.ceil(sH / pHeight)+" need " + c + " got "+cc;
var width = ctx.measureText(str).width;
ctx.lineWidth = 2;
// clear an area for text
// with a shadow and not the stupid built in shadow
ctx.fillStyle = "rgba(0,0,0,0.4)";
ctx.fillRect((canvas.width / 2) - (width + 8) / 2+6, (canvas.height / 2) - 14+6, width + 8, 28 );
ctx.fillStyle = "#CCC";
ctx.fillRect((canvas.width / 2) - (width + 8) / 2, (canvas.height / 2) - 14, width + 8, 28 );
ctx.fillRect((canvas.width / 2) - (width + 8) / 2, (canvas.height / 2) - 14, width + 8, 28 );
// now draw the text with a bit of an outline
ctx.fillStyle = "blue"
ctx.strokeStyle = "white";
ctx.lineJoin = "round";
ctx.strokeText(str, canvas.width/2, canvas.height / 2);
ctx.fillText(str, canvas.width/2, canvas.height / 2);
// And set up to do it all again in 3 seconds
// get random particle image size
w = Math.floor(Math.random() * 100 + 10);
h = Math.floor(Math.random() * 100 + 10);
// get random particle count
c = Math.floor(Math.random() * 500 + 10);
// get random screen width height
sW = canvas.height*(Math.random()*0.4 + 0.6);
sH = canvas.height*(Math.random()*0.6 + 0.4);
// recaculate aspects
sA = sH /sW;
bA = h / w;
// redo it in 3 seconds
setTimeout(drawTheParticles,3000)
}
drawTheParticles()

Canvas animation (network nodes and edges): how to improve its performances, particularly on FireFox?

Having to give the idea of an ever changing network of nodes (each with different impact and possibly more than one color) connecting each other to create something.
I wanted to give it depth perception, so I ended up using two canvases around the title: one in the foreground, even over the words, and the other in background, with slightly larger and blurred elements.
Demo here, full JavaScript code at the moment:
// min and max radius, radius threshold and percentage of filled circles
var radMin = 5,
radMax = 125,
filledCircle = 60, //percentage of filled circles
concentricCircle = 30, //percentage of concentric circles
radThreshold = 25; //IFF special, over this radius concentric, otherwise filled
//min and max speed to move
var speedMin = 0.3,
speedMax = 2.5;
//max reachable opacity for every circle and blur effect
var maxOpacity = 0.6;
//default palette choice
var colors = ['52,168,83', '117,95,147', '199,108,23', '194,62,55', '0,172,212', '120,120,120'],
bgColors = ['52,168,83', '117,95,147', '199,108,23', '194,62,55', '0,172,212', '120,120,120'],
circleBorder = 10,
backgroundLine = bgColors[0];
var backgroundMlt = 0.85;
//min distance for links
var linkDist = Math.min(canvas.width, canvas.height) / 2.4,
lineBorder = 2.5;
//most importantly: number of overall circles and arrays containing them
var maxCircles = 12,
points = [],
pointsBack = [];
//populating the screen
for (var i = 0; i < maxCircles * 2; i++) points.push(new Circle());
for (var i = 0; i < maxCircles; i++) pointsBack.push(new Circle(true));
//experimental vars
var circleExp = 1,
circleExpMax = 1.003,
circleExpMin = 0.997,
circleExpSp = 0.00004,
circlePulse = false;
//circle class
function Circle(background) {
//if background, it has different rules
this.background = (background || false);
this.x = randRange(-canvas.width / 2, canvas.width / 2);
this.y = randRange(-canvas.height / 2, canvas.height / 2);
this.radius = background ? hyperRange(radMin, radMax) * backgroundMlt : hyperRange(radMin, radMax);
this.filled = this.radius < radThreshold ? (randint(0, 100) > filledCircle ? false : 'full') : (randint(0, 100) > concentricCircle ? false : 'concentric');
this.color = background ? bgColors[randint(0, bgColors.length - 1)] : colors[randint(0, colors.length - 1)];
this.borderColor = background ? bgColors[randint(0, bgColors.length - 1)] : colors[randint(0, colors.length - 1)];
this.opacity = 0.05;
this.speed = (background ? randRange(speedMin, speedMax) / backgroundMlt : randRange(speedMin, speedMax)); // * (radMin / this.radius);
this.speedAngle = Math.random() * 2 * Math.PI;
this.speedx = Math.cos(this.speedAngle) * this.speed;
this.speedy = Math.sin(this.speedAngle) * this.speed;
var spacex = Math.abs((this.x - (this.speedx < 0 ? -1 : 1) * (canvas.width / 2 + this.radius)) / this.speedx),
spacey = Math.abs((this.y - (this.speedy < 0 ? -1 : 1) * (canvas.height / 2 + this.radius)) / this.speedy);
this.ttl = Math.min(spacex, spacey);
};
Circle.prototype.init = function() {
Circle.call(this, this.background);
}
//support functions
//generate random int a<=x<=b
function randint(a, b) {
return Math.floor(Math.random() * (b - a + 1) + a);
}
//generate random float
function randRange(a, b) {
return Math.random() * (b - a) + a;
}
//generate random float more likely to be close to a
function hyperRange(a, b) {
return Math.random() * Math.random() * Math.random() * (b - a) + a;
}
//rendering function
function drawCircle(ctx, circle) {
//circle.radius *= circleExp;
var radius = circle.background ? circle.radius *= circleExp : circle.radius /= circleExp;
ctx.beginPath();
ctx.arc(circle.x, circle.y, radius * circleExp, 0, 2 * Math.PI, false);
ctx.lineWidth = Math.max(1, circleBorder * (radMin - circle.radius) / (radMin - radMax));
ctx.strokeStyle = ['rgba(', circle.borderColor, ',', circle.opacity, ')'].join('');
if (circle.filled == 'full') {
ctx.fillStyle = ['rgba(', circle.borderColor, ',', circle.background ? circle.opacity * 0.8 : circle.opacity, ')'].join('');
ctx.fill();
ctx.lineWidth=0;
ctx.strokeStyle = ['rgba(', circle.borderColor, ',', 0, ')'].join('');
}
ctx.stroke();
if (circle.filled == 'concentric') {
ctx.beginPath();
ctx.arc(circle.x, circle.y, radius / 2, 0, 2 * Math.PI, false);
ctx.lineWidth = Math.max(1, circleBorder * (radMin - circle.radius) / (radMin - radMax));
ctx.strokeStyle = ['rgba(', circle.color, ',', circle.opacity, ')'].join('');
ctx.stroke();
}
circle.x += circle.speedx;
circle.y += circle.speedy;
if (circle.opacity < (circle.background ? maxOpacity : 1)) circle.opacity += 0.01;
circle.ttl--;
}
//initializing function
function init() {
window.requestAnimationFrame(draw);
}
//rendering function
function draw() {
if (circlePulse) {
if (circleExp < circleExpMin || circleExp > circleExpMax) circleExpSp *= -1;
circleExp += circleExpSp;
}
var ctxfr = document.getElementById('canvas').getContext('2d');
var ctxbg = document.getElementById('canvasbg').getContext('2d');
ctxfr.globalCompositeOperation = 'destination-over';
ctxfr.clearRect(0, 0, canvas.width, canvas.height); // clear canvas
ctxbg.globalCompositeOperation = 'destination-over';
ctxbg.clearRect(0, 0, canvas.width, canvas.height); // clear canvas
ctxfr.save();
ctxfr.translate(canvas.width / 2, canvas.height / 2);
ctxbg.save();
ctxbg.translate(canvas.width / 2, canvas.height / 2);
//function to render each single circle, its connections and to manage its out of boundaries replacement
function renderPoints(ctx, arr) {
for (var i = 0; i < arr.length; i++) {
var circle = arr[i];
//checking if out of boundaries
if (circle.ttl<0) {}
var xEscape = canvas.width / 2 + circle.radius,
yEscape = canvas.height / 2 + circle.radius;
if (circle.ttl < -20) arr[i].init(arr[i].background);
//if (Math.abs(circle.y) > yEscape || Math.abs(circle.x) > xEscape) arr[i].init(arr[i].background);
drawCircle(ctx, circle);
}
for (var i = 0; i < arr.length - 1; i++) {
for (var j = i + 1; j < arr.length; j++) {
var deltax = arr[i].x - arr[j].x;
var deltay = arr[i].y - arr[j].y;
var dist = Math.pow(Math.pow(deltax, 2) + Math.pow(deltay, 2), 0.5);
//if the circles are overlapping, no laser connecting them
if (dist <= arr[i].radius + arr[j].radius) continue;
//otherwise we connect them only if the dist is < linkDist
if (dist < linkDist) {
var xi = (arr[i].x < arr[j].x ? 1 : -1) * Math.abs(arr[i].radius * deltax / dist);
var yi = (arr[i].y < arr[j].y ? 1 : -1) * Math.abs(arr[i].radius * deltay / dist);
var xj = (arr[i].x < arr[j].x ? -1 : 1) * Math.abs(arr[j].radius * deltax / dist);
var yj = (arr[i].y < arr[j].y ? -1 : 1) * Math.abs(arr[j].radius * deltay / dist);
ctx.beginPath();
ctx.moveTo(arr[i].x + xi, arr[i].y + yi);
ctx.lineTo(arr[j].x + xj, arr[j].y + yj);
var samecolor = arr[i].color == arr[j].color;
ctx.strokeStyle = ["rgba(", arr[i].borderColor, ",", Math.min(arr[i].opacity, arr[j].opacity) * ((linkDist - dist) / linkDist), ")"].join("");
ctx.lineWidth = (arr[i].background ? lineBorder * backgroundMlt : lineBorder) * ((linkDist - dist) / linkDist); //*((linkDist-dist)/linkDist);
ctx.stroke();
}
}
}
}
var startTime = Date.now();
renderPoints(ctxfr, points);
renderPoints(ctxbg, pointsBack);
deltaT = Date.now() - startTime;
ctxfr.restore();
ctxbg.restore();
window.requestAnimationFrame(draw);
}
init();
I asked around and ctx.save() and ctx.restore() are in the top list of suspects, but I wouldn't know how to do this without them.
This is my first animation with canvas, which AFAIK should have been the best option in terms of cross-browser support and (decent) performances, but any advice on this side is still welcome; also, seems to slow down significantly on FF, but just on some machines where hardware acceleration does not work properly (or at all).
From what I read here (and basically everywhere else), FF seems to have serious issues dealing with canvas, but maybe I can optimize things a bit more.
Should I use something other than canvas to do the animation? But also consider that other options (like using SVG) seem to have less support, not to mention it would mean redoing most of the work.
Notes: The first part with the general variables might not be the best practice, but it worked to let a non-technical staff member (UI designer) play on the variables to see different results.

How Can I draw a Text Along arc path with HTML 5 Canvas?

I want to draw a canvas graphic like this flash animation:
http://www.cci.com.tr/tr/bizi-taniyin/tarihcemiz/
I drew six arcs and I want to write six words in these arcs. Any ideas?
I have a jsFiddle to apply text to any arbitrary Bezier curve definition. Enjoy http://jsfiddle.net/Makallus/hyyvpp8g/
var first = true;
startIt();
function startIt() {
canvasDiv = document.getElementById('canvasDiv');
canvasDiv.innerHTML = '<canvas id="layer0" width="300" height="300"></canvas>'; //for IE
canvas = document.getElementById('layer0');
ctx = canvas.getContext('2d');
ctx.fillStyle = "black";
ctx.font = "18px arial black";
curve = document.getElementById('curve');
curveText = document.getElementById('text');
$(curve).keyup(function(e) {
changeCurve();
});
$(curveText).keyup(function(e) {
changeCurve();
});
if (first) {
changeCurve();
first = false;
}
}
function changeCurve() {
points = curve.value.split(',');
if (points.length == 8) drawStack();
}
function drawStack() {
Ribbon = {
maxChar: 50,
startX: points[0],
startY: points[1],
control1X: points[2],
control1Y: points[3],
control2X: points[4],
control2Y: points[5],
endX: points[6],
endY: points[7]
};
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.save();
ctx.beginPath();
ctx.moveTo(Ribbon.startX, Ribbon.startY);
ctx.bezierCurveTo(Ribbon.control1X, Ribbon.control1Y,
Ribbon.control2X, Ribbon.control2Y,
Ribbon.endX, Ribbon.endY);
ctx.stroke();
ctx.restore();
FillRibbon(curveText.value, Ribbon);
}
function FillRibbon(text, Ribbon) {
var textCurve = [];
var ribbon = text.substring(0, Ribbon.maxChar);
var curveSample = 1000;
xDist = 0;
var i = 0;
for (i = 0; i < curveSample; i++) {
a = new bezier2(i / curveSample, Ribbon.startX, Ribbon.startY, Ribbon.control1X, Ribbon.control1Y, Ribbon.control2X, Ribbon.control2Y, Ribbon.endX, Ribbon.endY);
b = new bezier2((i + 1) / curveSample, Ribbon.startX, Ribbon.startY, Ribbon.control1X, Ribbon.control1Y, Ribbon.control2X, Ribbon.control2Y, Ribbon.endX, Ribbon.endY);
c = new bezier(a, b);
textCurve.push({
bezier: a,
curve: c.curve
});
}
letterPadding = ctx.measureText(" ").width / 4;
w = ribbon.length;
ww = Math.round(ctx.measureText(ribbon).width);
totalPadding = (w - 1) * letterPadding;
totalLength = ww + totalPadding;
p = 0;
cDist = textCurve[curveSample - 1].curve.cDist;
z = (cDist / 2) - (totalLength / 2);
for (i = 0; i < curveSample; i++) {
if (textCurve[i].curve.cDist >= z) {
p = i;
break;
}
}
for (i = 0; i < w; i++) {
ctx.save();
ctx.translate(textCurve[p].bezier.point.x, textCurve[p].bezier.point.y);
ctx.rotate(textCurve[p].curve.rad);
ctx.fillText(ribbon[i], 0, 0);
ctx.restore();
x1 = ctx.measureText(ribbon[i]).width + letterPadding;
x2 = 0;
for (j = p; j < curveSample; j++) {
x2 = x2 + textCurve[j].curve.dist;
if (x2 >= x1) {
p = j;
break;
}
}
}
} //end FillRibon
function bezier(b1, b2) {
//Final stage which takes p, p+1 and calculates the rotation, distance on the path and accumulates the total distance
this.rad = Math.atan(b1.point.mY / b1.point.mX);
this.b2 = b2;
this.b1 = b1;
dx = (b2.x - b1.x);
dx2 = (b2.x - b1.x) * (b2.x - b1.x);
this.dist = Math.sqrt(((b2.x - b1.x) * (b2.x - b1.x)) + ((b2.y - b1.y) * (b2.y - b1.y)));
xDist = xDist + this.dist;
this.curve = {
rad: this.rad,
dist: this.dist,
cDist: xDist
};
}
function bezierT(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY) {
//calculates the tangent line to a point in the curve; later used to calculate the degrees of rotation at this point.
this.mx = (3 * (1 - t) * (1 - t) * (control1X - startX)) + ((6 * (1 - t) * t) * (control2X - control1X)) + (3 * t * t * (endX - control2X));
this.my = (3 * (1 - t) * (1 - t) * (control1Y - startY)) + ((6 * (1 - t) * t) * (control2Y - control1Y)) + (3 * t * t * (endY - control2Y));
}
function bezier2(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY) {
//Quadratic bezier curve plotter
this.Bezier1 = new bezier1(t, startX, startY, control1X, control1Y, control2X, control2Y);
this.Bezier2 = new bezier1(t, control1X, control1Y, control2X, control2Y, endX, endY);
this.x = ((1 - t) * this.Bezier1.x) + (t * this.Bezier2.x);
this.y = ((1 - t) * this.Bezier1.y) + (t * this.Bezier2.y);
this.slope = new bezierT(t, startX, startY, control1X, control1Y, control2X, control2Y, endX, endY);
this.point = {
t: t,
x: this.x,
y: this.y,
mX: this.slope.mx,
mY: this.slope.my
};
}
function bezier1(t, startX, startY, control1X, control1Y, control2X, control2Y) {
//linear bezier curve plotter; used recursivly in the quadratic bezier curve calculation
this.x = ((1 - t) * (1 - t) * startX) + (2 * (1 - t) * t * control1X) + (t * t * control2X);
this.y = ((1 - t) * (1 - t) * startY) + (2 * (1 - t) * t * control1Y) + (t * t * control2Y);
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<table>
<TR>
<TH>Bezier Curve</TH>
<TD>
<input size="80" type="text" id="curve" name="curve" value="99.2,177.2,130.02,60.0,300.5,276.2,300.7,176.2">
</TD>
</TR>
<TR>
<TH>Text</TH>
<TD>
<input size="80" type="text" id="text" name="text" value="testing 1234567890">
</TD>
</TR>
<TR>
<TD colspan=2>
<div id="canvasDiv"></div>
</TD>
</TR>
</table>
An old old question... nevertheless, on my blog, I take a fairly close look at creating circular text using HTML5 Canvas:
html5graphics.blogspot.com
In the example, options include rounded text alignment (left, center and right) from a given angle, inward and outward facing text, kerning (adjustable gap between characters) and text inside or outside the radius.
There is also a jsfiddle with a working example.
It is as follows:
document.body.appendChild(getCircularText("ROUNDED TEXT LOOKS BEST IN CAPS!", 250, 0, "center", true, true, "Arial", "18pt", 0));
function getCircularText(text, diameter, startAngle, align, textInside, inwardFacing, fName, fSize, kerning) {
// text: The text to be displayed in circular fashion
// diameter: The diameter of the circle around which the text will
// be displayed (inside or outside)
// startAngle: In degrees, Where the text will be shown. 0 degrees
// if the top of the circle
// align: Positions text to left right or center of startAngle
// textInside: true to show inside the diameter. False draws outside
// inwardFacing: true for base of text facing inward. false for outward
// fName: name of font family. Make sure it is loaded
// fSize: size of font family. Don't forget to include units
// kearning: 0 for normal gap between letters. positive or
// negative number to expand/compact gap in pixels
//------------------------------------------------------------------------
// declare and intialize canvas, reference, and useful variables
align = align.toLowerCase();
var mainCanvas = document.createElement('canvas');
var ctxRef = mainCanvas.getContext('2d');
var clockwise = align == "right" ? 1 : -1; // draw clockwise for aligned right. Else Anticlockwise
startAngle = startAngle * (Math.PI / 180); // convert to radians
// calculate height of the font. Many ways to do this
// you can replace with your own!
var div = document.createElement("div");
div.innerHTML = text;
div.style.position = 'absolute';
div.style.top = '-10000px';
div.style.left = '-10000px';
div.style.fontFamily = fName;
div.style.fontSize = fSize;
document.body.appendChild(div);
var textHeight = div.offsetHeight;
document.body.removeChild(div);
// in cases where we are drawing outside diameter,
// expand diameter to handle it
if (!textInside) diameter += textHeight * 2;
mainCanvas.width = diameter;
mainCanvas.height = diameter;
// omit next line for transparent background
mainCanvas.style.backgroundColor = 'lightgray';
ctxRef.font = fSize + ' ' + fName;
// Reverse letter order for align Left inward, align right outward
// and align center inward.
if (((["left", "center"].indexOf(align) > -1) && inwardFacing) || (align == "right" && !inwardFacing)) text = text.split("").reverse().join("");
// Setup letters and positioning
ctxRef.translate(diameter / 2, diameter / 2); // Move to center
startAngle += (Math.PI * !inwardFacing); // Rotate 180 if outward
ctxRef.textBaseline = 'middle'; // Ensure we draw in exact center
ctxRef.textAlign = 'center'; // Ensure we draw in exact center
// rotate 50% of total angle for center alignment
if (align == "center") {
for (var j = 0; j < text.length; j++) {
var charWid = ctxRef.measureText(text[j]).width;
startAngle += ((charWid + (j == text.length-1 ? 0 : kerning)) / (diameter / 2 - textHeight)) / 2 * -clockwise;
}
}
// Phew... now rotate into final start position
ctxRef.rotate(startAngle);
// Now for the fun bit: draw, rotate, and repeat
for (var j = 0; j < text.length; j++) {
var charWid = ctxRef.measureText(text[j]).width; // half letter
ctxRef.rotate((charWid/2) / (diameter / 2 - textHeight) * clockwise); // rotate half letter
// draw char at "top" if inward facing or "bottom" if outward
ctxRef.fillText(text[j], 0, (inwardFacing ? 1 : -1) * (0 - diameter / 2 + textHeight / 2));
ctxRef.rotate((charWid/2 + kerning) / (diameter / 2 - textHeight) * clockwise); // rotate half letter
}
// Return it
return (mainCanvas);
}
You can try the following code to see how to write text along an Arc Path using HTML5 Canvas
function drawTextAlongArc(context, str, centerX, centerY, radius, angle) {
var len = str.length,
s;
context.save();
context.translate(centerX, centerY);
context.rotate(-1 * angle / 2);
context.rotate(-1 * (angle / len) / 2);
for (var n = 0; n < len; n++) {
context.rotate(angle / len);
context.save();
context.translate(0, -1 * radius);
s = str[n];
context.fillText(s, 0, 0);
context.restore();
}
context.restore();
}
var canvas = document.getElementById('myCanvas'),
context = canvas.getContext('2d'),
centerX = canvas.width / 2,
centerY = canvas.height - 30,
angle = Math.PI * 0.8,
radius = 150;
context.font = '30pt Calibri';
context.textAlign = 'center';
context.fillStyle = 'blue';
context.strokeStyle = 'blue';
context.lineWidth = 4;
drawTextAlongArc(context, 'Text along arc path', centerX, centerY, radius, angle);
// draw circle underneath text
context.arc(centerX, centerY, radius - 10, 0, 2 * Math.PI, false);
context.stroke();
<!DOCTYPE HTML>
<html>
<head>
<style>
body {
margin: 0px;
padding: 0px;
}
</style>
</head>
<body>
<canvas id="myCanvas" width="578" height="250"></canvas>
</body>
</html>
You can't in any built in way. Please note that SVG natively does support text along paths, so you might want to consider SVG instead!
But you can write custom code in order to achieve the same effect, as some of us did for this question here: HTML5 Canvas Circle Text

Categories

Resources