javascript object creating - javascript

I have a javascript object like this
var student = function () {
this.id = 1;
this.Name = "Shohel";
this.Roll = "04115407";
this.Session = "03-04";
this.Subject = "CSE";
};
and i have a javascript array list like this
var students = [];
now i want to push student into students, this is shown below
students.push(new student()) //no prolem
students.push(new student[id = 3]) //Problem
here second line occurs exceptions, how can i push javascript object like as c# add list, which is representing second line? thanks

You simply can't, what you can do though is accept a config as a parameter to your constructor and read it like this
var student = function (config) {
config = config || {};
this.id = config.id || 1;
this.Name = config.Name || "Shohel";
this.Roll = config.Roll || "04115407";
this.Session = config.Session || "03-04";
this.Subject = config.Subject || "CSE";
};
And call it like this
students.push(new student({id: 3}));
EDIT, PREFERRED ONE
Just as adeneo pointed out if you want to get rid of the repititive || for default values, you can use jQuery to pass them
var student = function (config) {
var defaults = {
id: 1,
Name: "Shohel",
Roll: "04115407",
Session: "03-04",
Subject: "CSE"
};
config = $.extend(defaults, config || {});
this.id = config.id;
this.Name = config.Name;
this.Roll = config.Roll;
this.Session = config.Session;
this.Subject = config.Subject;
};

Make the values that are variable parameters of the function. For example:
var Student = function (id) {
this.id = id;
// ...
};
students.push(new Student(3));
I recommend to read a JavaScript tutorial about functions:
MDN - JavaScript Guide
Eloquent JavaScript - Functions
quirksmode.org - Functions

Related

how to right choose javascript pattern

i create 2 objects:
var Documentos = new QuadForm();
var Cadastro = new QuadForm();
And initialize this objects with lot of options
Cadastro.initForm(options);
Documentos.initForm(options2);
then i try to separate the data managed by each object with getName method but after the second object, myObjectName variable is overrided.
var QuadForm;
QuadForm = function () {
this.getName = function () {
// search through the global object for a name that resolves to this object
for (var name in window)
if (window[name] == this) {
window[name] = this;
window[window[name]] = window[name];
myObjectName= name;
break;
}
},
this.initForm = function (parms) {
this.getName()
$.extend(this, parms);
if (window.myState) {
delete window.myState;
}
this.containerId = parms.formId;
this.getForm(parms);
this.workflowLabels('hide');
then i use window[myObjectName].totalRecords but as it changes to the latest object name off course cannot access data.
How can i manage this.
It's not a big problem to manage several instances, but your approach is impossible, cause you can't really find all possible instances and your code does definitely not what you expected to do.
For example you can define a variable on the constructor-object which holds all instances, and than you can use it in some cases:
var QuadForm = function (name) {
this.name = name;
QuadForm.instances.push(this);
this.showAllOtherInstances = function () {
QuadForm.instances.forEach(function (instance) {
if (instance !== this) {
console.log('name: ' + instance.name);
}
}.bind(this));
}
}
QuadForm.instances = [];
var foo = new QuadForm('foo');
var anotherFoo = new QuadForm('foo');
var bar = new QuadForm('bar');
var aThirdFoo = new QuadForm('foo');
foo.showAllOtherInstances();
/*
* Output:
*
* name: foo
* name: bar
* name: foo
*/

Appending New Values to a Durable Object

I'm trying to write a linked list using the durable constructor method described in Nicholas Zakas' book but I am running into a conceptual problem.
I understand that the durable constructor pattern is used for security reasons and eschews the use of "this" and "new." However, I am unsure if that means I am unable to create methods that allow for appending nodes to the linked list.
All of the instances I've found have basically been taken straight from Douglas Crockford with really no variation. The example he uses only retrieves information from the object.
My questions are: Does this constructor pattern allow appending data to such data structures? If it doesn't and Crockford says we need to avoid "this" and "new" what options do I have?
edit (linked list code so far):
var linkedList = function (spec) {
var that = {};
that.addNode = function (newNode) {
if (spec.size && spec.root) {
// not sure
} else {
// not sure yet
}
};
that.getRoot = function () {
return spec.root; // for an idea of how to retrieve
};
return that;
};
// how I'd like to use the list
var firstNode = node({val: 25, next: null});
var myList = linkedList({root: firstNode, size: 1});
var secondNode = node({val: 33, next: null});
myList.add(secondNode); // I feel this isn't possible
I'm still quite not sure about the durable object, but I think what you want to do might be this:
var LinkedList = function(val) {
// A private object
var node = {
val: val,
next : null
};
// Method
var getVal = function() {
return node.val;
};
var setVal = function(val) {
node.val = val;
};
var getNext = function() {
return node.next;
};
var setNext = function(newNode) {
// You have to ensure its a node here
if (true) {
node.next = newNode;
}
};
// Append to tail
var appendVal = function(val) {
if (node.next === null) {
node.next = LinkedList(val);
} else {
node.next.appendVal(val);
}
};
var appendNode = function(newNode) {
if (node.next === null) {
node.next = newNode
} else {
node.next.appendNode(newNode);
}
};
var print = function() {
var str = '' + node.val;
if (node.next !== null) {
str += ' => ' + node.next.print();
}
return str;
}
// Only expose method to user.
return {
getVal : getVal,
setVal : setVal,
getNext: getNext,
appendVal: appendVal,
appendNode: appendNode,
print: print
};
};
When we want a root, call var root = LinkedList(val); Then the function will create a hidden object, set the value, and return methods that is able to get/set the object the value for you.
You can do things only with the exposed object, and in this way, the this and new is avoided, and you get a private object that can't be accessed directly.
And what you want to do may be write like this:
var first = LinkedList(25);
var myList = LinkedList(null);
myList.appendNode(first);
var second = LinkedList(33);
myList.appendNode(second);
console.log(myList.print()); // null => 25 => 33

Append to constructor

This object constructor is the definition of a person:
var Person = function( age, name ){
this.age = age;
this.namge = name;
};
this is a line of code that will give the prototype of Person an array called "active"
Person.prototype.active = [];
The reason I am adding this to the prototype, is so that there is only one active array that every person, meaning Jim in this case: var Jim = new Person() ), SHARES the exact same active array.
From that point I want to add in every newly created person into the active array.
This is how I would do it:
var Jim = new Person(age, name);
Jim.active.push( Jim );
var Tim = new Person(age, name);
Tim.active.push( Tim );
What I expected from this, is for Tim.active[0] to be Jim and for
Jim.active[1] to be Tim.
The problem is, is that I want the active.push[ self id ] to be called
when a new Person is created, without the second line doing it. My solution for this would be modifying the Person constructor too look like this:
var Person = function( age, name ){
this.age = age;
this.namge = name;
this.active.push( this );// The constructor now adds itself to the array during initiation
};
As you can see, it puhes itself into the active array. The problem is that I want my object to do exactly this, but I want the constructor to begin like the first one I provided with this.active.push appended later in the code.
How do I expect this to be solved? My thoughts were that since the active array could be initiated anytime inside the program, that the functions constructor could somehow append this.active.push() to the end of it at right after Person.prototype.active = [] is executed.
Something that may look like:
Person.prototype.active = [];
Person.prototype.append( function(){this.active.push(this)} );
The second line would morph the first object constructor to look like the second one.
Not sure why you want this approach, perhaps it can be refactored? Probably better to have some sort of PersonMediator "class" in my opinion. But, if you want to have the prototype include an active array that has conditions, then attach some way to manage those conditions to the Person object.
var Person = function( age, name ){
this.age = age;
this.namge = name;
//checks for activation flag
this.ready();
};
Person.prototype.active = [];
Person.activate = function(){ Person.prototype.activate = true; };
Person.deactivate = function(){ Person.prototype.activate = false; };
Person.prototype.activate = false;
Person.prototype.ready = function(){
//depending on activate flag, appends to active array
if( this.activate ) this.append();
};
Person.prototype.append = function(){
//array append
this.active.push(this);
};
var Jim = new Person(10,'Jim');//not added, default flag false
//activate flag for appending
Person.activate();
var Tim = new Person(20,'Tim');//now added to the active array
console.log(Jim.active);//shows only Tim
console.log(Tim.active);//shows only Tim
That said, this is how I would manage this.
var Person = function( age, name ){
this.age = age;
this.namge = name;
};
var PersonMediator = function(){
this.alive = [];
this.removed = [];
};
PersonMediator.prototype.create = function(age, name){
var person = new Person(age,name);
this.alive.push(person);
return person;
};
PersonMediator.prototype.remove = function(person){
for(var i = 0; i < this.alive.length; i++){
if( this.alive[i] === person ){
this.alive.splice(i,1);
}
}
this.removed.push(person);
};
var pm = new PersonMediator();
var Jim = pm.create(10,'Jim');
var Tim = pm.create(20,'Tim');
console.log(pm.alive);
If you simply want to store the instantiated objects to an array, you can use an inheritance pattern like so:
var myArray = [];
function SuperClass() {
myArray.push(this);
};
function Block(name) {
this.name = name;
SuperClass.apply(this, arguments);
};
function Player(name) {
this.name = name;
SuperClass.apply(this, arguments);
};
var baller = new Player('Jim');
var blocker = new Block('Joe');
console.log(myArray); // [Player, Block]
Every time a new instance of Player or Block is instantiated, it will add it to the array.
Another pattern you may consider is having a set prototype object that you can add your prototypical methods and shared data to, and then assigning it as the prototype in your constructor function
var personPrototype = {
alive: []
}
var blockPrototype = {
alive: []
}
var Person = function(x, y){
//this creates a new object with the prototype of our personPrototype object
var o = Object.create(personPrototype);
//then we can configure / add instance-specific attributes and return the object
o.x = x;
o.y = y;
return o;
}
var Block = function(x, y){
var o = Object.create(blockPrototype);
o.x = x;
o.y = y;
return o;
}
var me = new Person(1, 2);
var square = new Block(10, 20);
// > []
me.alive
By using Object.create to create a dummy object we can effectively assign it a proper prototype. Then we can add whatever instance attributes we'd like, and return that object. This means that the personPrototype will be a proper prototype. Each instance can use instance.alive or instance.alive.push directly, since it automatically walks up the prototype chains
It also allows you to easily add any new data to the prototype of all your instances. You don't need to iterate through each instance and add prototypical methods. You can just add the method to the prototype to start and it will be accessible on all instances by default.
I find the whole approach - trying to track/store [Person] instances - questionable.
But if I was in the position of being told to do so, I'd go for an approach that is build upon a
factory module. Thus being at least able of assuring "read only access" to the list of all instances
that ever got created by the factory.
A possible implementation than might look similar to the following example:
var Person = (function (global, Object, Array, Math) {
var
array_from = ((typeof Array.from == "function") && Array.from) || (function (array_prototype_slice) {
return function (listType) {
return array_prototype_slice.call(listType);
};
}(Array.prototype.slice)),
personModule = {},
personList = [],
Person = function (config) { // constructor.
var person = this;
person.name = config.name;
person.age = config.age;
person.constructor = Object;
return person;
},
isPerson = function (type) {
return (type instanceof Person);
},
createPerson = function (age, name) { // factory.
/*
- sanitizing/validation of arguments etc. should be done right here.
- create instances only if all the conditions are fulfilled.
*/
var person = new Person({
name: name,
age : age
});
personList.push(person);
return person;
}/*,
removePerson = function (type) {
if (isPerson(type)) {
// remove person from the internal list.
}
}*/
;
//personModule.remove = removePerson;
personModule.create = createPerson;
personModule.isPerson = isPerson;
personModule.all = function () { // expose internal instance list.
return array_from(personList);
};
personModule.all.size = function () {
return personList.length;
};
(function () { // make [personModule.all] enumerable.
var
parse_float = global.parseFloat,
math_floor = Math.floor
;
this.first = function () {
return (this()[0]);
};
this.last = function () {
var list;
return ((list = this())[list.length - 1]);
};
this.item = function (idx) {
return (this()[math_floor(parse_float(idx, 10))]);
};
}).call(personModule.all);
return personModule;
}((window || this), Object, Array, Math));
var Jim = Person.create("Jim", 21);
var Tim = Person.create("Tim", 19);
console.log("Jim", Jim);
console.log("Tim", Tim);
console.log("Person.isPerson(Jim) ? ", Person.isPerson(Jim));
console.log("Person.isPerson(Tim) ? ", Person.isPerson(Tim));
console.log("Person.isPerson({name: 'Tim', age: 21}) ? ", Person.isPerson({name: 'Tim', age: 21}));
console.log("Person.all.size() : ", Person.all.size());
console.log("Person.all() : ", Person.all());
console.log("Person.all.first() : ", Person.all.first());
console.log("Person.all.last() : ", Person.all.last());
console.log("(Person.all()[1] === Person.all.item(1)) ? ", (Person.all()[1] === Person.all.item(1)));
console.log("(Person.all.first() === Person.all.item(0)) ? ", (Person.all.first() === Person.all.item(0)));

stringify javascript function

I am in the final stages of a game development and i have a bunch of objects like this;
roomBedroom = function () {
this.title = "Bedroom";
this.description = "I'm in a bedroom";
this.noun = "bed";
this.entities = new Array();
}
var bedroom = new roomBedroom();
What I want to do now is place all of my game objects into an array;
var savedGameObjects = {};
savedGameObjects['bedroom'] = bedroom;
var jsonGame = JSON.stringify(savedGameObjects);
The plan is to then save the savedGameObjects array and then recall it when the user loads the game again.
If I replace savedGameObjects['bedroom'] = bedroom; with savedGameObjects['bed'] = 'slappy'; it works but not when I have the object.
I really need to save the objects in their current state. I'd rather not go through each object saving key pieces of information one by one.
This feels like a bit of a hack, but its the best I can come up with right now
Your serialization/deserializtion utility
This is going to attach obj.constructor.name to obj.__prototype before serialization. Upon deserializing, the prototype will be put back in place.
(function(global) {
function serialize(obj) {
obj.__prototype = obj.constructor.name;
return JSON.stringify(obj);
};
function deserialize(json) {
var obj = JSON.parse(json);
obj.__proto__ = global[obj.__prototype].prototype;
return obj;
}
global.serialize = serialize;
global.deserialize = deserialize;
})(window);
A sample "class"
(function(global) {
function Foo() {
this.a = "a";
this.b = "b";
}
Foo.prototype.hello = function() {
console.log("hello");
}
global.Foo = Foo;
})(window);
Let's try it out
var foo = new Foo();
var json = serialize(foo);
console.log(json);
var newFoo = deserialize(json);
console.log('a', newFoo.a); // a
console.log('b', newFoo.b); // b
newFoo.hello(); // hello
Watch out for some gotchas
If you use an expression to define your "class", you will have a nameless constructor
var Foo = function() {};
var foo = new Foo();
foo.constructor.name; // ""
As opposed to a named function
function Foo() {}
var foo = new Foo();
foo.constructor.name; // Foo
In order for serialize and deserialize to work, you will need to use named functions
Another gotcha
The deserialize method expects your "classes" to exist on the in the same namespace (window in this case). You could encapsulate your game object classes in another way, just make sure that you reconfigure the deserialize method so that it can find the prototypes as needed.
Making this better
Instead of attaching serialize to the global window, you could have serialize live on (e.g.) the GameObject.prototype then your individual classes could inherit from GameObject. Serializing an object would then be as simple as
var json = foo.serialize();
// {"a":"a","b":"b","__prototype":"Foo"}
You could then define deserialize as GameObject.deserialize and restoring foo would be
var foo = GameObject.deserialize(json);
An alternative solution
Instead of implementing a custom serializer and deserializer, you could make very clever use of the Factory Method Pattern.
This might be a little verbose, but it does give you individual control over how a game object should be deserialized/restored.
var savedData = // your normal JSON here
var player = Player.create(savedData.player);
var items = [];
for (var i=0, i<savedData.items.length; i++) {
items.push(Item.create(savedData.items[i]));
}
var map = Map.create(savedData.map);
This was a pretty interesting problem and I'm sure you're not the first to encounter it. I'm really curious to see what other people come up with.
If I run the following code in a browser there is no problem getting the JSON string of the bedroom object, not sure what the problem is.
Note that JSON is data and bedroom is an object, bedroom may have behaviour like turnOffLight() that JSON doesn't have.
roomBedroom = function () {
this.title = "Bedroom";
this.description = "I'm in a bedroom";
this.noun = "bed";
this.entities = new Array();
}
var bedroom = new roomBedroom();
var savedGameObjects = {};
savedGameObjects['bedroom'] = bedroom;
//logs {"bedroom":{"title":"Bedroom","description":
// "I'm in abedroom","noun":"bed","entities":[]}}
console.log(JSON.stringify(savedGameObjects));
So if you want to re create object instances from JSON data then you can change your constructor:
roomBedroom = function (args) {
//following fails fast and loud, you could silently
//fail by setting args to {}
if(typeof args!=="object")
throw new Error("Have to create roomBedroom by passing an object");
//or do args={} to silently fail
this.title = args.title||"Bedroom";
this.description = args.description||"I'm in a bedroom";
this.noun = args.noun||"bed";
//if entities are objects with behavior
// you have to re create them here passing the JSON data
// as I've done with roomBedroom
this.entities = args.entities||new Array();
}
var jsonString='{"bedroom":{"title":"Bedroom",'+
'"description":"I\'m in a bedroom",'+
'"noun":"bed","entities":[]}}';
var bedroom = new roomBedroom({});
bedroom.entities.push({hi:"there"});
bedroom.title="Master Bedroom";
//serialize bedroom to a json string
var jsonString = JSON.stringify(bedroom);
//create a roomBedroom instance named br2 using
// the serialized string
var br2=new roomBedroom(JSON.parse(jsonString));
//compare if they are the same
console.log(JSON.stringify(bedroom)===JSON.stringify(br2));//true
I have an approach that might work for you. You can see it in action on JSFiddle.
The main point is to use the reviver parameter to JSON.parse to reconstruct your object when it's parsed.
I do this with a general-purpose reviver that can be configured for multiple different types, although here the only one used is the RoomBedroom constructor. This implementation assumes that you have simple copy constructors that create new objects using a reference to an existing one. (For other, more sophisticated possibilities, see an answer to another question I gave in February.) To make it easy to have a copy constructor, I have one more function that accepts a very simple constructor function and a set of default values and builds a copy constructor function for you.
var MultiReviver = function(types) {
return function(key, value) {
var type;
for (var i = 0; i < types.length; i++) {
type = types[i];
if (type.test(value)) {
return new type.constructor(value);
}
}
return value;
};
};
var makeCloningConstructor = (function() {
var clone = function(obj) {return JSON.parse(JSON.stringify(obj));};
var F = function() {};
return function(Constructor, defaults) {
var fn = function(obj) {
Constructor.call(this);
var self = this;
var config = obj || {};
Object.keys(defaults).forEach(function(key) {
self[key] = clone(defaults[key]);
});
Object.keys(config).forEach(function(key) {
self[key] = clone(config[key]);
});
};
F.prototype = Constructor.prototype;
fn.prototype = new F();
fn.constructor = Constructor;
return fn;
};
})();
// Note: capitalize constructor functions
var RoomBedroom = makeCloningConstructor(function RoomBedroom() {}, {
title: "Bedroom",
description: "I'm in a bedroom",
noun: "bed",
entities: [] // Note: use `[]` instead of `new Array()`.
});
RoomBedroom.prototype.toggleLight = function() {
this.lightOn = !this.lightOn;
};
RoomBedroom.prototype.checkLights = function() {
return "light is " + (this.lightOn ? "on" : "off");
};
var bedroom = new RoomBedroom();
bedroom.windowCount = 3; // add new property
bedroom.noun = "king-sized bed"; // adjust property
bedroom.toggleLight(); // create new propery, use prototype function
console.log(bedroom.checkLights());
var savedGameObjects = {};
savedGameObjects['bedroom'] = bedroom;
var jsonGame = JSON.stringify(savedGameObjects);
var reviver = new MultiReviver([{
constructor: RoomBedroom,
test: function(obj) {
var toString = Object.prototype.toString, str = "[object String]",
arr = "[object Array]";
return toString.call(obj.title) == str &&
toString.call(obj.description) == str &&
toString.call(obj.noun) == str &&
toString.call(obj.entities) == arr;
}
}]);
var retrievedGameObjects = JSON.parse(jsonGame, reviver);
// data comes back intact
console.log(JSON.stringify(retrievedGameObjects, null, 4));
// constructor is as expected
console.log("Constructor: " + retrievedGameObjects.bedroom.constructor.name);
// prototype functions work
console.log(retrievedGameObjects.bedroom.checkLights());
I don't know if it's precisely what you were looking for, but I think it's at least an interesting approach.
the faster route
It is better — from an optimisation point of view — to do as Adeneo states, which is power each of your Game Objects by an exportable simple object i.e:
roomBedroom = function(){
this.data = {};
this.data.title = 'Bedroom'
/// and so on...
}
These can then be easily stored and re-imported just by JSON.Stringifying and overwriting the data property. For example, you could set-up the system that Maček mentions (+1) which is to give each of your game objects serialize and deserialize functions:
roomBedroom.prototype.serialize = function(){
return JSON.stringify( this.data );
};
roomBedroom.prototype.deserialize = function( jstr ){
this.data = JSON.parse(jstr);
};
the quicker way
However, you can make a simple addition to what you already have using the following:
First enhance your Game Objects with an objectName property. This is because constructor.name and function.name are unreliable and do strange things the further back in time you go, far better to use a string you have set in stone.
var roomBedroom = function ( title ) {
this.objectName = "roomBedroom";
this.title = title;
this.description = "I'm in a bedroom";
this.noun = "bed";
this.entities = new Array();
};
Then the additional code to help with storage:
var storage = {};
/// add your supported constructors to this list, there are more programmatic
/// ways to get at the constructor but it's better to be explicit.
storage.constructors = {
'roomBedroom' : roomBedroom
};
/// take an instance and convert to simple object
storage.to = function( obj ){
if ( obj.toStorage ) {
return obj.toStorage();
}
else {
var keep = {};
for ( var i in obj ) {
if ( obj.hasOwnProperty(i) && !obj[i].call ) {
keep[i] = obj[i];
}
}
return keep;
}
}
/// take simple object and convert to an instance of constructor
storage.from = function( obj ){
var n = obj && obj.objectName, c = storage.constructors[n];
if ( n && c ) {
if ( c.fromStorage ) {
return c.fromStorage( obj );
}
else {
var inst = new c();
for ( var i in obj ) {
if ( obj.hasOwnProperty(i) ) {
inst[i] = obj[i];
}
}
return inst;
}
}
else {
throw new Error('`' + n + '` undefined as storage constructor');
}
}
Once you have that you can use it like so:
var savedGameObjects = {};
savedGameObjects['bedroom'] = storage.to(new roomBedroom("bedroom"));
savedGameObjects['bedroom2'] = storage.to(new roomBedroom("bedroom2"));
var jsonGame = JSON.stringify(savedGameObjects);
console.log(jsonGame);
savedGameObjects = JSON.parse(jsonGame);
for( var i in savedGameObjects ) {
savedGameObjects[i] = storage.from(savedGameObjects[i]);
console.log(savedGameObjects[i]);
}
extras
You can also be specific about the way objects get stored/unstored by supplying toStorage and fromStorage methods on your constructed instances and constructors respectively. For example, you could use the following if you only wanted to store titles of roomBedrooms. Obviously this is an unrealistic use-case, you'd more often use this to avoid storing cached or computed sub-objects and properties.
roomBedroom.prototype.toStorage = function( obj ){
var ret = {};
ret.title = obj.title;
return ret;
};
roomBedroom.fromStorage = function( obj ){
var inst = new roomBedroom();
inst.title = obj.title;
return inst;
};
The above also means you can take advantage of improving your Game Object construction by providing parameters, rather than iterating over properties which can be slow and error-prone.
roomBedroom.fromStorage = function( obj ){
return new roomBedroom( obj.title );
};
Or even:
roomBedroom.fromStorage = function( obj ){
return new roomBedroom( obj ); // <-- the constructor processes the import.
};
fiddle
http://jsfiddle.net/XTUdp/
disclaimer
The above code relies on the existence of hasOwnProperty which is not present cross-browser yet, a polyfill should be used until it is... or, if you aren't doing anything complicated with prototype inheritance you don't need to worry and can remove it from the code.
you can declare a big variable like
var world = {};
and each small variable declare as
var bedroom = world.bed = (world.bed || new roomBedroom());
remember never change bedroom to another object, i think this will work fine, but looks too long winded

How to define optional parameters in Java Script

Here is my object construction,
function Employee(name, dob) {
this.Name = name;
this.DateOfBirth = new Date(dob);
}
Now, I have created an instance for this, like
var emp = new Employee("sample","12/12/12");
Its working fine when i print the output.
But, if i create the object like
var emp = new Employee(name = "sample");
or
var emp = new Employee(dob = "12/12/12");
its not working fine. In both the cases, the DateOfBirth field is invalid.
I need to define an object with optional parameters.
JavaScript does not support named optional parameters.
When you do var emp = new Employee(name = "sample");
You're declaring a name global variable, assigning sample to it and passing that to the new call.
You can use objects to accomplish similar syntax in JS:
var emp = new Employee({name:"sample"});
Where the Employee function becomes:
function Employee(options) {
this.Name = options.name;
if(options.dob !== undefined){
this.DateOfBirth = new Date(options.dob);
}
}
Worth mentioning, in practice, you often don't need an Employee class, and can simply do:
var emp = {name:"sample"};
Or:
var emp = {dob:new Date("12/12/12");}
So unless Employee grows to become a real model (and has more than just two fields) I think that you might want to consider that.
function Employee(params) {
if (typeof params != "undefined") {
this.Name = (typeof params.name != "undefined") ? params.name : "";
this.DateOfBirth = (typeof params.dob != "undefined") ? new Date(params.dob) : null;
}
}
new Employee({
name: "John",
dob: "12/12/12"
});
new Employee({
name: "John"
});
new Employee({
dob: "12/12/12"
});
or using simple statements using ||.
function Employee(params) {
params = params || {};
this.Name = params.name || "";
this.DateOfBirth = new Date(params.dob || "");
}
As a good practice, you should never leave out variables.
You can explicitly call var emp = new Employee(null, "12/12/12");
This way everything is initialized and you will not havea headaches later on.
There is also something like this, but you really need to check the values before assigning.
function Employee() {
this.Name = name;
this.DateOfBirth = new Date(dob);
}
var emp = new Employee(name = null,dob = "12/12/12");

Categories

Resources