HTML Canvas - Draw Rectangles at selected location - javascript

I'm making a simple game with AngularJS and I wanted to add a canvas to the game. I never used it before and I'm still learning. I don't know how to do the following:
I made a grid to be easier to look at it. So what I want is when the user click on a rectangle, that rectangle should be filled with a color.
var builder = function () {
var build_canvas = document.getElementById("builder-canvas");
var build_context = build_canvas.getContext("2d");
var x;
for (x = 0.5; x <= 800; x += 15) {
build_context.moveTo(x, 0);
build_context.lineTo(x, 390);
}
var y;
for (y = 0.5; y < 400; y += 10) {
build_context.moveTo(0, y);
build_context.lineTo(796, y);
}
build_context.strokeStyle = "#000000";
build_context.stroke();
};
builder();
Here is a fiddle: http://jsfiddle.net/JQd4j/
Thank you in advance.

Simply quantize the x and y values you get from mouse position on click:
build_canvas.onclick = function(e) {
var rect = build_canvas.getBoundingClientRect(), // canvas abs. position
x = e.clientX - rect.left, // relative x to canvas
y = e.clientY - rect.top; // relative y to canvas
x = ((x / 15)|0) * 15; // quantize x by 15
y = ((y / 10)|0) * 10; // quantize y by 10
build_context.fillRect(x+1, y+1, 14, 9); // fill rectangle
}
This quantizing does:
(x / 15)|0
divide by 15 and remove fraction. Then multiply it up again by the same number to get the start position of the cell:
((x / 15)|0) * 15
and the same for y.
Modified fiddle

Related

Ball not coming back after colliding in p5.js

var x, y, speed, speed2, speedx, speedy;
function setup() {
createCanvas(1200, 630);
x = 50;
y = 300;
speed = 20;
speed2 = 20;
speedx = createSlider(2, 50, 20);
speedx.position(1000, 100);
speedx.style('width', '200px');
speedy = createSlider(10, 50, 20);
speedy.position(1000, 150);
speedy.style('width', '200px');
}
function draw() {
background("white");
x = x + speedx.value();
y = y + speedy.value();
if (x > 1170) {
x = x - speedx.value();
}
if (x < 10) {
x = x + speedx.value();
}
if (y > 610) {
y = y - speedy.value();
}
if (y < 15) {
x = x + speedx.value();
}
let color1 = color("black");
fill(color1);
ellipse(x, y, 20);
}
**
I am new to p5.js and made this (my first code) but it is not working as I expected
Please help me by answering this code
**
Currently your code isn't going to make the ball "come back" because while it is limiting the x and y positions, it doesn't change the x and y velocities (so once the ball gets to the edge it is just going to stick there). You also have a few defects in to edge limiting logic.
Your sliders are always positive so the ball can only move down and to the right.
When you check the y position against the minimum you modify the x position instead of the y position.
When you check the x position against the minimum value you are adding the speeds, but presumably when this happens speed would be negative (i.e. moving to the left), so you still want to subtract.
var x, y, speedx, speedy;
function setup() {
// make the canvas cover the window
createCanvas(windowWidth, windowHeight);
x = width / 2;
y = height / 2;
// create slider ranges such that things don't always go down and to the right
speedx = createSlider(-10, 10, 2);
speedx.position(10, 10);
speedx.style("width", "200px");
speedy = createSlider(-10, 10, 2);
speedy.position(10, 50);
speedy.style("width", "200px");
}
function draw() {
background("white");
x = x + speedx.value();
y = y + speedy.value();
if (x > width - 10) {
x = x - speedx.value();
}
if (x < 10) {
// presumably the reason we're going off the screen is that speedx is negative.
x = x - speedx.value();
}
if (y > height - 10) {
y = y - speedy.value();
}
if (y < 10) {
y = y - speedy.value();
}
let color1 = color("black");
fill(color1);
ellipse(x, y, 20);
}
html, body {margin:0}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
You can do something like this (visit codecademy for details: https://www.codecademy.com/courses/learn-p5js/lessons/p5js-animation)
speedx *= -1
You can do the same thing with speedy

Canvas get perspective point

i've a canvas dom element inside a div #content with transform rotateX(23deg) and #view with perspective 990px
<div id="view">
<div id="content">
<canvas></canvas>
</div>
</div>
if i draw a point (300,300) inside canvas, the projected coordinates are different (350, 250).
The real problem is when an object drawn in a canvas is interactive (click o drag and drop), the hit area is translated.
Which equation i've to use? Some kind of matrix?
Thanks for your support.
This is something I am dealing with now. Lets start out with something simple. Let's say your canvas is right up against the top left corner. If you click the mouse and make an arc on that spot it will be good.
canvasDOMObject.onmouseclick = (e) => {
const x = e.clientX;
const y = e.clientY;
}
If your canvas origin is not at client origin you would need to do something like this:
const rect = canvasDOMObject.getBoundingRect();
const x = e.clientX - rect.x;
const y = e.clientY - rect.y;
If you apply some pan, adding pan, when drawing stuff you need to un-pan it, pre-subtract the pan, when capturing the mouse point:
const panX = 30;
const panY = 40;
const rect = canvasDOMObject.getBoundingRect();
const x = e.clientX - rect.x - panX;
const y = e.clientY - rect.y - panY;
...
ctx.save();
ctx.translate(panX, panY);
ctx.beginPath();
ctx.strokeArc(x, y);
ctx.restore();
If you apply, for instance, a scale when you draw it, you would need to un-scale it when capturing the mouse point:
const panX = 30;
const panY = 40;
const scale = 1.5;
const rect = canvasDOMObject.getBoundingRect();
const x = (e.clientX - rect.x - panX) / scale;
const y = (e.clientY - rect.y - panY) / scale;
...
ctx.save();
ctx.translate(panX, panY);
ctx.scale(scale);
ctx.beginPath();
ctx.strokeArc(x, y);
ctx.restore();
The rotation I have not figured out yet but I'm getting there.
Alternative solution.
One way to solve the problem is to trace the ray from the mouse into the page and finding the point on the canvas where that ray intercepts.
You will need to transform the x and y axis of the canvas to match its transform. You will also have to project the ray from the desired point to the perspective point. (defined by x,y,z where z is perspective CSS value)
Note: I could not find much info about CSS perspective math and how it is implemented so it is just guess work from me.
There is a lot of math involved and i had to build a quick 3dpoint object to manage it all. I will warn you that it is not well designed (I dont have the time to inline it where needed) and will incur a heavy GC toll. You should rewrite the ray intercept and remove all the point clone calls and reuse points rather than create new ones each time you need them.
There are a few short cuts. The ray / face intercept assumes that the 3 points defining the face are the actual x and y axis but it does not check that this is so. If you have the wrong axis you will not get the correct pixel coordinate. Also the returned coordinate is relative to the point face.p1 (0,0) and is in the range 0-1 where 0 <= x <= 1 and 0 <= y <= 1 are points on the canvas.
Make sure the canvas resolution matches the display size. If not you will need to scale the axis and the results to fit.
DEMO
The demo project a set of points creating a cross through the center of the canvas. You will notice the radius of the projected circle will change depending on distance from the camera.
Note code is in ES6 and requires Babel to run on legacy browsers.
var divCont = document.createElement("div");
var canvas = document.createElement("canvas");
canvas.width = 400;
canvas.height = 400;
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var ctx = canvas.getContext("2d");
// perspectiveOrigin
var px = cw; // canvas center
var py = 50; //
// perspective
var pd = 700;
var mat;
divCont.style.perspectiveOrigin = px + "px "+py+"px";
divCont.style.perspective = pd + "px";
divCont.style.transformStyle = "preserve-3d";
divCont.style.margin = "10px";
divCont.style.border = "1px black solid";
divCont.style.width = (canvas.width+8) + "px";
divCont.style.height = (canvas.height+8) + "px";
divCont.appendChild(canvas);
document.body.appendChild(divCont);
function getMatrix(){ // get canvas matrix
if(mat === undefined){
mat = new DOMMatrix().setMatrixValue(canvas.style.transform);
}else{
mat.setMatrixValue(canvas.style.transform);
}
}
function getPoint(x,y){ // get point on canvas
var ww = canvas.width;
var hh = canvas.height;
var face = createFace(
createPoint(mat.transformPoint(new DOMPoint(-ww / 2, -hh / 2))),
createPoint(mat.transformPoint(new DOMPoint(ww / 2, -hh / 2))),
createPoint(mat.transformPoint(new DOMPoint(-ww / 2, hh / 2)))
);
var ray = createRay(
createPoint(x - ww / 2, y - hh / 2, 0),
createPoint(px - ww / 2, py - hh / 2, pd)
);
return intersectCoord3DRayFace(ray, face);
}
// draw point projected onto the canvas
function drawPoint(x,y){
var p = getPoint(x,y);
if(p !== undefined){
p.x *= canvas.width;
p.y *= canvas.height;
ctx.beginPath();
ctx.arc(p.x,p.y,8,0,Math.PI * 2);
ctx.fill();
}
}
// main update function
function update(timer){
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.fillStyle = "green";
ctx.fillRect(0,0,w,h);
ctx.lineWidth = 10;
ctx.strokeRect(0,0,w,h);
canvas.style.transform = "rotateX("+timer/100+"deg)" + " rotateY("+timer/50+"deg)";
getMatrix();
ctx.fillStyle = "gold";
drawPoint(cw,ch);
for(var i = -200; i <= 200; i += 40){
drawPoint(cw + i,ch);
drawPoint(cw ,ch + i);
}
requestAnimationFrame(update);
}
requestAnimationFrame(update);
// Math functions to find x,y pos on plain.
// Warning this code is not built for SPEED and will incure a lot of GC hits
const small = 1e-6;
var pointFunctions = {
add(p){
this.x += p.x;
this.y += p.y;
this.z += p.z;
return this;
},
sub(p){
this.x -= p.x;
this.y -= p.y;
this.z -= p.z;
return this;
},
mul(mag){
this.x *= mag;
this.y *= mag;
this.z *= mag;
return this;
},
mag(){ // get length
return Math.hypot(this.x,this.y,this.z);
},
cross(p){
var p1 = this.clone();
p1.x = this.y * p.z - this.z * p.y;
p1.y = this.z * p.x - this.x * p.z;
p1.z = this.x * p.y - this.y * p.x;
return p1;
},
dot(p){
return this.x * p.x + this.y * p.y + this.z * p.z;
},
isZero(){
return Math.abs(this.x) < small && Math.abs(this.y) < small && Math.abs(this.z) < small;
},
clone(){
return Object.assign({
x : this.x,
y : this.y,
z : this.z,
},pointFunctions);
}
}
function createPoint(x,y,z){
if(y === undefined){ // quick add overloaded for DOMPoint
y = x.y;
z = x.z;
x = x.x;
}
return Object.assign({
x, y, z,
}, pointFunctions);
}
function createRay(p1, p2){
return { p1, p2 };
}
function createFace(p1, p2, p3){
return { p1,p2, p3 };
}
// Returns the x,y coord of ray intercepting face
// ray is defined by two 3D points and is infinite in length
// face is 3 points on the intereceptin plane
// For correct intercept point face p1-p2 should be at 90deg to p1-p3 (x, and y Axis)
// returns unit coordinates x,y on the face with the origin at face.p1
// If there is no solution then returns undefined
function intersectCoord3DRayFace(ray, face ){
var u = face.p2.clone().sub(face.p1);
var v = face.p3.clone().sub(face.p1);
var n = u.cross(v);
if(n.isZero()){
return; // return undefined
}
var vr = ray.p2.clone().sub(ray.p1);
var b = n.dot(vr);
if (Math.abs(b) < small) { // ray is parallel face
return; // no intercept return undefined
}
var w = ray.p1.clone().sub(face.p1);
var a = -n.dot(w);
var uDist = a / b;
var intercept = ray.p1.clone().add(vr.mul(uDist)); // intersect point
var uu = u.dot(u);
var uv = u.dot(v);
var vv = v.dot(v);
var dot = uv * uv - uu * vv;
w = intercept.clone().sub(face.p1);
var wu = w.dot(u);
var wv = w.dot(v);
var x = (uv * wv - vv * wu) / dot;
var y = (uv * wu - uu * wv) / dot;
return {x,y};
}

JavaScript Point Collision with Regular Hexagon

I'm making an HTML5 canvas hexagon grid based system and I need to be able to detect what hexagonal tile in a grid has been clicked when the canvas is clicked.
Several hours of searching and trying my own methods led to nothing, and porting implementations from other languages has simply confused me to a point where my brain is sluggish.
The grid consists of flat topped regular hexagons like in this diagram:
Essentially, given a point and the variables specified in this image as the sizing for every hexagon in the grid (R, W, S, H):
I need to be able to determine whether a point is inside a hexagon given.
An example function call would be pointInHexagon(hexX, hexY, R, W, S, H, pointX, pointY) where hexX and hexY are the coordinates for the top left corner of the bounding box of a hexagonal tile (like the top left corner in the image above).
Is there anyone who has any idea how to do this? Speed isn't much of a concern for the moment.
Simple & fast diagonal rectangle slice.
Looking at the other answers I see that they have all a little over complicated the problem. The following is an order of magnitude quicker than the accepted answer and does not require any complicated data structures, iterators, or generate dead memory and unneeded GC hits. It returns the hex cell row and column for any related set of R, H, S or W. The example uses R = 50.
Part of the problem is finding which side of a rectangle a point is if the rectangle is split diagonally. This is a very simple calculation and is done by normalising the position of the point to test.
Slice any rectangle diagonally
Example a rectangle of width w, and height h split from top left to bottom right. To find if a point is left or right. Assume top left of rectangle is at rx,ry
var x = ?;
var y = ?;
x = ((x - rx) % w) / w;
y = ((y - ry) % h) / h;
if (x > y) {
// point is in the upper right triangle
} else if (x < y) {
// point is in lower left triangle
} else {
// point is on the diagonal
}
If you want to change the direction of the diagonal then just invert one of the normals
x = 1 - x; // invert x or y to change the direction the rectangle is split
if (x > y) {
// point is in the upper left triangle
} else if (x < y) {
// point is in lower right triangle
} else {
// point is on the diagonal
}
Split into sub cells and use %
The rest of the problem is just a matter of splitting the grid into (R / 2) by (H / 2) cells width each hex covering 4 columns and 2 rows. Every 1st column out of 3 will have diagonals. with every second of these column having the diagonal flipped. For every 4th, 5th, and 6th column out of 6 have the row shifted down one cell. By using % you can very quickly determine which hex cell you are on. Using the diagonal split method above make the math easy and quick.
And one extra bit. The return argument retPos is optional. if you call the function as follows
var retPos;
mainLoop(){
retPos = getHex(mouse.x, mouse.y, retPos);
}
the code will not incur a GC hit, further improving the speed.
Pixel to Hex coordinates
From Question diagram returns hex cell x,y pos. Please note that this function only works in the range 0 <= x, 0 <= y if you need negative coordinates subtract the min negative pixel x,y coordinate from the input
// the values as set out in the question image
var r = 50;
var w = r * 2;
var h = Math.sqrt(3) * r;
// returns the hex grid x,y position in the object retPos.
// retPos is created if not supplied;
// argument x,y is pixel coordinate (for mouse or what ever you are looking to find)
function getHex (x, y, retPos){
if(retPos === undefined){
retPos = {};
}
var xa, ya, xpos, xx, yy, r2, h2;
r2 = r / 2;
h2 = h / 2;
xx = Math.floor(x / r2);
yy = Math.floor(y / h2);
xpos = Math.floor(xx / 3);
xx %= 6;
if (xx % 3 === 0) { // column with diagonals
xa = (x % r2) / r2; // to find the diagonals
ya = (y % h2) / h2;
if (yy % 2===0) {
ya = 1 - ya;
}
if (xx === 3) {
xa = 1 - xa;
}
if (xa > ya) {
retPos.x = xpos + (xx === 3 ? -1 : 0);
retPos.y = Math.floor(yy / 2);
return retPos;
}
retPos.x = xpos + (xx === 0 ? -1 : 0);
retPos.y = Math.floor((yy + 1) / 2);
return retPos;
}
if (xx < 3) {
retPos.x = xpos + (xx === 3 ? -1 : 0);
retPos.y = Math.floor(yy / 2);
return retPos;
}
retPos.x = xpos + (xx === 0 ? -1 : 0);
retPos.y = Math.floor((yy + 1) / 2);
return retPos;
}
Hex to pixel
And a helper function that draws a cell given the cell coordinates.
// Helper function draws a cell at hex coordinates cellx,celly
// fStyle is fill style
// sStyle is strock style;
// fStyle and sStyle are optional. Fill or stroke will only be made if style given
function drawCell1(cellPos, fStyle, sStyle){
var cell = [1,0, 3,0, 4,1, 3,2, 1,2, 0,1];
var r2 = r / 2;
var h2 = h / 2;
function drawCell(x, y){
var i = 0;
ctx.beginPath();
ctx.moveTo((x + cell[i++]) * r2, (y + cell[i++]) * h2)
while (i < cell.length) {
ctx.lineTo((x + cell[i++]) * r2, (y + cell[i++]) * h2)
}
ctx.closePath();
}
ctx.lineWidth = 2;
var cx = Math.floor(cellPos.x * 3);
var cy = Math.floor(cellPos.y * 2);
if(cellPos.x % 2 === 1){
cy -= 1;
}
drawCell(cx, cy);
if (fStyle !== undefined && fStyle !== null){ // fill hex is fStyle given
ctx.fillStyle = fStyle
ctx.fill();
}
if (sStyle !== undefined ){ // stroke hex is fStyle given
ctx.strokeStyle = sStyle
ctx.stroke();
}
}
I think you need something like this~
EDITED
I did some maths and here you have it. This is not a perfect version but probably will help you...
Ah, you only need a R parameter because based on it you can calculate H, W and S. That is what I understand from your description.
// setup canvas for demo
var canvas = document.getElementById('canvas');
canvas.width = 300;
canvas.height = 275;
var context = canvas.getContext('2d');
var hexPath;
var hex = {
x: 50,
y: 50,
R: 100
}
// Place holders for mouse x,y position
var mouseX = 0;
var mouseY = 0;
// Test for collision between an object and a point
function pointInHexagon(target, pointX, pointY) {
var side = Math.sqrt(target.R*target.R*3/4);
var startX = target.x
var baseX = startX + target.R / 2;
var endX = target.x + 2 * target.R;
var startY = target.y;
var baseY = startY + side;
var endY = startY + 2 * side;
var square = {
x: startX,
y: startY,
side: 2*side
}
hexPath = new Path2D();
hexPath.lineTo(baseX, startY);
hexPath.lineTo(baseX + target.R, startY);
hexPath.lineTo(endX, baseY);
hexPath.lineTo(baseX + target.R, endY);
hexPath.lineTo(baseX, endY);
hexPath.lineTo(startX, baseY);
if (pointX >= square.x && pointX <= (square.x + square.side) && pointY >= square.y && pointY <= (square.y + square.side)) {
var auxX = (pointX < target.R / 2) ? pointX : (pointX > target.R * 3 / 2) ? pointX - target.R * 3 / 2 : target.R / 2;
var auxY = (pointY <= square.side / 2) ? pointY : pointY - square.side / 2;
var dPointX = auxX * auxX;
var dPointY = auxY * auxY;
var hypo = Math.sqrt(dPointX + dPointY);
var cos = pointX / hypo;
if (pointX < (target.x + target.R / 2)) {
if (pointY <= (target.y + square.side / 2)) {
if (pointX < (target.x + (target.R / 2 * cos))) return false;
}
if (pointY > (target.y + square.side / 2)) {
if (pointX < (target.x + (target.R / 2 * cos))) return false;
}
}
if (pointX > (target.x + target.R * 3 / 2)) {
if (pointY <= (target.y + square.side / 2)) {
if (pointX < (target.x + square.side - (target.R / 2 * cos))) return false;
}
if (pointY > (target.y + square.side / 2)) {
if (pointX < (target.x + square.side - (target.R / 2 * cos))) return false;
}
}
return true;
}
return false;
}
// Loop
setInterval(onTimerTick, 33);
// Render Loop
function onTimerTick() {
// Clear the canvas
canvas.width = canvas.width;
// see if a collision happened
var collision = pointInHexagon(hex, mouseX, mouseY);
// render out text
context.fillStyle = "Blue";
context.font = "18px sans-serif";
context.fillText("Collision: " + collision + " | Mouse (" + mouseX + ", " + mouseY + ")", 10, 20);
// render out square
context.fillStyle = collision ? "red" : "green";
context.fill(hexPath);
}
// Update mouse position
canvas.onmousemove = function(e) {
mouseX = e.offsetX;
mouseY = e.offsetY;
}
#canvas {
border: 1px solid black;
}
<canvas id="canvas"></canvas>
Just replace your pointInHexagon(hexX, hexY, R, W, S, H, pointX, pointY) by the var hover = ctx.isPointInPath(hexPath, x, y).
This is for Creating and copying paths
This is about the Collision Detection
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var hexPath = new Path2D();
hexPath.lineTo(25, 0);
hexPath.lineTo(75, 0);
hexPath.lineTo(100, 43);
hexPath.lineTo(75, 86);
hexPath.lineTo(25, 86);
hexPath.lineTo(0, 43);
function draw(hover) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = hover ? 'blue' : 'red';
ctx.fill(hexPath);
}
canvas.onmousemove = function(e) {
var x = e.clientX - canvas.offsetLeft, y = e.clientY - canvas.offsetTop;
var hover = ctx.isPointInPath(hexPath, x, y)
draw(hover)
};
draw();
<canvas id="canvas"></canvas>
I've made a solution for you that demonstrates the point in triangle approach to this problem.
http://codepen.io/spinvector/pen/gLROEp
maths below:
isPointInside(point)
{
// Point in triangle algorithm from http://totologic.blogspot.com.au/2014/01/accurate-point-in-triangle-test.html
function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y)
{
var denominator = ((y2 - y3)*(x1 - x3) + (x3 - x2)*(y1 - y3));
var a = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / denominator;
var b = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / denominator;
var c = 1 - a - b;
return 0 <= a && a <= 1 && 0 <= b && b <= 1 && 0 <= c && c <= 1;
}
// A Hex is composite of 6 trianges, lets do a point in triangle test for each one.
// Step through our triangles
for (var i = 0; i < 6; i++) {
// check for point inside, if so, return true for this function;
if(pointInTriangle( this.origin.x, this.origin.y,
this.points[i].x, this.points[i].y,
this.points[(i+1)%6].x, this.points[(i+1)%6].y,
point.x, point.y))
return true;
}
// Point must be outside.
return false;
}
Here is a fully mathematical and functional representation of your problem. You will notice that there are no ifs and thens in this code other than the ternary to change the color of the text depending on the mouse position. This whole job is in fact nothing more than pure simple math of just one line;
(r+m)/2 + Math.cos(a*s)*(r-m)/2;
and this code is reusable for all polygons from triangle to circle. So if interested please read on. It's very simple.
In order to display the functionality I had to develop a mimicking model of the problem. I draw a polygon on a canvas by utilizing a simple utility function. So that the overall solution should work for any polygon. The following snippet will take the canvas context c, radius r, number of sides s, and the local center coordinates in the canvas cx and cy as arguments and draw a polygon on the given canvas context at the right position.
function drawPolgon(c, r, s, cx, cy){ //context, radius, sides, center x, center y
c.beginPath();
c.moveTo(cx + r,cy);
for(var p = 1; p < s; p++) c.lineTo(cx + r*Math.cos(p*2*Math.PI/s), cy + r*Math.sin(p*2*Math.PI/s));
c.closePath();
c.stroke();
}
We have some other utility functions which one can easily understand what exactly they are doing. However the most important part is to check whether the mouse is floating over our polygon or not. It's done by the utility function isMouseIn. It's basically calculating the distance and the angle of the mouse position to the center of the polygon. Then, comparing it with the boundaries of the polygon. The boundaries of the polygon can be expressed by simple trigonometry, just like we have calculated the vertices in the drawPolygon function.
We can think of our polygon as a circle with an oscillating radius at the frequency of number of sides. The oscillation's peak is at the given radius value r (which happens to be at the vertices at angle 2π/s where s is the number of sides) and the minimum m is r*Math.cos(Math.PI/s) (each shows at at angle 2π/s + 2π/2s = 3π/s). I am pretty sure the ideal way to express a polygon could be done by the Fourier transformation but we don't need that here. All we need is a constant radius component which is the average of minimum and maximum, (r+m)/2 and the oscillating component with the frequency of number of sides, s and the amplitude value maximum - minimum)/2 on top of it, Math.cos(a*s)*(r-m)/2. Well of course as per Fourier states we might carry on with smaller oscillating components but with a hexagon you don't really need further iteration while with a triangle you possibly would. So here is our polygon representation in math.
(r+m)/2 + Math.cos(a*s)*(r-m)/2;
Now all we need is to calculate the angle and distance of our mouse position relative to the center of the polygon and compare it with the above mathematical expression which represents our polygon. So all together our magic function is orchestrated as follows;
function isMouseIn(r,s,cx,cy,mx,my){
var m = r*Math.cos(Math.PI/s), // the min dist from an edge to the center
d = Math.hypot(mx-cx,my-cy), // the mouse's distance to the center of the polygon
a = Math.atan2(cy-my,mx-cx); // angle of the mouse pointer
return d <= (r+m)/2 + Math.cos(a*s)*(r-m)/2;
}
So the following code demonstrates how you might approach to solve your problem.
// Generic function to draw a polygon on the canvas
function drawPolgon(c, r, s, cx, cy){ //context, radius, sides, center x, center y
c.beginPath();
c.moveTo(cx + r,cy);
for(var p = 1; p < s; p++) c.lineTo(cx + r*Math.cos(p*2*Math.PI/s), cy + r*Math.sin(p*2*Math.PI/s));
c.closePath();
c.stroke();
}
// To write the mouse position in canvas local coordinates
function writeText(c,x,y,msg,col){
c.clearRect(0, 0, 300, 30);
c.font = "10pt Monospace";
c.fillStyle = col;
c.fillText(msg, x, y);
}
// Getting the mouse position and coverting into canvas local coordinates
function getMousePos(c, e) {
var rect = c.getBoundingClientRect();
return { x: e.clientX - rect.left,
y: e.clientY - rect.top
};
}
// To check if mouse is inside the polygone
function isMouseIn(r,s,cx,cy,mx,my){
var m = r*Math.cos(Math.PI/s),
d = Math.hypot(mx-cx,my-cy),
a = Math.atan2(cy-my,mx-cx);
return d <= (r+m)/2 + Math.cos(a*s)*(r-m)/2;
}
// the event listener callback
function mouseMoveCB(e){
var mp = getMousePos(cnv, e),
msg = 'Mouse at: ' + mp.x + ',' + mp.y,
col = "black",
inside = isMouseIn(radius,sides,center[0],center[1],mp.x,mp.y);
writeText(ctx, 10, 25, msg, inside ? "turquoise" : "red");
}
// body of the JS code
var cnv = document.getElementById("myCanvas"),
ctx = cnv.getContext("2d"),
sides = 6,
radius = 100,
center = [150,150];
cnv.addEventListener('mousemove', mouseMoveCB, false);
drawPolgon(ctx, radius, sides, center[0], center[1]);
#myCanvas { background: #eee;
width: 300px;
height: 300px;
border: 1px #ccc solid
}
<canvas id="myCanvas" width="300" height="300"></canvas>
At the redblog there is a full explanation with math and working examples.
The main idea is that hexagons are horizontally spaced by $3/4$ of hexagons size, vertically it is simply $H$ but the column needs to be taken to take vertical offset into account. The case colored red is determined by comparing x to y at 1/4 W slice.

Stretch image to fit polygon html5 canvas

I have a square image like this:
I am trying to stretch this image into a polygon like this:
So far I have been able to create a polygon on the canvas as the above image using the following javascript:
function drawCanvas() {
var c2 = document.getElementById('myCanvas6').getContext('2d');
var img = document.getElementById("scream");
c2.fillStyle = '#000';
c2.beginPath();
c2.moveTo(20, 20);
c2.lineTo(320, 50);
c2.lineTo(320, 170);
c2.lineTo(20, 200);
//c2.drawImage(img, 150, 10, img.width, img.height);
c2.closePath();
c2.fill();
}
I tried using drawImage() method, but it does not stretch the points A, B, C, D to the new positions. Is there anyway this can be achieved?
The 2D canvas is called 2D for a very good reason. You can not transform a square such that any of its side converge (are not parallel) hence 2D
But where there is a need there is always a way..
You can do it by cutting the image into slices and then draw each slice slightly smaller than the last.
We humans don't like to see an image distort when it converges, so you need to add the distortion we expect, perspective. The further away the object the smaller the distance between points appears to the eye.
So the function below draws an image with the top and bottom edges converging..
It is not true 3D but it does make the image appear as distorted as jus converging the top and bottom without decreasing the y step. The animation introduced a bit of an optical illusion. the second render shortens the image to make it appear a little less fake.
See the code on how to use the function.
/** CreateImage.js begin **/
// creates a blank image with 2d context
var createImage=function(w,h){var i=document.createElement("canvas");i.width=w;i.height=h;i.ctx=i.getContext("2d");return i;}
/** CreateImage.js end **/
var can = createImage(512,512);
document.body.appendChild(can);
var ctx = can.ctx;
const textToDisplay = "Perspective"
const textSize = 80;
ctx.font = textSize+"px arial";
var w = ctx.measureText(textToDisplay).width + 8;
var text = createImage(w + 64,textSize + 32);
text.ctx.fillStyle = "#08F";
text.ctx.strokeStyle = "black";
text.ctx.lineWidth = 16;
text.ctx.fillRect(0,0,text.width,text.height);
text.ctx.strokeRect(0,0,text.width,text.height);
text.ctx.font = textSize+"px arial";
text.ctx.fillStyle = "#F80";
text.ctx.strokeStyle = "Black";
text.ctx.lineWidth = 4;
text.ctx.strokeText(textToDisplay,38,textSize + 8);
text.ctx.fillText(textToDisplay,38,textSize + 8);
// Not quite 3D
// ctx is the context to draw to
// image is the image to draw
// x1,x2 left and right edges of the image
// zz1,zz2 top offset for left and right
// image top edge has a slops from zz1 to zz2
// yy if the position to draw top. This is where the top would be if z = 0
function drawPerspective(ctx, image, x1, zz1, x2, zz2, yy){
var x, w, h, h2,slop, topLeft, botLeft, zDistR, zDistL, lines, ty;
w = image.width; // image size
h = image.height;
h2 = h /2; // half height
slop = (zz2 - zz1) / (x2 - x1); // Slope of top edge
z1 = h2 - zz1; // Distance (z) to first line
z2 = (z1 / (h2 - zz2)) * z1 - z1; // distance (z) between first and last line
if(z2 === 0){ // if no differance in z then is square to camera
topLeft = - x1 * slop + zz1; // get scan line top left edge
ctx.drawImage(image,0, 0, w, h,x1, topLeft + yy ,x2-x1, h - topLeft * 2) // render to desination
return;
}
// render each display line getting all pixels that will be on that line
for (x = x1; x < x2; x++) { // for each line horizontal line
topLeft = (x - x1) * slop + zz1; // get scan line top left edge
botLeft = ((x + 1) - x1) * slop + zz1; // get scan line bottom left edge
zDistL = (z1 / (h2 - topLeft)) * z1; // get Z distance to Left of this line
zDistR = (z1 / (h2 - botLeft)) * z1; // get Z distance to right of this line
ty = ((zDistL - z1) / z2) * w; // get y bitmap coord
lines = ((zDistR - z1) / z2) * w - ty;// get number of lines to copy
ctx.drawImage(image,
ty % w, 0, lines, h, // get the source location of pixel
x, topLeft + yy,1 , h - topLeft * 2 // render to desination
);
}
}
var animTick = 0;
var animRate = 0.01;
var pos = 0;
var short = 0;
function update1(){
animTick += animRate;
pos = Math.sin(animTick) * 20 + 20;
short = Math.cos((pos / 40) * Math.PI) * text.width * 0.12 - text.width * 0.12;
ctx.clearRect(0,0,can.width,can.height)
drawPerspective(ctx,text,0,0,text.width,pos,20)
drawPerspective(ctx,text,0,0,text.width+short,pos,textSize + 32 + 30)
requestAnimationFrame(update1);
}
update1();
I think this is a good solution for you: http://jsfiddle.net/fQk4h/
Here is the magic:
for (i = 0; i < w; i++) {
dy = (leftTop * (w - i)) / w;
dh = (leftBot * (w - i) + h * i) / w;
ctx.drawImage(tmpCtx.canvas,
i, 0, 1, h,
i, dy, 1, dh);
}
ctx.restore();

Painting Cells in Grid

I have a JSfiddle set up here. I'm drawing a canvas grid and want to allow a user to select a color and 'paint' the grid cells like pixel art. Can someone point me in the right direction?
http://jsfiddle.net/g51bx1nb/
var c_canvas = document.getElementById("c");
var context = c_canvas.getContext("2d");
for (var x = 0.5; x < 501; x += 20) {
context.moveTo(x, 0);
context.lineTo(x, 381);
}
for (var y = 0.5; y < 381; y += 20) {
context.moveTo(0, y);
context.lineTo(500, y);
}
context.strokeStyle = "#ddd";
context.stroke();
Well this should get you closer.
function getMousePos(canvas, evt) {
var rect = canvas.getBoundingClientRect();
return {
x: evt.clientX - rect.left,
y: evt.clientY - rect.top
};
}
function getNearestSquare(position) {
var x = position.x;
var y = position.y;
if (x < 0 || y < 0) return null;
x = (Math.floor(x / 20) * 20) + 0.5
y = (Math.floor(y / 20) * 20) + 0.5
return {x: x, y: y};
}
$(c_canvas).click(function(evt) {
var pos = getNearestSquare(getMousePos(c_canvas, evt));
if (pos != null) {
context.fillStyle="#FF0000";
context.fillRect(pos.x,pos.y,20,20);
}
});
I tried this out on your fiddle, adding this JS code gives you an on click event that'll let you click and paint an area the size of one of your squares red, you just need to use the fill style as a variable that the user can change.
Edit:
I added the logic to find the top left.

Categories

Resources