Limiting access to JavaScript variables - javascript

I'm modifying a module for a game that we are developing and it is built with ImpactJS game engine. What we wanted to do is to make the variables private or inaccessible to other classes.
For example:
this.object.variable = 100; // Not okay.
this.object.setVariable( 100 ); // Okay.
ig.module(
'game.data.server'
).requires(
).defines(function(){
ServerData = ig.class.Extend({
_variable : -1,
get variable() {
return this._variable ;
},
setVariable: function( value ) {
this._variable = value;
}
});
});
But JavaScript setter and getter return different outputs
We can't do several revisions because this is also accessed by other games that we are developing.
Is there a better solution?

First possibility
You could try doing this but as I haven't developed anything using ImpactJS it may not work as expected as it depends what the .class.extend() function does internally.
But it's worth a try.
var ServerData = ig.class.Extend((function() {
var privateVar = -1;
return {
getVariable: function() {
return privateVar;
},
setVariable: function(value) {
privateVar = value;
}
};
})());
This code may seem a bit confusing to you, but what I've changed I've created an immediately executing function to create a function closure, which is required to create private space in which I created private to closure variable that's not visible outside.
I would suggest you to read Douglas Crockford's Javascript and learn even more stuff about the language you're using.
Second possibility
According to link in comments it seems that we can use define's closure for private members as well:
var privateVar = -1;
var ServerData = ig.class.Extend({
getVariable: function() {
return privateVar;
},
setVariable: function(value) {
privateVar = value;
}
});

Related

What are some idiomatic ways to create custom Javascript objects

I am creating a custom object to be used in some internal applications where I work. I researched some ways to go about doing this - and this is what I came out with.
function ISGrader(text)
{
this.text = text;
this.printInfo = function(){
alert("Object working " + text);
}
this.putGrade = function(score)
{
alert(score);
}
}
I believe this shows constructor-type functionality, as well as some simple starter methods that I will build on.
Is the above good practice or is there another way that is more standard?
I prefer a pattern similar to the one below. You can think of it as a 4-step approach:
(function(parent) {
// 1. Declare private variables and functions that will be
// accessible by everybody within the scope of this
// function, but not outside of it.
var doSomethingAwesome = function() { .. }; // private function
var coolInteger = 42; // private variable
// 2. Create the constructor function
function ISGrader() {
..
}
// 3. Create shared public methods on the prototype object.
// These will be created only once, and shared between all objects
// which is more efficient that re-creating each method for each object.
ISGrader.prototype.printInfo = function() { .. };
ISGrader.prototype.putGrade = function(score) { .. };
// 4. Expose the constructor to the outside world.
parent.ISGrader = ISGrader;
})(window);
The reason why everything is enclosed inside a self-executing anonymous function is to ensure the private variables we create inside don't leak outside to the enclosing scope, and to basically keep things clean.
Another benefit of declaring the constructor like this is that you can change the parent object easily from say window to a further namespaced object by changing a single word.
I prefer this pattern (IIFE), but it is purely opinion:
var ISGrader = (function (text) {
// anything declared here is "private"
var printInfo = function() {
alert("Object working " + text);
};
var putGrade = function (score) {
alert(score);
};
// put "publicly" accesible things in the returned object
return {
text: text,
printInfo: printInfo,
putGrade: putGrade
};
})(text);
It is always recommended to do it using `prototype'. This way you can also inherit it's properties and create new one.
var ISGrader = function(text) {
this.text = text;
var _privateVar = text;
this.updatePrivateVar = function(newText) {
_privateVar = newText;
alert("private variable updated");
}
}
ISGrader.prototype.text = "";
ISGrader.prototype.printInfo = function() {
alert("Object working " + this.text);
}
ISGrader.prototype.putGrade = function(score) {
alert(score);
}
var isGrader = new ISGrader("hello");
isGrader.printInfo();
// Inherit and create a new definition
var ISGrader2 = function() {}
ISGrader2.prototype = new ISGrader();
var isGrader2 = new ISGrader("hello2");
isGrader2.printInfo();
isGrader2.updatePrivateVar("hello3");
demo : http://jsfiddle.net/rkspP/3/
While not really an answer, I recommend Douglas Crockford's book JavaScript: The Good Parts as it does a good job of introducing you to the "good parts" of the language and discusses the pros and cons of the different ways to create objects in JavaScript.
You can also review this resource if you're just looking for an explanation of member visibility in JavaScript objects: http://javascript.crockford.com/private.html
If you are planning on creating multiple ISGrader objects on a single page, it's more memory efficient to stick the functions in a prototype object assigned to ISGrader like this:
function ISGrader(text) {
this.text = text;
}
ISGrader.prototype = {
printInfo: function() {
alert("Object working " + this.text);
},
putGrade: function(score) {
alert(score);
}
}

JavaScript - object's functions referencing its fields

Here is a (very) simplified version of my code:
function Ctor() {
this.i = 0;
this.increment = function() { this.i++; },
this.decrement = function() { this.i--; },
this.display = function() { alert(this.i); }
};
The problem is, when the code is run, under some circumstances this now points to something else. I do more or less understand that this changes context from one function to another, but I though my increment function (and the others) would, by the magic of closures, "remember" what this is supposed to be.
I tried just eliminating this altogether, and simply referencing i in the functions. That failed also.
What should these functions look like?
You can not rely on what's in this in JavaScript. More on this topic.
I see you probably want to introduce private attributes like in OOP languages. John Resig described this issue very well.
function Field(val){
var value = val;
this.getValue = function(){
return value;
};
this.setValue = function(val){
value = val;
};
}
var field = new Field("test");
field.value
// => undefined
field.setValue("test2")
field.getValue()
// => "test2"
JavaScript works a lot differently than conventional languages like Java, C++ or PHP. But you can get used to it :)
In the instances where this changes, you can do this:
function() { obj.display(); }
Example:
var obj = new Ctor();
function foo(fn) {
fn();
}
foo(function() {
obj.display();
});
An alternative is to modify foo() to accept the context to execute the function with, like this:
function foo(fn, context) {
fn.call(context);
}

Why do we need private variables?

What are they for and how do we make it? Can you give me an example?
To avoid collisions with multiple libraries, for example.
Say they both use a variable commonly used such as data. If both libraries use private variables it's all fine:
var lib1 = (function() {
var data;
return {
get: function() { return data },
set: function(v) { data = v }
};
})();
// Supposed to do something different:
var lib2 = (function() {
var data;
return {
get: function() { return data },
set: function(v) { data = v }
};
})();
lib1.set(123);
lib2.set(456);
lib1.get(); // 123
lib2.get(); // 456
However suppose they don't use private variables but global ones like this:
var lib1 = (function() {
return {
get: function() { return data },
set: function(v) { data = v }
};
})();
// Supposed to do something different:
var lib2 = (function() {
return {
get: function() { return data },
set: function(v) { data = v }
};
})();
lib1.set(123);
lib2.set(456);
lib1.get(); // 456 - overwritten by lib2. lib1 might not work properly anymore.
lib2.get(); // 456
So lib1.get() will fetch the same data as lib2.get().
This example is too obvious of course but to stay safe it's a good practice to use private variables.
Variables are encapsulated within a class to stop their names colliding. These can be public or private. Sometimes there is a need to make sure that variables are only changed using the functions that set them. For example the parts of a date would need to be verified to stop someone setting an invalid date such aas February 45th.
var factorial = (function(){
var precog = [1,1];// ===undefined for other indices, N = undefined || N
return function(y){
return precog[y] || (precog[y]=y*arguments.callee(y-1));
};
})();
Here is a JavaScript function with a private precog. This stores previously calculated values and it is private to stop them being manipulated.
I believe there are multiple reasons for namespaces. One way I understand it is: private, protected, and public expressions help a lot in team environments so that other devs don't end up using methods you didn't intend them to. That being said, you only use private when methods or properties only need to be accessed by that same object. Use protected when you need an inheriting class to carry that same functionality and use public when an object of a different class needs to access your object.
eg:
Class Victim has
private method haveAnxiety()
public property appearsToBeRich:Boolean
Class Robber has
private method profile(obj:Victim)
private method rob(obj:Victim)
Robber->profile() will need to access Victim->appearsToBeRich. If Victim->appearsToBeRich returns true, then that Victim object will get robbed. a Robber object never needs to run Victim->haveAnxiety as the Victim will run this->haveAnxiety() as soon as that Victim object starts getting robbed.
Granted, real world examples are a LOT more complex than my example (and I hope they are much more graceful). Anyway, I hope that helps.

in javascript, how can you add / execute a new method to an object using private methods?

wish to extend define and/or execute new methods against an object using its private methods - exactly as if I were to define the method within the original declaration - except these new methods apply only to this object to be executed one time, not to the Klass itself.
for example:
var Klass = function() {
var privateFn = function() { return 15 };
this.publicFn1 = function() { return privateFn()+1; };
}
var k = new Klass();
console.log( k.publicFn1() ); // prints 16
suppose I wish to create and/or execute a new method on Klass, sum2(), that will add 2 to the privateFn.
have tried the brain-dead
k.publicFn2 = function() { return privateFn()+2 }
console.log( k.publicFn2() );
and it makes perfect sense that it does not work, but what does?
as a note, since functions are very long, attempting to maintain the syntax of privateFn() rather than self.privateFn() - this might be asking too much, but one hopes.
There is no such thing as private in ECMAScript
var Klass = function() {
var privateFn = function() { return 15 };
this.publicFn1 = function() { return privateFn()+1; };
}
privateFn is a local variable which publicFn1 has access to due to scoping rules (and closures).
You cannot access privateFn outside the scope of function Klass
If you want to access privateFn outside the scope of function Klass then you have to expose it through a proxy or inject it further up the scope chain.
A proxy would be something like
this._private = function() {
return privateFn;
}
Injecting further up the scope chain would be something like
var Klass = function() {
var privateFn = function() { return 15 };
this.publicFn1 = function() { return privateFn()+1; };
this.uid = Klass.uid++;
Klass.instances[this.uid] = {
privateFn: privateFn
};
}
Klass.uid = 0;
Klass.instances = [];
k.publicFn2 = function() { return Klass.instances[this.uid].privateFn()+2 }
Both are ugly.
The reason they are ugly is because you are emulating classical OO
Please use prototypical OO instead.
Shameless prototypical OO plug
Javascript is a prototype-based object-oriented language. That means if you wish to user instance-specific variables, you can do it by extending the prototype object of that object. Using it any other way is unnatural and leads to problems such as yours that require an extreme hack to overcome. Why not just use the language as it was intended?
The correct structure of your code would be more like the following:
function Klass(nr) {
this.nr = nr;
};
Klass.prototype.publicFn = function() {
alert(this.nr);
};
var inst = new Klass(13);
inst.publicFn();
There are no private functions in JS and there won't be. You can "hack" the similar effect, but at the cost of either hacking something on your own or using other libraries.
It makes little sense to try to bend the language to suit you. Instead you should learn the language as it is.

Javascript OOP best practices? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
I'm sick of seeing dozens of different ways of doing object oriented programming in Javascript. Can anyone just tell me which technique I should use considering I want to work on a large scale project and I want my code to be future proof?
These are just a few quick guidelines I've come up with, if anyone else has anything meaningful to add, I've set this answer as a community wiki so it should be easy enough for you to edit.
Namespace your objects to ensure they will never conflict with third party JavaScript libraries.
window['Andrew']['JS'] = {
addEvent: function(el,evName) {/*Stuff*/},
Rectangle: function(width,height) {/*Stuff*/}
};
So then you would create a rectangle object by using:
var myRect = new Andrew.JS.Rectangle(14,11);
And then your code will never interfere with, or be interfered by anybody else's Rectangle.
Use a consistent naming strategy, specifically:
Object names should be capitalized, everything else (variables, functions) should begin with a lower case character i.e.
var myRect = new Andrew.JS.Rectangle(14,11);
document.write(myRect.getArea());
Ensure everything is meaningful, i.e. verbs for methods, nouns + adjectives for parameters.
Make sure all methods and parameters are relevant to the object they belong to. e.g.
In this example, the area of the rectangle can be converted to square feet using the method inSquareFeet().
myRect.getAreaObject().inSquareFeet();
Make sure inSquareFeet is a method of the object returned by getAreaObject() and not a method of Andrew.JS.Rectangle
Use constructors, or more specifically, try as hard as possible to make sure that an object doesn't need any further initialization to be used once it has been constructed, so instead of:
var Person = function()
{
this.name = "";
this.sayHello = function ()
{
alert(this.name + " says 'Hello!'");
return this;
}
}
var bob = new Person();
bob.name = "Bob Poulton";
bob.sayHello();
try:
var Person = function(name)
{
this.name = name;
this.sayHello = function ()
{
alert(this.name + " says 'Hello!'");
return this;
}
}
var bob = new Person("Bob Poulton");
bob.sayHello();
I always use John resig's:
http://ejohn.org/blog/simple-javascript-inheritance/
It's simple and doesn't require any frameworks to function.
Because you are working on a large scale project i would suggestion a javascript framework like mootools http://mootools.net/.
It has a good class and inheritance structure.
My ideal Object for OOP is like using an Instance method with prototypes:
Example:
var Users = function()
{
var _instance;
this.prototype.getUsername = function(){/*...*/}
this.prototype.getFirstname = function(){/*...*/}
this.prototype.getSecurityHash = function(){/*...*/}
/*...*/
/*Static Methods as such*/
return { /*Return a small Object*/
GetInstance : function()
{
if(_instance == null)
{
_instnance = new Users(arguments);
}
return _instnance; //Return the object
},
New: function()
{
_instnance = null; //unset It
return this.GetInstnace(arguments);
}
}
}
Then I would always use like:
Firstname = Users.GetInstance('Robert','Pitt').getFirstname();
Username = Users.GetInstance().getUsername(); //Returns the above object.
Me = Users.New('Robert',null); //Deletes the above object and creates a new instance.
Father = Users.New('Peter','Piper'); //New Object
Me.AddFather(Father); //Me Object.
And that's the kind of road i go down when it comes to building a JavaScript OO Style architecture.
just for your information, i think YUI provides few great tutorials on this topic
//Create and define Global NameSpace Object
( function(GlobalObject, $, undefined)
{
GlobalObject.Method = function()
{
///<summary></summary>
}
GlobalObject.Functionality = {};
}) (GlobalObject = GlobalObject || {}, jQuery);
//New object for specific functionality
( function(Events, $, undefined)
{
//Member Variables
var Variable; // (Used for) , (type)
// Initialize
Events.Init = function()
{
///<summary></summary>
}
// public method
Events.PublicMethod = function(oParam)
{
///<summary></summary>
///<param type=""></param>
}
// protected method (typically define in global object, but can be made available from here)
GlobalObject.Functionality.ProtectedMethod = function()
{
///<summary></summary>
}
// internal method (typically define in global object, but can be made available from here)
GlobalObject.InternalMethod = function()
{
///<summary></summary>
}
// private method
var privateMethod = function()
{
///<summary></summary>
}
}) (GlobalObject.Funcitonality.Events = GlobalObject.Funcitonality.Events || {}, jQuery )
// Reusable "class" object
var oMultiInstanceClass = function()
{
// Memeber Variables again
var oMember = null; //
// Public method
this.Init = function(oParam)
{
oMember = oParam;
for ( n = 1; i < oMemeber.length; i += 1 )
{
new this.SubClass.Init(oMember[i]); // you get the point, yeah?
}
}
this.Subclass = function()
{
this.Init = function() { }
}
}
The strength to this is that it initializes the Global object automatically, allows you to maintain the integrity of your code, and organizes each piece of functionality into a specific grouping by your definition.
This structure is solid, presenting all of the basic syntactical things you would expect from OOP without the key words.
There are even some ingenious ways to set up interfaces as well. If you choose to go that far, a simple search will give you some good tutorials and tips.
Even setting up intellisense is possible with javascript and visual studio, and then defining each piece and referencing them makes writing javascript cleaner and more manageable.
Using these three methods as needed by your situation helps keep the global namespace clean, keep your code organized and maintains separation of concerns for each object.. if used correctly. Remember, Object Oriented Design is of no use if you don't utilize the logic behind using objects!
function foo() {
var bar = function() { console.log("i'm a private method"); return 1; };
var iAmAPrivateVariable = 1;
return {
publicMethod: function() { alert(iAmAPrivateVariable); },
publicVariable: bar()
}
}
//usage
var thing = foo()
This is a functional approach, and has a great deal more going for it (such as encapsulation) then anything else you are going to see
In a general way, you shouldn't be doing OO in javascript, it isn't that great a language for it for a great many reasons. Think scheme with squiggly brackets and semi-colons, and you will start writing the language like the pros do. That being said, sometime OO is a better fit. In those cases, the above is typically the best bet
to bring inheritance into the mix
function parent() {
return { parentVariable: 2 };
}
function foo() {
var bar = function() { console.log("i'm a private method"); return 1; };
var iAmAPrivateVariable = 1;
me = parent();
me.publicMethod = function() { alert(iAmAPrivateVariable); };
me.publicVariable = bar();
return me;
}
This makes things a tad more complected, but accomplishes the desired end result while still taking a functional approach to OO concepts (in this case, using decorator functions instead of real inheritance). What I like about the whole approach is we are still really treating objects the way they are intended to be in this kind of language -- a property bag you can attach stuff to at will.
Another note is this is wildly different then what you will see most of the time in most of the jobs you will ever work at, and often is very hard to explain a) what is going on, and b) why it is a good idea to coworkers.
I use such a pattern and recommend to you to use it too:
function Person(firstname, lastname, age)
{
var self = this;
var _ = {};
// Private members.
var firstname = firstname;
var lastname = lastname;
var age = age || 'unknown';
// Private methods.
function first_letter_to_uppercase(str) {
return str.charAt(0).toUpperCase() + str.substr(1);
}
// Public members and methods.
_.get_age = function()
{
return age;
}
_.get_name = function()
{
return first_letter_to_uppercase(firstname) + ' ' +
first_letter_to_uppercase(lastname);
}
return _;
}
var p = new Person('vasya', 'pupkin', 23);
alert("It's " + p.get_name() + ', he is ' + p.get_age() + ' years old.')
You can try with a simple, usefull and quick object:
var foo = {
foo1: null,
foo2: true,
foo3: 24,
foo4: new Array(),
nameOfFunction1: function(){
alert("foo1");
},
nameOfFunction2: function(){
alert("foo2");
},
}
To use this, you have to create an instance of this object and use like a object in java:
foo.nameOfFunction2();
Also you can check this link to other solution: http://www.javascriptkit.com/javatutors/oopjs.shtml
I hope that answer your question.

Categories

Resources